U. S. Department of Commerce Malcolm-Baldrige Secretary National Bureau of Standards Ernest (Ambler, Director # National Bureau of Standards ## Certificate of Analysis ## Standard Reference Material 1838 ## Ethanol (10 volume percent) in Reference Fuel This Standard Reference Material (SRM) is intended for use in calibrating instruments and evaluating techniques used for the determination of ethanol in gasoline. SRM 1838 is a nominally 10 volume percent ethanol in reference fuel solution. Certified Concentrations: The certified ethanol concentrations, in grams of alcohol per 100 grams of solution (weight percent) and in milliliters of alcohol per 100 milliliters of solution (volume percent), are shown in Table 1. The certified concentration, in weight percent, is based on the mass of alcohol added to the mass of reference fuel and experimental measurements by gas chromatography (GC). These results are shown in Table 2. The certified concentration, in mL/100 mL at 23 °C, was calculated by dividing the certified concentration in g/100 g by the density of ethanol at 23 °C and multiplying by the density of the solution at 23 °C. #### Table 1 #### Certified Concentrations | Alcohol | Concentration | | |---------|----------------------------|---| | | Weight Percent,
g/100 g | Volume Percent,
mL/100 mL at 23±2 °C | | Ethanol | 11 30 + 0 04 | 10.09 + 0.04 | The uncertainties listed represent two standard deviations of the certified concentrations and include all observable variabilities. For the concentration in mL/100 mL, the uncertainty includes an allowance for change in density in the 21 to 25 °C range. The density of ethanol at 23 °C used in calculating the concentration in volume percent is 0.7868 g/mL. (Thermodynamics Research Center Table, Values of Properties of Chemical Compounds, Volume 1, Table 23-2-1-(1-1020)-d.) The density of the solution at 23 °C is 0.6965 g/mL. ### NOTICE AND WARNINGS TO USER FLAMMABLE: Caution, this material is flammable and should be given the same care in handling as gasoline. See Material Safety Data Sheet. Expiration of Certification: This certification is valid, within the limit certified, for two years from the date of purchase. In the event that the certification should become invalid before then, purchasers will be notified by NBS. Storage: Sealed ampoules, as received, should be stored in the dark at temperatures between 10 and 30 °C. <u>Use:</u> Samples for analysis should be withdrawn immediately after opening ampoules and should be processed without delay for certified values in Table 1 to be valid within the stated uncertainty. For use of the volume percent certified value, the temperature of the samples should be 23 ± 2 °C. Certified values are not applicable to material stored in ampoules that have been opened, even if they are resealed. The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. Alvarez. March 19, 1986 Gaithersburg, MD 20899 Stanley D. Rasberry, Chief Office of Standard Reference Materials Analyses leading to certification were performed at the NBS Center for Analytical Chemistry, Organic Analytical Research Division by M. (Miller) Schantz, R.E. Rebbert, and M.J. Welch. The statistical analysis of the data was performed by R.C. Paule of the NBS National Measurement Laboratory, The coordination of the technical measurements leading to certification was under the direction of S.N. Chesler, W.E. May, and E. White V. Table 2 Summary of Results (g/100 g) | Alcohol | Calculated* | _GC_ | |---------|-------------|----------------------| | Ethanol | 11.40 | 11.38 ± 0.18^{b} | ^aCalculated from the mass of alcohol, corrected for purity, added to the mass of reference fuel. Preparation and Analysis: The reference fuel was supplied by Phillips Petroleum Company. It is a 91-octane (Research Octane Number) fuel, which is a mixture of 91 volume percent (91.09 weight percent) 2,2,4-trimethylpentane (iso-octane) and 9 volume percent (8.91 weight percent) n-heptane. The ethanol used had a determined purity of greater than 99.9%. The alcohol-reference fuel solution was gravimetrically prepared (the calculated concentration in Table 2) at NBS and then analyzed by capillary gas chromatography with flame ionization detection using t-amyl alcohol as an internal standard. A fused silica column (30 m x 0.25 mm I.D. x 0.25 μ m film of bonded dimethyl polysiloxane) was used with a split injection system. SRM 1838 Page 2 ^bOne standard deviation of a single measurement.