US 20120233699A1

a2y Patent Application Publication o) Pub. No.: US 2012/0233699 A1

a9 United States

JAJODIA et al.

43) Pub. Date: Sep. 13, 2012

(54) K-ZERO DAY SAFETY

(76) Sushil JAJODIA, Oakton, VA
(US); Lingyu Wang, Montreal
(CA); Steven Noel, Woodbridge,
VA (US); Anoop Singhal,
Germantown, MD (US)

Inventors:

13/348,457

(21) Appl. No.:

(22) Filed: Jan. 11, 2012

Related U.S. Application Data

(60)
11, 2011.

Provisional application No. 61/431,535, filed on Jan.

Publication Classification

(51) Int.CL
GOGF 21/00 (2006.01)

LG N LR o) R 726/25

(57) ABSTRACT

Systems and methods for determining a safety level of a
network vulnerable to attack from atleast one origin to at least
one target are described. Machines, components, and vulner-
abilities in a network may be associated to one another.
Degrees of similarity among the vulnerabilities may be deter-
mined and subsets of vulnerabilities may be grouped based on
their determined degrees of similarity to one another. This
data may be used to generate an attack graph describing
exploitation of vulnerabilities and grouped vulnerabilities
and defining vulnerability exploit condition relationships
between at least one origin and at least one target. The attack
graph may be analyzed using a k-zero day metric function to
determine a safety level.

2380

nebwork

Py
[~
€

ernsirpeassnrn
cireness)

machine

formation
£

bl
e
<

Component
information

o
3%
soivrre

>

n

S

machine
mapper

920

g22

component

mapper

component mappings

mappings

o
2
ey

[
)
=

exploit
R
4]

Vulherability
information
inforrmation

e

vuinerability

mapper

924

cwansrrcrrcereel

vulnerability

attack graph generator

300
f

///fx/t/tack

raph

\

70

metric calculator

Patent Application Publication

Sep. 13,2012 Sheet 1 of 10 US 2012/0233699 Al

100
1168
host 1
Fﬁ hitp
430 : — {ip‘tabies}
firewall ssh
HIBHEITRNEIE
A
k-

|
|

P—
{

G AT AL

fiost 2
120

FIG. 1

Sep. 13,2012 Sheet 2 of

Patent Application Publication

10 US 2012/0233699 Al

t‘\\\\\\ 200
/ T 201
i \\“\ [!
\V htips O l} ¥ ~—— \\\
//\ T 210 \
froct i~ 224 J
240 {’””E;Az/v < ;T\
{ e W 54
{user,B) ssh /g
:‘, N ’/ \—-‘"[} A\
i [N
\
T 202 "
. ST TN
\ (V:’erewat!,D,FQ > (0)2) {Vasn,0 2> '}'“—-*——-—-b {root 2}
——— 222 - 220
| 221 293
!
263
FiG. 2A
250
[T~
i /“—__\ -
251
/ Whip 8.1 e \\\ /
T :
213 252 T~ \\\
240 /’\Q ~, 210]
{user,0) {Viptaties, 0. 1} B (OO 5ou
/x - 2?2\\(o \k,_,\\\
{ssh,1 Veer 0,1 {Veerr, 1.2
} \\ (ssh, A,}/ /{
253 s TS S 220
{\’ﬁfEW‘EHsGiF,\' > > (0;2) \\ (Vssh.,G,E} 3“’“""&" {FGO'{Q)
e 222 " ;
Vo2 223 /
\\ /
254
FIG. 2B

Patent Application Publication

Sep. 13,2012 Sheet 3 of 10

US 2012/0233699 Al

800
network 100
K
o o} = o =
ég S| 910 g5 920 =593 S 950
R c o el o =
S m"f (Gf o ~ ©
g g 8 £ gef 34
E 8 £ S 25 5
< £ 8912 3 © = 't =
machine fﬁh
mapper \
V;ZQ
component /Lﬁ
mapper \r
}%32
. ~~/
£ vuinerability |,/
& mapper
O
=
e z
o 5 3 e
22 914 S | 924 S 2| 934
ke Bou gy o ¢ <
QO Q.f = o O
O A0 S = Q]
= & O > &
‘Q\f;&w v 860

attack graph generator

,.-'";Atta ck
\ graph

300

870

metric calculator

FiG. 3

Patent Application Publication

Sep. 13,2012 Sheet 4 of 10

US 2012/0233699 Al
300
351 361 352 340 <f 353“ - 382
<hitp, 1> <{, 1> <iptables, 1> _<user,0> EFe‘i\fa o <0,F>

.
\\ / 374
315
<iisar,

75
75

¥
320
Fics 4 <root,2>

Patent Application Publication Sep. 13,2012 Sheet 5 of 10 US 2012/0233699 A1

———
-~ E
< e) i — - — —~
@ . — ~ o~ C:\: o~ o~
Y o o il — © j] o™N
2 a - = = = - Pt
& = = 3 <) < S
= = 4 2 9 & 3 2
> > BN > > > N >
-3 " N R f—— e N N

S
[ate]
6]
o]
<
s
s
[aw

“
<Viptab!eSny 3 }

Voo, 0,1 o 1 0 1 ¢ o ¢ ©
(Vasn, 0,1} o 0 1 1 1 6 1 ¢
Voo 1,13 ¢ 1 1 1 o 0 9 0
(Ve 1,2) 6 0 1 0 1 o 1 1
(Viroman, 0,5 o o o 0 ° 1 0 0
(Vesn:0,2) (I VI o 1 o0 1 1
(Voo 2,2} 6 ¢ o 0 A 0 1 1

FIG. 5

Patent Application Publication Sep. 13,2012 Sheet 6 of 10 US 2012/0233699 A1

FIG. 6
(Hid_Bwd) 500
v
A zero day attack graph G, a set / 510
of assets A with the valuation
function v(.) /
520
For each asset
ge A
Let L be the logic 530

proposition
representing g

580
Eet
ky = min {KOA(F: 1Y Eo, &)
Replace each initial .
condition ¢ with TRUE 550 Fy1s the set of
§3 non-negated
Replace exploiis in
each condition ¢ with 560 Lp1gisal)
Vee{e' rcepost(e)} e
¥
Replace 570
cach non~negated exploit ¢ with
e N\ (/\c epre(e)©)
7 580

/ ZaEA(ka) v{a}‘) / Eae;’lv(a) /

S
¥

END

Patent Application Publication Sep. 13,2012 Sheet 7 of 10 US 2012/0233699 A1

FI1G. 7

f k@d_ﬂF il 3 &00

A zero day attack graph G, an
asset ¢, a real number & >0, 7, =
a.T.=; 805
#¥, and 7. inctude the exploits and
gonditions visited so far,
respectively /

850

Pt {?d_Reacimb!e

Foreach ¢ & £y \ Ty satisfying

pre(e) o Te

845 635

k0 Fwd(G,a, k, T,

Wiel, T, u posKe))

Te = Te U posi(e)
}

/ Return
B840 / N arec—a)

Patent Application Publication Sep. 13,2012 Sheet 8 of 10 US 2012/0233699 A1

FIG. 8A

700 C K0d_Shortest)

A zero day attack graph G, an
703 asset L

}
Let G, be a directed acyclic graph (DAG)
706 with a vertex I and elabel be an empty
{

