National Bureau of Standards

Certificate of Analyses

STANDARD SAMPLE 72E CHROMIUM-MOLYBDENUM STEEL

ANALYST*	c	Mn		P		s			Si		dimethyl-	Cr		Мо		
	Direct combustion	Bismuthate (FeSO ₁ - KMnO ₁)	Persulfate-Arsenite	Gravimetric (Weighed as MgrP10; after removal of arsenic)	Alkali-Molybdate"	Gravimetric (direct oxida- tion and final precipita- tion in reduced solution)	Combustion	Evolution with HCl (sp. gr. 1.18) ZnS-lodine (theoretical sulfur titre)	Sulfuric acid dehydration	COPPER H _P S-CuS-CuO	NICKEL Weighed as nickel dim glyoxime	FeSO _i -KMnO _i titration	VANADIUM	Gravimetric	Colorimetric	
1	0.342	°0.538	0.538	0.012	d 0.013	0.019	• 0.019	0.020	f 0.294	0.104	0.241	≈ 0.953	h 0.002	i 0.212	0.214	
2	.342		.536	.014	d.014	i.021	k.022		1.299	≖.100	n.246	•.958		i.211	.213	
3	.347		p.543		9.014		r.021		1.294	m.109	s.241	t.950			.216	
	.347	u.534	.534	.015	.016	.019	v.021	w.018	1.290	∗ .103	•.233	t.947		i.217	.217	
	.344	.546			۹.015		•.021		1.284	y.108	*.243	t.944			.217	
6														i.221	.216	
Averages_	0.344	0.539	0.538	0.014	0.014	0.020	0.021	0.019	0.292	0.105	0.241	0.950	0.002	0.215	0.216	
General average_	0.344	0.538		0.014		0.020			0.292	0.105	0.241	0.950		0.215		

 $^{^{\}rm a}$ Precipitated at 40° C, washed with a 1-percent solution of KNO2, and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23NaOH:1P.

- m Thiosulfate precipitation, KI-Na₂S₂O₂ titration.
 n Dimethylglyoxime precipitation, cyanide titration.
 resulfate oxidation.
 Through the cyanide titration.
 Titrating solution standardized by use of standard cels. steels.

 As in (e), except sample burned at 2350° F, and iodate solution standardized against standard steels.

 Dimethylglyoxime photometric method.

 Perchloric acid oxidation.

 A sin (b) except sample burned at 2400° F.
- - A sin (k), except sample burned at 2400° F,

 A sin (k), except sample burned at 2400° F,

 A shorbed in ammoniacal cadmium chloride.

 Copper-ammonia-complex photometric method.

 Diethyldithlocar bamate photometric method.

E. U. Condon, Director.

*LIST OF ANALYSTS

- 1. Ferrous Laboratory, National Bureau of Standards, John L. Hague in charge. Analysis by J. I. Shultz, R. A. Watson, and C. Litsey.
- 2. E. O. Waltz, Republic Steel Corp., Canton Steel Division, Canton, Ohio.
- 3. C. G. Hummon, Sheffield Steel Corporation, Kansas City, Mo.
- 4. G. W. Madsen and C. V. Rooney, Geneva Steel Co., Geneva, Utah.
- 5. J. F. O'Mara, Great Lakes Steel Corp., Ecorse, Detroit, Mich.
- 6. R. H. Maurer, Climax Molybdenum Co., Detroit, Mich.

The steel for the preparation of this standard was furnished by the Climax Molybdenum Company.

b Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and Na₂S₂O₃, and use of the ratio 2I:18.

 $^{^{\}circ}$ Chromium removed by selective precipitation with NaHCO3.

d Molybdenum-blue photometric method. See J. Research NBS **26**, 405 (1941) RP1386.

e 1-g sample burned in oxygen at 1400° C, and sulfur dioxide absorbed in starch-iodine solution. Iodine liberated from iodide by titration, during the combus-

tion, with standard KIO₂ solution based on 93 percent of the theoretical factor.

f Double dehydration with intervening filtration.

e Persulfate oxidation and potentiometric titration with ferrous ammonium sulfate.

h Vanadium separated from the bulk of iron in a 10-g sample by selective precipitation with NaHCO₃, then oxidized with HNO₂ and titrated potentiometrically with ferrous ammonium sulfate.

l a-Benzoinoxime method. See BS J. Research 9, 1 (1932) RP453.

j Ether separation, BaSO₄ method.

k As in (e), except sample burned at 2150° F with tin, and iodate solution standardized with standard steels.

l Perchloric acid dehydration.