National Bureau of Standards Certificate of Analyses

STANDARD SAMPLE 72A CHROMIUM-MOLYBDENUM STEEL

	C	Mn]			S	Si		hyl-	Cr		Мо		
ANALYST*	Direct combustion		Gravimetric (Weighed as MgrPyO ₇ after removal of arsenic)	ALKALI-MOLYBDATE®	Gravimetric (Direct oxida- tion and sinal precipita- tion in reduced solution)	Evolution with HCl ZnS- fodine (theoretical sul- phur titre)	Sulphuric acid dehydration	COPPER His-cus-cuo	NICKEL Weighed as nickel dimethyl- glyoxime	FeSO ₄ -KMnO ₄ türation	VANADIUM	1. Gravimetric	2. Colorimetric	TUNGSTEN
1	0.312	0.595°	0.015	0.017	0.030	0.028	0.222	0.080	0.029	0.657d	0.002°	0.201f		Not detected.
2	.314	.597=	.016	.016	.028h	.026	${228 \atop .230^{i}}$	}.078i	.033	.657	.006k	.195f	 	
3		.6061		.018	.031	.029m		.082	.04n	.648	.006°	.203f	0.203	
4	.319	.596°	.015	.016	.026		.227	.08	.02	.657ª	.004	.202f	.208	Not detected.
5	.325	.605r	.018	.019s	.031	.030m	.219	.073i		.662d		.201f		
	.318	.59g	.015	.015	.032	.031ms	.221			.657			.198	
A	.312	${5998 \atop .606t}$	}	.016	.025		${iggl\{ .225 \ .223 \ { m i} \ }$.074u	.033	.651		.199v	i 	
8	.315	.604s	.015	.016		.032m	$\left\{ \substack{.224^{\mathrm{i}} \\ .223} \right.$	}.082i	.028	.654×	.007w	.206y	.205	
9	.316	.592°	.016	.015	.028	.027	.223i	.083i	.029	.654d		.208f	.210	
10	.324	{.606¹ .596≈	}	.017 ^s		.029 ^{ms}	.224	.075		.653×		.204°	.196	
Averages	.317	.599	.016	.017	.029	.029	.224	.079	.030	.655	.005	.202	.203	
Recommended values	.317	.599	.016		.029		.224	.079	.030	.655	.003	.202		

* Precipitated at 40° C., washed with a 1 percent solution of KNO3 and titrated with alkali standardized by the use of National Bureau of Standards acid potassium phthalate and the 23:1 ratio.

b Value obtained by standardizing titrating solution by means of sodium oxalate through KMnO4 and Na.S.O.

by means of sodium oxame through.
Na₂S₂O₃.
c Chromium separated by precipitating with NaHCO₃ and manganess then determined by bismuthate (FeSO₄-KMnO₃) method.
d Chromium oxidized by AgNO₃-(NH₄)₂S₂O₃ and titrated potentiometrically with FeSO₄.
e Bulk of iron removed from a 10-gram sample by extracting with other. Vanadium oxidized in the acid-extracted residue by boiling with HNO₃, and titrated potentiometrically with FeSO₄.
f_a-benzoinoxime method. See BS J. Research ?, 1 (1932) RP 453.

- R Persulphate-arsenite method.

 Meineke method.
 Perchloric acid dehydration.
 Finished by electrolysis.
 Vanadium separated by cupferron in the presence of ferrous iron. Titrated by ferrous sulphate-persulphate method.

- method.

 1 Bismuthate-arsenite method.

 1 Bismuthate-arsenite method.

 1 Bismuthate-arsenite method.

 1 Bismuthate-arsenite method.

 1 Ignited and weighed as NiO.

 2 Ferrous sulphate-persulphate method.

 2 Chromium separated by precipitating with zinc oxide, and manganese then determined by bismuthate (FeSO_-KMmO) method

 3 Bulk of iron removed from a 5-gram sample by extracting with ether. Acid-extracted residue treated with cupferron and vanadium determined colorimetrically.
- Oxidized by bismuthate and titrated potentiometrically with HgNO₃.
 Titrating solution standardized by use of a standard standard.

- teal.

 Titrating solution standardized by use of a standard steel.

 Volhard method.

 "Titrated with thiosulphate.

 "Weighed as PbMoO4.

 "Copper and molybdenum separated by H₂S from a 20-gram sample. Bulk of iron then removed by extraction with ether. Vanadium precipitated by cupterron and determined by HCl-KMnO4 method.

 Chromium oxidized with HClO4.

 Jinitial H₂S precipitation. Copper separated by NaOH, molybdenum again precipitated with H₂S, and ignited to MoO3.

*LIST OF ANALYSTS

- 1. Ferrous Laboratory, National Bureau of Standards, H. A. Bright in charge; analysis by J. L. Hague.
- 2. W. E. Steiner, Bethlehem Steel Co., Johnstown, Pa.
- 3. R. H. Maurer, Climax Molybdenum Co., Detroit, Mich.
 - F. W. Dillon, The Carpenter Steel Co., Reading, Pa.
 - J. A. Wiley, The Midvale Co., Nicetown, Philadelphia, Pa.
- 6. A. D. Beers, Carnegie-Illinois Steel Corp., Gary Works, Gary,
- A. D. Beels, Campbell and McKeesport, Pa. Ind.
 E. B. Welch, Firth-Sterling Steel Co., McKeesport, Pa.
 G. A. Hopkins, Carnegie-Illinois Steel Corp., Munhall, Pa.
 W. K. Mitchell, W. B. Coleman & Co., Philadelphia, Pa.
 Chemical Laboratory of the Timken Steel & Tube Co., C. H. McCollam, Chief Chemist, Canton, Ohio.

LYMAN J. BRIGGS, Director.

Washington, D. C., September 25, 1936