Let (G, elabel) = k0d_GraphtG, L, (g,
elabel)
|

712 Let viist be any topological sort of G

I
Let dist = {(0,)} and dist, = {{0, ¢}
715 for any other vertex x

718 /\

721 [Delete first vertex u from viist
i
794 For cach outgoing edge (i, vy of u
i
727 | Letelist be the set of all edges reachable
from v
I
730 For cach {x, v) € disty E
|
733 Let v = {e:e e yUelabel[{u v, o' edisto” e e[abel[(zl} g = Q”}

!
Letx' = x + kKOd({ y U elabel[Ge, v\ ¥y') O Eg,)

736
I
738 Let disr, =disty UG, p")
i
742 Whike ((x,), &', ¥ € disty Yx =27 + k040 O o, 60
i j
Delete (x, y) from dist,; 745

748 — Return min({x - {x. #) € distg, isa dummy vertex})

Patent Application Publication

FiG. 8B

Sep. 13,2012 Sheet 9 of 10

C K0d _Graph) 750
I

A zero day attack graph
753 G, an asset £, 2 DAG
G, an array elabel

755

Let

756
Replace cach initial
condition ¢ with TRUE
I

i

LV LY ... L, bethe DNF
W

US 2012/0233699 Al

e |

H
H

Replace
each condition ¢ with

Vee{e :caposife)}€

Replace
each non-negated exploit ¢ with
€ /\5\ ¢ epre(e) c)

765

Let L be its DNF

[

Let
ky = min({Od(F; N Ey, 6}
766 F; is the set of non-negated
exploits in L, 1 <7 <n})

there exists a conjunctive clause/in L
including more than one condition

For each conjunctive clanse / in L

776 If 7 includes a condition ¢
‘ Add vertex ¢
779 and edge (L. o) to G,
i

Let elabel[(L, c)] to be set ofexploitsin | 7g5

i

Let (G, elabel) = k0d GraphiG, ¢, G, elabel
#Recursive call with e as L

788

781

Add a dummy vertex

and edge (.. &) 1o G, g

i

Let elabel[{L, d)] be

set of exploits in /

Retur

n G, 794

Patent Application Publication Sep. 13,2012 Sheet 10 of 10 US 2012/0233699 A1

} . 810
(2.0 81 0.2
2 802 3 803
F
1 / 02 *1°
X /372
{2,683 810 i // {(Viptaties &, 1} 4 004
372 /
1801 RN 254 gis 7
ivip‘;abkamO, i) o i /
{ssh, 1) {1.29 ,f
R K;’ 373
371 \ / / {Vﬁrewall,g,f:)
7T 374
RS
T /
315 830 382 815
{user,1) (0, {(¥sen, 1.2)) (0,2 1.0)
e
375
(Vs\st,Z)
333 840
{user,2} (0, (¥oet,2.2))
&
378

{Vroo§.2,2}

320 820
{root, 2} {0,

200

FiG. 8

US 2012/0233699 Al

K-ZERO DAY SAFETY

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This disclosure claims priority from U.S. Provi-
sional App. Ser. No. 61/431,535, entitled “k-Zero Day
Safety,” filed Jan. 11, 2011, the entirety of which is incorpo-
rated by reference herein.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0002] FIG. 1 depicts a network according to an embodi-
ment of the invention.

[0003] FIG. 2A depicts a network according to an embodi-
ment of the invention.

[0004] FIG. 2B depicts a network according to an embodi-
ment of the invention.

[0005] FIG. 3 depicts a block diagram of a model genera-
tion according to an embodiment of the invention.

[0006] FIG. 4 depicts a zero day attack graph according to
an embodiment of the invention.

[0007] FIG. 5 depicts a relation table according to an
embodiment of the invention.

[0008] FIG. 6 depicts a k-zero day safety computation flow
chart according to an embodiment of the invention.

[0009] FIG. 7 depicts a k-zero day computation flow chart
for a given k according to an embodiment of the invention.
[0010] FIG. 8 depicts a flow chart for finding shortest paths
in a directed acyclic graph according to an embodiment of the
invention.

[0011] FIG. 9 depicts a directed acyclic graph according to
an embodiment of the invention.

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS

[0012] Systems and methods for analyzing network vulner-
abilities are presented. Network vulnerability analyses
described herein may determine k-zero day safety for net-
work and/or computer systems. For example, a network may
be monitored, analyzed, and modeled. The network model
may in turn be analyzed to determine how many unknown
vulnerabilities may be required to compromise a network
asset, regardless of what vulnerabilities those are. The deter-
mination may be used for hardening the network.

[0013] Computers may be linked to one another via a net-
work or networks. A computer may be any programmable
machine capable of performing arithmetic and/or logical
operations. In some embodiments, computers may comprise
processors, memories, data storage devices, and/or other
commonly known or novel components. These components
may be connected physically or through network or wireless
links. Computers may also comprise software which may
direct the operations of the aforementioned components.
Computers may be referred to with terms that are commonly
used by those of ordinary skill in the relevant arts, such as
machines, servers, PCs, mobile devices, and other terms. It
will be understood by those of ordinary skill that those terms
used herein are interchangeable, and any computer capable of
performing the described functions may be used. A network
may be any plurality of completely or partially intercon-
nected computers wherein some or all of the computers are
able to communicate with one another. It will be understood
by those of ordinary skill that connections between comput-
ers may be wired in some cases (i.e. via wired TCP connec-

Sep. 13,2012

tion or other connection) or may be wireless (i.e. via WiFi
connection). Any connection through which at least two com-
puters may exchange data can be the basis of a network. In
some cases, a network may be a cloud network wherein
computation, software, data access, storage, and/or other ser-
vices may be provided to end user computers from servers
distributed throughout the Internet or some other network.

[0014] Computers and networks may be vulnerable to out-
side intrusion. Network operators may wish to secure net-
works against potential intrusion and/or evaluate likelihoods
and/or sources of potential intrusion. As part of this process,
present network security may be measured, and analysis may
be performed to determine how network security may change
if new security measures are introduced or if network con-
figuration is modified. Metrics measured and analyzed by the
systems and methods described below may determine how
many distinct zero day vulnerabilities a network can resist
and/or whether a network can resist, a specific number of zero
day vulnerabilities. A zero day vulnerability is a vulnerability
whose details are unknown except that it satisfies at least the
following two conditions. (Conditions may exist which may
be prerequisites for exploiting vulnerabilities of network
components and/or may be results of actually exploiting vul-
nerabilities of network components.) The first condition is
that the vulnerability cannot be exploited unless a network
connection exists between the source and destination hosts, a
remote service with the vulnerability exists on the destination
host, and the attacker already has a privilege on the source
host. The second condition is that exploitation of the vulner-
ability can potentially yield any privilege on the destination
host. Any element of a computer and/or network which may
be vulnerable to an attack can be considered a component that
is evaluated as described herein. A component (or asset) may
be any unit of computational processing that can contribute to
anetwork attack vulnerability, such as software employed by
any piece of hardware on the network. Some components may
be assets that may be specific, incidental, or intermediate
targets of attack.

[0015] A k-zero day metric may be determined for a net-
work to evaluate bow many distinct zero day attacks may be
required to breach the network. A larger k-zero day metric
number may indicate a relatively more secure network, since
the likelihood of having more distinct unknown vulnerabili-
ties all available at the same time, applicable to the same
network, and exploitable by the same attacker, may be lower.
A zero day vulnerability as defined above may represent a
worst-case scenario about the pre- and post-conditions of
exploiting a vulnerability. A particular zero day vulnerability
may in reality require stronger pre-conditions while implying
weaker post-conditions than those stated above. Therefore,
the k-zero day metrics used herein may yield a conservative
network security result. Results may also be conservative in
embodiments wherein one zero day vulnerability is assigned
to each component of a network, because in reality a compo-
nent may have more vulnerabilities (note that a more conser-
vative result of a metric is one that requires fewer zero day
vulnerabilities), in some embodiments, a network may have
more than one k-zero day metric number. As described below,
k-zero day metric numbers may be calculated for individual
targets within a network from an origin or origins. Different
targets may be relatively easier or harder to reach from dif-
ferent origins and may have different k-zero day-metric num-
bers. A target may be any element of a network which may be
subject to an attack, such as a condition, privilege, machine,

US 2012/0233699 Al

or other element. Likewise, an origin may be any element of
a network from which an attack can be started, such as a
condition, privilege, machine, or other element.

[0016] FIG. 1 depicts a network 100 according to an
embodiment of the invention, in this example network 100, a
first host 110 provides an HTTP service (http) and a secure
shell service (ssh), and a second host 120 provides ssh. The
first host 110 and second host 120 may be able to communi-
cate with one another behind a firewall 130. The firewall 130
may allow traffic to and from the first host 110, but only allow
connections to the second host 120 that originate from the
second host 120. A remote computer 140 may exist outside
the firewall 130. The remote computer may only communi-
cate with the first host 110 and second host 120 if allowed by
the firewall 130 or by exploiting one or more network vulner-
abilities.

[0017] FIG. 2A depicts a network 200 according to an
embodiment of the invention. In this example, the remote
computer 140 of FIG. 1 is attempting to access the first host
110 and second host 120 by exploiting network vulnerabili-
ties, and the target of the attack is a root privilege 220 on the
second host 120. FIG. 2A shows three sequences 201, 202,
and 203 of zero day attacks leading to the root privilege 220
of interest. Within the sequences 201, 202, and 203, each
numeric pair denotes a condition, and each triple inside oval
denotes the exploitation of a zero day vulnerability. In the first
sequence 201 or second sequence 202, an attacker 240 on a
remote computer 140 may exploit a zero day vulnerability in
either http 211 or ssh 212, respectively, on the first host 110 to
obtain the root privilege 210 for the first host 110. Using the
first host 110 as a stepping stone, the attacker 240 may exploit
a zero day vulnerability in ssh 224 on the second host 120 to
reach the target root privilege 220. In the third sequence 203,
the attacker 240 may exploit a zero day vulnerability 221 in
the firewall 130 (e.g., a weak password in the firewall’s 130
web-based remote administration interface) to reestablish a
blocked connection 222 to the second host 120 and then
exploit an ssh vulnerability 223 on the second host 120. In this
example, the network can resist at most one zero day attack,
since the second sequence 202 only requires one unique zero
day vulnerability in ssh 212 and 224 for both first 110 and
second 120 hosts.

[0018] FIG. 2B depicts a network 250 according to an
embodiment of the invention. In this example, the remote
computer 140 of FIG. 1 is attempting to access the first host
110 and second host 120 by exploiting network vulnerabili-
ties, and the target of the attack is a root privilege 220 on the
second host 120. The vulnerabilities of FIG. 2B are similar to
those of FIG. 2A, except that iptables 213 have been added.
The iptables 213 may only allow specific computers to con-
nect to ssh 212 of the first host 110, not including the remote
computer 140 and its associated attacker 240. FIG. 2B shows
four sequences 251, 252, 253, and 254 of zero day attacks
leading to the root privilege 220 of interest. The first sequence
251 is similar to the first sequence 201 of FIG. 2A, and the
fourth sequence 254 is similar to the third sequence 203 of
FIG. 2A. In the second sequence 252, the attacker 240 may
exploit a zero day vulnerability in iptables 213 to obtain the
root privilege 210 on the first host 110, and then the attacker
240 may exploit a zero day ssh vulnerability 224 to obtain the
root privilege 220 on the second host 120. In the third
sequence 253, the attacker 240 may exploit a zero day vul-
nerability in iptables 213 to connect to ssh 214 on the first host
110, and then the attacker 240 may exploit a zero day ssh

Sep. 13,2012

vulnerability 212 to obtain the root privilege 210 on the first
host 110, and finally the attacker 240 may exploit a zero day
ssh vulnerability 224 to obtain the root privilege 220 on the
second host 120. All four sequences 251, 252, 253, and 254
now require two distinct zero day vulnerabilities. The hard-
ening effort, of adding iptables may allow the network to
resist one more zero day attack. The hardened network can
thus be considered relatively more secure, since the likeli-
hood of having more zero day vulnerabilities available at the
same time, in the same network, and exploitable by the same
attacker, may be lower. Therefore, the number of distinct zero
day-vulnerabilities can be used to measure the relative secu-
rity risk of different networks, which may otherwise be indis-
tinguishable.

[0019] The examples of FIGS. 2A and 2B may represent
simplified systems relative to some systems which may be
evaluated. For example, it is assumed that ssh on the first host
110 and the second host 120 both correspond to the same zero
day vulnerability, which is not necessarily true. Similarly,
exploiting http and ssh may not necessarily lead to the root
privilege 220. Known vulnerabilities, which may interact
with zero day vulnerabilities, are not considered. Also, an
insider attack may directly give attackers a privilege without
any zero day vulnerability. It will be understood by those of
ordinary skill that the examples of FIGS. 2A and 2B are not
intended to represent the full range of vulnerabilities and
complexities present in various networks. Modeling and cal-
culating k-zero day safety, as described below, may be per-
formed for simple examples such as the examples of FIGS.
2A and 2B and/or more complicated examples such as those
which may be found in existing and future computer net-
works.

[0020] Remote services and network connectivity may be
identified by examining hosts’ configurations. A network
scanning may be insufficient to determine k-zero day safety in
some embodiments, since it may only reveal services or con-
nectivity currently disabled by security services (e.g., ssh
behind iptables). Therefore, some embodiments may utilize a
model which includes data about the existence, instead of the
current reachability, of a service or host.

[0021] FIG. 3 depicts a block diagram of a model genera-
tion process 900 according to an embodiment of the inven-
tion. Determination of a k-zero day safety metric for a net-
work may be based on an abstract model of network elements.
Examples of methods and systems for generating network
models may be found in U.S. Pat. No. 7,904,962, entitled
“Network Attack Modeling, Analysis, and Response,” the
entirety of which is incorporated by reference herein. The
process 900 of FIG. 3 is similar to processes taught In U.S.
Pat. No. 7,904,962. To generate a model, the process 900 may
analyze a network 100 to determine what elements are present
on the network 100, gathering machine information 910,
component information 920, vulnerability information 930,
and exploit information 950. Machine information 910 may
identify hardware elements of the network 100, component
information 920 may identify components on the network
100 which may be attacked, vulnerability information 930
may identify known vulnerabilities as well as locations where
zero day vulnerabilities may exist, and exploit information
950 may include data about possible exploits of vulnerabili-
ties.

[0022] The process 900 may map at least one machine to at
least one component using network 100 machine information
910 and/or component information 920 and a module such as

US 2012/0233699 Al

a machine mapper 912. The result may be a set of machine
mappings 914. The mapping of machines to components may
include at least one application of at least one corrective
measure on a selective basis. A component mapper 922 may
use network 100 component information 920 and/or vulner-
ability information 930 to map at least one of the components
to at least one vulnerability. The result may be a set of com-
ponent mappings 924. A vulnerability mapper 934 may use
network 100 vulnerability information 930 and/or exploit
information 950 to map at least one vulnerability to at least
one exploit, resulting in vulnerability mappings 934. Exploits
may include at least one precondition mapped to at least one
postcondition. An attack graph 300 may be generated using at
least one of the exploits 950 using an attack graph generating
module 960. The attack graph 300 be used by a metric calcu-
lator 970 as a network model for calculating k-zero day safety.
Attack graphs 300 are described in greater detail with respect
to FIG. 4 below. A metric calculator 970 may be a computer
that may be constructed and arranged to perform processes
such as those shown in FIGS. 6-8 below.

[0023] Inthe following discussion, an example model for a
network is presented. Table 1 provides a listing of notations
which are used in the model. Further details about the terms in
Table 1 will be provided in the explanation of the example
model.

TABLE 1
H, h A set of hosts, a host
S, s A set of services, a service
P p A set of privileges, a privilege
serv(.) Services on a host
priv(.) Privileges on a host
conn Connectivity
ViV, Zero day vulnerability
(v, h, h') Zero day exploit
pre(.), post(.) Pre and post conditions
G Zero day attack graph
C, Initial conditions
€1,82...,¢ Attack sequence
Assets
seq(a) Attack sequences compromising a
=, Relation of non-distinct exploits
k0d(.) The k-zero days safety metric
[0024] In some embodiments, a network model (which

may be generated using the process of FIG. 3) may comprise
several elements. For example, the following elements may
be present:

[0025] H, S, and P, which denote the network’s sets of hosts
(computers and networking devices), services, and privi-
leges, respectively.

[0026] serv(.): H—=2° and priv(.): H—2”, which denote
functions that map each host to a set of services and privi-
leges, respectively.

[0027] connc HxH, which denotes a connectivity relation
between elements.

[0028] Inthe model hosts may include networking devices
(for example firewalls, routers, etc.) because such devices
may be vulnerable to zero day attacks, and a compromised
device may enable access to blocked services. Note that hosts,
services, and privileges may all be components that may be
vulnerable to attack.

[0029] A component (such as a service) in the model may
be remotely accessible over the network, in which case it may
be called a remote component, or a component may be used to
disable a remote component or network connection, in which

Sep. 13,2012

case it may be called a security component. The example
model does not include components that can only be
exploited locally for a privilege escalation (modeling such
applications may not be feasible at all considering that an
attacker may install his/her own applications after obtaining
accesses to a host). On the other hand, the example model
includes remote components and connectivity currently dis-
abled by security components, since the former may be re-
enabled through zero day attacks on the latter (e.g., ssh behind
iptables in FIG. 2B).

[0030] In the model, privileges may include those under
which components are running and those that can potentially
be obtained through a privilege escalation. Including the lat-
ter may enable modeling of the strength of isolation tech-
niques (e.g. sand boxing or virtual machines) that may pre-
vent such an escalation.

[0031] Returning to FIG. 2B, an example model for the
network 250 may be as follows;

[0032] H={0,1,2,F} (F denotes the firewall)

[0033] conn={(0,F),(0,1),(0,2),(1,F),(1,0),(1,2),(2,F),(2,
0),(2,1)} ((0,2) is included since it can be enabled by a zero
day attack on the firewall)

[0034] serv(1)={http,ssh,iptables}, serv(2)={ssh}, and
serv(F)={firewall} (firewall is a security service and it may
disable connection (0,2))

[0035] priv(1)-priv(2)={user,root}.

[0036] Even if vulnerability-specific properties, such as
likelihood and severity, are not assumed, generic properties
common to most vulnerabilities may be assumed for zero day
vulnerabilities. For example, the zero day exploit of a privi-
lege may act as a placeholder when isolation techniques are
modeled below. A zero day exploit may be modeled as fol-
lows:

[0037] Foreach heH and xe(serv(h)Upriv(h)), denote by v,
a zero day vulnerability. A zero day exploit is the triple:

[0038] (v,hh") where (h,h")econn and seserv(h'), or
[0039] (v,,h,h) where pepriv(h).
[0040] Unlike an exploit of a known vulnerability which

may have unique pre- and post-conditions, all zero day
exploits may share the same hard-coded conditions described
above. A zero day exploit of each security service may have
additional post-conditions, which may indicate that the
exploit will reenable disabled conditions. For zero day
exploits of a privilege, the pre-conditions may include the
privilege of every service, since it may be assumed that a zero
day exploit may potentially yield any privilege. Conditions
may be modeled as follows:

[0041] Denote by E, the set of all zero day exploits, C, the
set of conditions (connU{(x,h):heH, xeserv(h)Upriv(h)}),
and define functions pre(.): E,—C, and post(.):E,—C, as:
[0042] pre((v,hh))={(,h"),(s,0"),(P-h)} for each seserv
(h), where p,,,,,, 1s the least privilege on h

[0043] pre((v,.hh)={p,:seserv(h),ps=p} for each pepriv
(b)

[0044] post((v,h,h"))={p,} for each remote service s with
privilege p,

[0045] post((v,h,h")={p,}UC; for each security service s,

where C; is the set of conditions disabled by s

[0046] post((v,,b,h))={(p,h)} for each pepriv(h).

[0047] FIG. 4 depicts an example zero day attack graph 300
according to an embodiment of the invention. Attack graphs
300 may be generated for any target (or targets) and from any
origin (or origins), hike the examples of FIGS. 2A and 2B, the
target is <root, 2> and the origin is <user, 0> in this example.

US 2012/0233699 Al

There may be several origins of paths of vulnerabilities that
may be exploited to eventually lead to one or more targets. By
relating exploits of known vulnerabilities and zero day
exploits through common pre- and post-conditions, a zero
day attack graph 300 such as that of FIG. 4 may be composed.
Each numeric pair 310-364 denotes a condition and each
triple inside an oval 371-378 denotes the exploitation ofa zero
clay vulnerability. Numeric pairs 315, 325, 340-364 having
arrows pointing to exploitations 371-378 may be precondi-
tions for exploitations 371-378 to which they point. Numeric
pairs 310-330, 354, 363 to which arrows from exploitations
371-378 point may be postconditions for exploitations 371-
378. Note that some numeric pairs 315, 325, 354, 363 may be
preconditions for some exploitations 371-378 and postcondi-
tions for others. Also, numeric pairs 315, 325, 340, 355, 361
may be either pre- or postconditions for more than one exploi-
tation 371-378. In a zero day attack graph, exploits of known
vulnerabilities may be considered as shortcuts that help
attackers to satisfy a condition with less zero day exploits.
Therefore, exploits of known vulnerabilities may be trust
relationships, misconfigured applications, or some other type
of vulnerability, as long as they may provide a shortcut for
bypassing zero day exploits. A zero day attack graph may be
generated as follows:

[0048] Given a set of exploits of known vulnerabilities E,
and their pre- and post-conditions C,, let E=E/UE,,
C=C,UC,, and extend pre(.) and post(.) to E—=C (as the union
of relations). The directed graph G=EUC,{(x,y):(yeE

Axepre(y))V (xeBEA yepost(x))}) may be a zero day attack
graph.

[0049] In some embodiments a zero day attack graph may
be generated as described above, or using some other for-
mula, instead of being obtained by injecting zero day exploits
into an existing attack graph of known vulnerabilities. This is
because some unreachable exploits may be discarded in gen-
erating an attack graph of known vulnerabilities, whereas
such exploits may indeed serve as shortcuts for bypassing
zero day exploits in a zero day attack graph.

[0050] One or more initial conditions may be associated
with a zero day attack graph. Initial conditions may serve at
least two purposes. First, initial conditions may include all
conditions that are not post-conditions of any exploit. Second,
initial conditions may also include conditions that may be
satisfied as the result of insider attacks or user mistakes. The
effects of such attacks or mistakes may be modeled as the
capability of satisfying post-conditions of an exploit without
first executing the exploit. An attack sequence may be defined
as a total order, which means multiple attack sequences may
correspond to the same set of partially ordered, exploits. The

logical connectives A, V, and = may model cases where
multiple conditions must be satisfied to cause damage (e.g.,
the availability of a file with multiple backups on different
hosts), cases where satisfying at least one condition will cause
damage (e.g., the confidentiality of the aforementioned file),
and cases where conditions are not to be satisfied during an
attack (for example, conditions that will trigger an alarm),
respectively. An asset value may be the relative weight of
independent assets. Initial conditions, attack sequences, and
assets may be determined according to the following, given a
zero day attack graph G.

[0051] The set of initial conditions is given as any C, =C
satisfying C1 2 {c:(VeeE)(c&post(e))}.

Sep. 13,2012

[0052] An attack sequence is any sequence of exploits e,
€, . . . , € satisfying (Vie[1,j]) (Vcepre(e,)) (ceC,)V (Ixe[1,
i-1]cepost(e,))

[0053] An asset a is any logical proposition composed of
conditions and the logical connectives A,V , and — for which
an asset value v(a) is given through a function v(.): A—[0,)
where A denotes the set of all assets

[0054] Define a function seq(.):A—2€ as seq(a)={e,, &5, . .
., egaepost(e)} where Q denotes the set of all attack
sequences

[0055] The zero day attack graph of FIG. 4 may correspond
to the network of FIG. 2B. If insider attacks and/or user
mistakes are not considered, the following attack sequences
may compromise the asset (root,2) 320:

1. (vhttp,0,1) 371, (vssh,1,2) 377, (vroot,2,2) 378

2. (viptables,0,1) 372, (vssh,1,2) 377, (vroot,2,2) 378

3. (viptables,0,1) 372, (vssh,0,1) 374, (vssh,1,2) 377, (vroot,
2.2)378

4. (vfirewall,0,F) 373, (vssh,0,2) 375, (vroot,2,2) 378

[0056] Ifinsider attacks on the first host 110 are considered,
the following sequence may also compromise the asset 320:
[0057] 5. (vssh,1,2) 377, (vroot,2.2) 378

[0058] If a different asset (root,1)A (root,2) 310, 320 is
considered, then sequences 1-3 above (but not 4-5) may com-
promise the asset 310, 320.

[0059] Note that some of the attack sequences above have
different origins. A k-zero day analysis may consider some or
all origins in an attack graph when determining a safety level.
In some cases, multiple zero day exploits may be counted as
a single exploit. This may be incorporated into a model using
the relation =,. The relation =, may be defined as follows:
[0060] Define a relation =, = E,xE, such that e=_'indicates
either e and e' are exploits of the same zero day vulnerability,
or e=(v,h; h,), e=(v,,h,h,) and exploiting s yields p. Say e
and e' are distinct if e €.

[0061] One example of a case wherein two or more exploits
are only counted once may be when multiple exploits involve
the same zero day vulnerability. Another example may be
when the exploit of a service is related to the exploit of a
privilege such that the service exploit will directly yield the
privilege due to the lack of isolation between the two. In some
cases, a probability may be associated with relation =, to
indicate a degree of similarity or isolation between the mul-
tiple exploits it relates. If a probability is associated with a
relation =, that probability need not necessarily be incorpo-
rated into a model, so that the effect of the relation = on a final
metric will not be affected.

[0062] Given a plurality of sets of zero day exploits, the
function k0d(.) may count how many exploits cannot be
related through =,. In particular, if one of the sets is empty,
then the function kOd(.) may yield the number of distinct zero
day exploits in the other set. When a probabilistic approach is
adopted in defining the relation =, the function k0d(.) can be
revised to give an expected value (mean). A metric function
k0d(.) may be defined as follows.

[0063] Define a function kOd(.):25°x2%°—10,e] as kOd(F,
FY=max({IF":F"= (FAF"), (Ve e,el'") (e;%, e,)}) where
IF"l denotes the cardinality of F", max(.) denotes the maxi-
mum value in a set, and FAF' denotes the symmetric differ-
ence (that is, (F\AF)U(F\F)).

[0064] A function kOd(a) may be a metric useful to deter-
mine a minimum number of distinct zero day exploits
required to compromise an asset, set of assets, or network, a.
This can be proven according to the following:

US 2012/0233699 Al

[0065] Forall F, F', F" < E,, the following hold:

1. kOd(F,F")=0 iff F=F": This is straightforward since kOd(F,
F")=0 iff FDF'=g, and the latter is equivalent to F=F"

2. kOd(F,F")=k0d(F",F): This property is satisfied by the sym-
metric difference.

3.k0d(F',F")zk0d(F,F"): Denote by tmp(G) the function max
({IG':G' =G, Ve, eeGi (e,%, e,)}). First, the symmetric
difference satisfies the triangle inclusion relation FAF"c
(FAFH U(F'AF™). So, tmp((FAF")U(F'AF")Ztmp(FAF")
holds. Next, it may only need to be shown tmp(FAF')+tmp
(F'AF")Ztmp((FAF)U(F'AF")) is true. It may suffice to show
the function tmp(.) to be subadditive, that is, tmp(G)+tmp(G")
Ztmp(GUG'") holds for any G, G' = E,,. This follows from the
fact that if the relation e= ' holds for any e, e'eG (or e, €'eG"),
it also holds in GUG' (the converse is not necessarily true).
[0066] The metric kOd(.) may be applied to assets, sets of
assets, and/or networks. For example, k0d(a) may indicate the
minimum number of distinct zero day exploits required to
compromise a (which may be an asset, set of assets, network,
and/or another component or element of interest). This num-
ber may be unique for each asset, although multiple attack
sequences may compromise the asset. The metric may be
applied to a set of independent assets by taking a weighted
average with asset values as the weight. Finally, by applying
the metric to all components within a network, a measure-
ment of a network’s resistance to potential zero day-attacks
may be obtained. This analysis may be performed as follows:
[0067] Given a zero day attack graph G, a set of initial
conditions C,, and a set of assets A:

[0068] for any aeA, use kOd(a) for rain({kOd(qNE,a):
geseq(a)}), where min(.) denotes the minimum value in a set
and q stands for both a sequence and a set. For any ke[0,k0Od
(a)), a is k-zero day safe.

[0069] Given any A'eA, kOd(A") for X, ,.(kOd(a)-v(a))/
2 ,.ov(a) may be used.

[0070] For any ke[0,kOd(A"), A' is k-zero day safe. In par-
ticular, when A'=A, the network is k-zero day safe.

[0071] The empty set in the definition above may be inter-
preted as the conjunction of all initial conditions (which may
be compromised without any zero day exploit).

[0072] FIG. 5 depicts a relation table 400 according to an
embodiment of the invention. The relation table 400 may be
associated, with the example of FIG. 4. Returning to the
example of FIG. 4, suppose all exploits of services involve
distinct vulnerabilities except (vssh,0,1) 374, (vssh,1,2) 377,
and (vssh,0,2) 375. Assume ssh and http are not protected by
isolation but iptables is protected. Then, the relation =, may
be shown by FIG. 5, wherein a 1 may indicate two exploits are
related and a O may indicate that two exploits are not related
(or, by adopting a probabilistic approach, these can be
regarded as the probabilities associated with the relation =).
[0073] Using a model established according to the pro-
cesses described above or in some other way, k-zero day
safety for the system represented by the model may be com-
puted. For example, to compute the k-zero day safety of a
network, alogic proposition of each asset in terms of exploits
may be derived. Then, each conjunctive clause in a disjunc-
tive normal form (DNF) of the derived proposition may cor-
respond to a minimal set of exploits that may jointly compro-
mise the asset. The value of k may then be determined by
applying the metric k0d(.) to each such conjunctive clause.
[0074] FIG. 6 depicts a k-zero day safety computation flow
chart according to an embodiment of the invention. A proce-
dure such as kOd Bwd 500 shown in FIG. 6 may be applied to

Sep. 13,2012

obtain a value of k. This procedure 500 is an example of a
procedure that may determine the k-zero day safety forone or
more assets. A zero day attack graph may be received 510. For
each asset associated with the zero day attack graph, aeA 520.
L may be defined as the logic proposition representing a 530.
For example, a zero day attack graph such as the one shown in
FIG. 4 may be interpreted as a logic program by regarding
each exploit or condition as a boolean variable and having a
logic proposition e<—. for each Initial condition c, a proposi-

tion es=A__, ¢ for each pre condition relationship, and a
set of propositions {c<—e:cepost(e)} for each post condition
relationship. An inner loop may repetitively apply the afore-
mentioned logic propositions to derive a formula by letting I,
VL,V ...L, be the DNF of L. 540, replacing each initial
condition ¢ with true 550, replacing each condition ¢ with
V ceferceposten € 560, and replacing each non-negated exploit

e with eA (A _,,.,¢) 570, until each ¢ is considered. Note
that a negated condition given in the asset may be replaced
with the negation of exploits, and a negated condition may not
be further processed. This is because in order not to satisfy a
condition, it may suffice not to execute those exploits that
have the condition as their post-condition (on the other hand,
to satisfy a condition requires more actions). When a DNF is
generated for each asset 540, k-zero day safety may be com-
puted 580. The results of all iterations may be aggregated as
the final output 590. Note that this example process omits the
simplification of logic propositions using logic tautologies
(such as elA - el=false) and the handling of cycles in the
attack graph by maintaining a set of predecessors for each
visited node.

[0075] The procedure 500 of FIG. 6 may have a worst-case
complexity that is exponential in the size of the zero day
attack graph. For example, the complexity may be partially
determined by the size of the derived proposition L. and its
DNF. Both may be exponential. Given a zero day attack
graph, an asset a, and any non-negative integer k, the problem
of finding an attack sequence geseq(a) that minimizes kOd
(@NE,,@) is NP-complete (wherein NP indicates nondeter-
ministic polynomial time). The proof of this statement is as
follows.

[0076]

sequence of exploits q satisfies geseq(a)Ak0d(qNE,,@)=k
may be determined in polynomial time in the size of the zero
day-attack graph. The NP-hard problem of finding the mini-
mum attack (that is, an attack sequence with the minimum
number of exploits) in an attack graph may be reduced to the
current problem. The reduction cannot be trivially achieved
by simply replacing each known exploit with a zero day
exploit in a given attack graph of known exploits, because the
zero day exploits may have a fixed number of hard-coded pre-
and post-conditions that may prevent a zero day exploit from
fitting in the position of a known exploit.

[0077] A zero day attack graph G' may be constructed by
injecting a zero day exploit before each known exploit. Spe-
cifically, first let G'=G. Then, for each known exploit e of a
service s from a source host h, to a different destination host
h,, a zero day exploit e' may be injected with the post-condi-
tions {(8,05),0,ser05s } Where p,,;.;..s is a privilege designed not
to be the pre-condition of any exploit (e' can be interpreted as
exploiting a vulnerability in a security service, such as a
personal firewall, that blocks accesses to the service s on h,
from h,). Then the following two statements may be true.
First, executing e requires ' to be executed first; conversely,

First, the problem is NP, since whether a given

US 2012/0233699 Al

if e' needs to be executed, then the only reason must be to
satisfy the condition (s,h,) and consequently execute e. That
is, any attack sequence in G' will include either both e and ¢,
or neither e nor e'. Second, among the three conditions in
pre(e)={(s"h,),(h,,h,),(Prasshts)}, the first is an initial con-
dition and the last two are also members of pre(e). Therefore,
the injection of ¢' does not change the logical structure of the
attack graph (more precisely, G and G' are isomorphic if e and
e' are regarded as a single exploit and ignore the initial con-
dition (s'h,)).

[0078] Next, for each known exploit e involving the same
source and destination host h, e may be replaced with a zero
day exploit ' and a known exploit ' satisfying that post(e")
=post(e), pre(e)=pre(e)\{(p,h)} U{(p'h)} where (p,h)epre(e)
and {(p',h)} are two privileges. Also, post(e")={(p",h)}, and
the relation =, may be designed such that ' is not related to
any other zero day exploits in h through =,. Then the follow-
ing two facts may be true. First, any attack sequence in G' will
include either both e and €', or neither e nor e'. Second, the
injection of e' does not change the logical structure of the
attack graph.

[0079] Based on the above construction, given any asset a,
for any attack sequence q'eseq(a) in G', the known exploits in
q also form an attack sequence geseq(a) in G (note that a will
always be the post-condition of known exploits due to the
above construction). Moreover, if = is designed in such a way
that no two zero day exploits are related by =,, then |q|=k0d
(q'NE,,2). Therefore, for any non-negative integer k, finding
q' in G' to minimize kOd(q'NE,,) will immediately yield q in
G that also minimizes Iql, and the latter is essentially the
minimum attack problem. This shows the former to be an
NP-hard problem and concludes the proof.

[0080] Note that the intractability result above implies that
a single algorithm may be unable to efficiently determine k
for all possible inputs (that is, arbitrary zero day attack
graphs) in some embodiments. However, efficient solutions
may exist for practical systems. Examples of such solutions
are presented in FIGS. 7 and 8 below.

[0081] Note that an extremely conservative assumption
may yield a trivial result (e.g., no network is 1-zero day safe,
if insider attacks are considered possible on every host).
While such an assumption may be the safest, it may also be
the least helpful in terms of improving network security since
no improvement measures would be helpful.

[0082] FIG. 7 depicts a k-zero day computation flow chart
for a given k according to an embodiment of the invention.
For many practical purposes, it may suffice to know that every
asset in a network is k-zero day safe for a given value of k,
even though the network may in reality be k'-zero day safe for
some unknown k'>k (for example, determining k' may be
intractable as described above). In many other practical cases,
it may suffice to know that a particular target (or targets) is
k-zero day safe for a given value of k. In the example of FIG.
7, the solution’s complexity is polynomial in the size of a zero
day attack graph if k is a constant compared to this size.
Attempts may be made compromise each asset with less than
k distinct zero day exploits through a forward search of lim-
ited depth. The asset may not be k-zero day safe if any branch
of the search succeeds, and vice versa.

[0083] Specifically, FIG. 7 shows a recursive procedure
kOd Fwd 600 with two base cases and one recursive case. A
zero day attack graph G, an asset a, and a real number k may
beinput 605. T, and T, in FIG. 7 may indicate the exploits and
conditions visited so far, respectively. In the first base case,

Sep. 13,2012

the procedure may determine whether asset a can be compro-
mised with less than k distinct zero day exploits in T, 610 and
may return FALSE when it can 615. In the second base case,
the procedure may determine whether the set T, already has
more than k distinct zero day exploits 620 (regardless of
whether a can be satisfied with T,) and may return TRUE
when it can 625. A sub-procedure kOd Reachable 650 may
expand Te with all reachable known exploits 655 since they
do not count in terms of the kOd(.) metric. The main procedure
may enter the recursive case only when T, includes less than
k distinct zero day exploits and a cannot be satisfied with T ..
The main procedure may iteratively visit each zero day
exploit e reachable from T_ 630, and may starts a recursive
search from e 635. If no such e exists, the procedure may
return TRUE indicating the end of a sequence is reached 640.
If any branch of the search succeeds, FALSE may be recur-
sively returned to indicate a is not k-zero day safe 645.
[0084] FIG. 8 depicts a flow chart for finding shortest paths
in a directed acyclic graph (DAG) according to an embodi-
ment of the invention. Even if it is intractable to compute k for
arbitrary zero day attack graphs, efficient solutions may exist
for those satisfying special properties. In this example, two
assumptions may be made. First, most exploits will only
require one condition on the remote host (e.g., when a host is
only used as a stepping stone, the condition could be a user
privilege on that host). Second, zero day exploits will be
distinct unless they are on the same or adjacent hosts.
[0085] Thefirst assumption may imply that a logical propo-
sition may be derived (as in procedure k0d Bwd above) sepa-
rately for each host. In the resultant DNF, each conjunctive
clause may include at most one condition involving a remote
host, which means the asset can be expressed as a disjunction
of conditions (without considering exploits). The same rea-
soning may be repeated by regarding each such condition as
an asset on the involved remote host. Since the relationships
between all conditions are now disjunctive, each condition
may be regarded as the vertex of a DAG (recall that cycles will
be avoided) with their disjunctive relationships as edges, and
exploits in the same conjunctive clause as edge weights.
[0086] In the weighted DAG, determining the value of k
may amount to finding the shortest path along which the
function k0d(.) applied to all zero day exploits will yield the
minimum value. During a backward search, two parts may
comprise a distance for each edge. Those zero day exploits
that may later be related to others through =, may be keptina
set since the function kOd(.) can not yet be applied. For other
exploits, the result value of applying kOd(.) may be kept. The
second assumption above may ensure that the first part of the
edge distance will not grow quickly. The shortest distance can
then be obtained using a standard algorithm, taking polyno-
mial time (more precisely, the complexity is shown to be
IHI*IB0I as described below).

[0087] InFIG. 8, procedure kOd Shortest 700 may provide
a specific example of a method for finding shortest paths in a
DAG. Sub procedure kOd Graph 750 may be used to build a
DAG based on a given zero day attack graph and asset.
[0088] The main procedure 700 may imitate a standard
algorithm for finding the shortest path in a DAG. More spe-
cifically, a zero day attack graph and asset may be defined
703. A DAG may be generated 706, 709, and vertices of the
DAG may be processed based on a topological sort 712. The
distance of the source vertex may be initialized as 0, and the
distance of other vertices may be initialized as infinity 715.
Each vertex may be processed 718. Upon processing a vertex

US 2012/0233699 Al

721, each of its neighbors 724 may be updated with poten-
tially shorter distances via the current vertex. The following
modifications to the standard shortest distance algorithm may
take into account zero day exploits related by =,.. First, instead
of a single number, each distance may now be a set of pairs
(x,y), where x denotes the result of applying k0d(.) to exploits
that will not later be related to others by =, and y denotes the
set of zero day exploits that may later be related to others.
More than one pair may be used to define a distance. Second,
reachable edges may be collected in order to determine
whether an exploit may later be related to others by =, 727.
Third, instead of simply calculating the minimum distance,
bothparts of each distance pair may be computed based on the
distance of current vertex and the edge weight 733, 736. The
new distance pair may then be added 739. Finally, after all
distance pairs are added, the set of distance pairs may be
examined 742 to remove those that cannot be the minimum
distance even when considering the effect of relation =, 745.
Finally, the minimum shortest distance from the asset to a
dummy vertex (representing initial conditions) may be
returned, as the result k 748.

[0089] Turning to the sub-procedure 750, a zero day attack
graph, an asset, a DAG, and an array may be entered 753. A
logical proposition of the asset in terms of exploits and con-
ditions may be derived 766 using the same statements as in
procedure kOd Backward 755, 756, 759, 762, 765 as
described above. This derivation may stop whenever the DNF
of the logic proposition includes at most one condition in
each, conjunctive clause 770. The sub-procedure 750 then
may add each such conjunctive clause to the result DAG by
regarding each condition as a vertex pointed to by the asset
773,776,779, and the set of exploits in the same conjunctive
clause as the edge weight 782. The sub-procedure 750 may
recursively expand on each such condition 785. If a conjunc-
tive clause does not include a condition (meaning that only
initial conditions are required) 776, a dummy vertex may be
added to represent the collection of deleted initial conditions
788, 791. Finally, G, may be returned 794.

[0090] FIG. 9 depicts a DAG 800 according to an embodi-
ment of the invention. The execution of procedures kOd short-
est 700 and kOd graph 750 may be used to generate a DAG
800. The DAG 800 may be a DAG for a scenario correspond-
ing to the scenario of FIG. 4 above with respect to <root,2>
320, and may in fact be a compliment of FIG. 4. Each edge is
labeled with the edge weight elabel 810-840 (which may
correspond to a vulnerability, for example) and each vertex is
labeled with the distance dist 371-378 (which may corre-
spond to a component, for example). The complexity of the
procedure may depend on how well the aforementioned
assumptions hold on a given zero day attack graph. First, the
complexity of sub-procedure kOd graph 750 may be exponen-
tial in the number of exploits and conditions involved in the
first loop 755-765 of FIG. 8. Therefore, if the first assumption
perfectly holds, this loop 755-765 may always terminate after
processing a single host. If the number of exploits and con-
ditions on each host is constant, then the complexity of the
sub-procedure may be linear in the number of hosts (that is, a
constant time may be required for deriving and processing L.
for each host). Second, the complexity of the main procedure
may depend on the size of the distance of each vertex. If the
second assumption, holds perfectly such that each distance
has a negligible size, then the complexity of the main proce-
dure may be dominated by processing the reachable edges in
elist and their labels elabel 733 as shown, in FIG. 8. Since

Sep. 13,2012

each edge in G, may be visited exactly once by the main loop
and the size of elist may be linear in the number of such edges,
the processing of elist may take quadratic time in the number
of edges in G, which may be roughly O(IHI*) (by the first
assumption, each host may correspond to a constant number
of vertices in G,). Finally, multiplying this by the size of
elabel, the complexity |HI*IE0I may be obtained. K-zero day
safety determinations may have many uses. For example,
determining k-zero day safety for a target may enable net-
work hardening to make a target k-zero day safe for a larger k.
For example, consider unfolding k based on the following
model:

k=k0d(4)=Z ;4 (kOd(@) V(@) Zgea¥(@) ®
k0d(a)=min({k0d(gNE,0):qeseq(a)}) 2)

k0d(gNEqe")y=max({|IFI:F < gNEy,(Ve ,eeF)(e =,
e)}) (3)

seq(a)={e}, €5, ..., e;:aepost(e;), 4

(Vie[lj])(Vcepre(ei))(cecl)V (Ixe[1,i-1]cepostle,))
1. 5)

[0091] For example, it may be possible to increase k by:
[0092] Increasing services’ diversity to have more distinct
exploits in equation (3).

[0093] Strengthening isolation techniques to have more
distinct exploits in equation (3).

[0094] Disabling initial conditions (e.g., removing a ser-
vice or a connection) in CI to yield longer attack sequences in
line (5) (part of equation (4)).

[0095] Enforcing more strict access control policies to
lessen the risk of insider attacks or user mistakes (thus remov-
ing conditions from C1 in line (5)).

[0096] Protecting assets with backups (conjunction of con-
ditions) and detection efforts (negation of conditions) to yield
a longer sequence in equation (4).

[0097] Introducing more security services to regulate
accesses to remote services for a longer sequence in equation
4.

[0098] Patching known vulnerabilities such that fewer
shortcuts for bypassing zero day exploits yield a longer
sequence in equation (4).

[0099] Prioritizing the above options based on the asset
values in equation (1) and shortest attack sequences in equa-
tion (2).

[0100] Some of the aforementioned hardening options are
known by those of ordinary skill in the art, and other known or
unknown hardening techniques may also increase k. Regard-
less of which hardening techniques are used, a k-zero day
safety determination may quantify their effectiveness. More
effective hardening techniques may yield a larger k. In addi-
tion to hardening applications, k-zero day safety day deter-
minations may have oilier uses. For example, an owner or
administrator of a cloud network or other service may be able
to attract customers by demonstrating a large k for their
systems and therefore a high degree of network security.
[0101] While various embodiments have been described
above, it should be understood that they have been presented
by way of example and not limitation. It will be apparent to
persons skilled in the relevant art(s) that various changes in
form and detail can be made therein without departing from
the spirit and scope. In fact, after reading the above descrip-
tion, it will be apparent to one skilled in the relevant art(s) how

US 2012/0233699 Al

to implement alternative embodiments. Thus, the present
embodiments should not be limited by any of the above-
described embodiments

[0102] Inaddition, it should be understood, that any figures
which highlight the functionality and advantages are pre-
sented for example purposes only. The disclosed methodol-
ogy and system are each sufficiently flexible and configurable
such that they may be utilized in ways other than that shown.
[0103] Although the term “at least one” may often be used
in the specification, claims and drawings, the terms “a”, “an”,
“the”, “said”, etc. also signify “at least one” or “the at least
one” in the specification, claims and drawings.

[0104] Finally, it is the applicant’s intent that only claims
that include the express language “means for” or “step for”’ be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

What is claimed is:

1. A method for determining a safety level of a network
vulnerable to attack from at least one origin to at least one
target, the network comprising at least one machine having at
least one component, comprising:

associating, with a computer, at least one machine with at

least one component;
associating, with the computer, the at least one component
with at least one of a plurality of vulnerabilities;

determining, with the computer, a plurality of degrees of
similarity among the plurality of vulnerabilities;

grouping, with the computer, subsets of the plurality of
vulnerabilities based on their determined degrees of
similarity to one another, wherein each group of vulner-
abilities is subject to a distinct zero day exploit;

generating, with the computer, an attack graph describing
exploitation of the plurality of vulnerabilities, the attack
graph defining exploit condition relationships between
at least one origin and at least one target;

analyzing, with the computer, the attack graph using a

k-zero day metric function; and

determining, with the computer, a safety level based on the

analysis of the attack graph using the k-zero day metric
function.

2. The method of claim 1, wherein:

the analyzing of the attack graph comprises determining a

minimum number of distinct zero day exploits required
to compromise the target component by iteratively
applying the k-zero day metric function to the attack
graph for each of the plurality of vulnerabilities to deter-
mine a minimum number of exploitable vulnerabilities
required to compromise the target component; and

the safety level comprises a minimum number of distinct

zero day exploits required to compromise the target
component.

3. The method of claim 1, wherein:

the analyzing of the attack graph comprises determining

whether the target component is unable to be compro-
mised by a specific number of distinct zero day exploits
by analyzing the attack graph using a k-zero day metric
function to determine whether any number of vulner-
abilities required to compromise the target component is
less than the specific number; and

the safety level comprises an indication whether the target

component is unable to be compromised by the specific
number of zero day exploits.

Sep. 13,2012

4. The method of claim 1, wherein the at least one compo-
nent is any unit of computational processing that can contrib-
ute to a network attack vulnerability.

5. The method of claim 1, further comprising generating
with the computer a visual representation of at least part of the
attack graph.

6. The method of claim 1, wherein the machine and at least
one component are associated with a network.

7. The method of claim 6, further comprising performing
hardening on the network.

8. The method of claim 6, wherein the network is a cloud
network.

9. A computer constructed and arranged to determine a
safety level of a network vulnerable to attack from at least one
originto at least one target, the network including at least one
machine having at least one component, comprising:

a processor constructed and arranged to:

associate at least one machine with at least one compo-
nent;

associate the at least one component with at least one of
a plurality of vulnerabilities;

determine a plurality of degrees of similarity among the
plurality of vulnerabilities;

group subsets of the plurality of vulnerabilities based on
their determined degrees of similarity to one another,
wherein each group of vulnerabilities is subject to a
distinct zero day exploit;

generate an attack graph describing exploitation of the
plurality of vulnerabilities, the attack graph defining
exploit condition relationships between at least one
origin and at least one target;

analyze the attack graph using a k-zero day metric func-
tion; and

determine a safety level based on the analysis of the
attack graph using the k-zero day metric function.

10. The computer of claim 9, wherein:

the processor is constructed and arranged to analyze the
attack graph by determining whether the target compo-
nent is unable to be compromised by a specific number
of distinct zero day exploits by analyzing the attack
graph using a k-zero day metric function to determine
whether any number of vulnerabilities required to com-
promise the target component is less than the specific
number; and

the safety level comprises an indication whether the target
component is unable to be compromised by the specific
number of zero day exploits.

11. The computer of claim 9, wherein:

the processor is constructed and arranged to analyze the
attack graph by determining whether the target compo-
nent is unable to be compromised by a specific number
of distinct zero day exploits by analyzing the attack
graph using a k-zero day metric function to determine
whether any number of vulnerabilities required to com-
promise the target component is less than the specific
number; and

the safety level comprises an indication whether the target
component is unable to be compromised by the specific
number of zero day exploits.

US 2012/0233699 Al

12. The computer of claim 9, wherein the at least one
component is any unit of computational processing that can
contribute to a network attack vulnerability.

13. The computer of claim 9, further comprising:

a display;

wherein the processor is further constructed and arranged

to generate a visual representation of at least part of the
attack graph and output the visual representation to the
display.

14. The computer of claim 9, wherein the machine and at
least one component are associated with a network.

15. The computer of claim 14, wherein the network is a
cloud network.

Sep. 13,2012

16. The computer of claim 14, wherein:

the processor is in communication with the network; and

the processor is further constructed and arranged to scan
the network to gather data about the machine, the at least
one component, and/or the at least one of the plurality of
vulnerabilities.

17. The computer of claim 14, wherein:

the processor is in communication with the network; and

the processor is further constructed, and arranged to
receive data via the network about the machine, the at
least one component, and/or the at least one of the plu-
rality of vulnerabilities.

sk sk sk sk sk

