National Bureau of Standards ## Certificate of Analysis ## Standard Reference Material 124d Ounce Metal | ANALYST | COPPER
Electrolytic | LEAD
Weighed as PbO ₂ | ZINC
ZnS-ZnO | TIN
SnCl ₂ -K10 ₃ | NICKEL
Weighed as nickel
dimethylglyoxime | IRON
Photometric | ANTIMONY | SILVER
Weighed as AgCl | PHOSPHORUS
Photometric | ARSENIC
Photometric | SULFUR | |---------|------------------------|-------------------------------------|-----------------|--|---|---------------------|-------------------|---------------------------|---------------------------|------------------------------|--------------------| | l | 83.59a | 5.16 ^b | 5.07 | 4.53 ^e | 0.99 | 0.18 ^d | 0.16 ^e | 0.021 | 0.022 ^f | 0.015 ^g | 0.096 ^h | | 2 | 83.62 | 5.15 | 5.11 | 4.55 ⁱ | 1.00 | .19 ^j | .17 ^k | .018 | .025 ^l | .019 ^m | .094 ^h | | 3 | 83,64 | 5.20 | 5.03 | 4.48 ⁿ | 0.980 | .18 ^p | .19 ^q | .026 | .022 ^l | .017 | .092 ^h | | 4 | 83.63 | 5.13 ^r | 5.07 | 4.57 ⁸ | 1.00 ^t | .18 ^u | .16 ^v | .020 | .025 ^l | ${021^{w} \choose .025^{x}}$ | .092 ^h | | 5 | 83.56 | 5.22 | 5.04 | ${4.57^{y} \atop 4.56^{z}}$ | 0.99 | .19 ^{z1} | .17"2 | .020 | .026 ^{z3} | | .092 ^h | | 6 | 83.60 ^{z4} | 5.22 | 5.06 | 4.64 ²⁵ | 1.00° | .18 ^p | .19 ^{z6} | | .023 ^l | | .08 ^{z7} | | Average | 83,61 | 5.18 | 5.06 | 4.56 | 0.99 | 0.18 | 0.17 | 0.021 | 0.024 | 0.019 | 0.091 | - d Sample dissolved in HNO₃ (1+2). Solution digested, filtered, and the precipitate washed with hot HNO₃ (1+99). Vertastannic-acid precipitate treated with HNO₃-HClO₄-HBr and the residual solution combined with the first filtrate. Solution diluted to 275 ml, electrolyzed for 2 hours, two drops of 0.1N HCl added, and electrolysis continued overnight, using a current density of 0.5 amp/dm². Residual copper and lead in the electrolyte precipitated with H₂S and determined by electrolysis. Correction made for silver in the cathode deposit. - b Lead deposited electrolytically as PbO₂ and weighed as PbCrO₄. - ^c Sample dissolved in HCl-HNO₃, iron added, and tin precipitated twice with NH₄OH. Precipitate dissolved in HCl, tin reduced with test lead and titrated with KlO₃ standardized with high-purity tin. - d SnCl₂-K₂Cr₂O₇ method. - $^{\rm c}$ Antimony separated by distillation from a 10-g sample, precipitated with $\rm H_2S$ and titrated with KMnO4 standardized against sodium oxalate. - f Phosphomolybdenum blue photometric method, - g Sodium hypophosphite-ammonium molybdate-photometric method. - h Combustion-iodate titration method. - ¹ Tin reduced with nickel and titrated with KIO₃. - 1. 10-phenanthroline photometric method. - k Metastannic-acid precipitate separated and digested in II₂SO₄-HNO₃-Na₂SO₄. Antimony reduced with Na₂SO₃ and titrated with KBrO₃. - ¹ Molybdivanadophosphoric acid-photometric method. - III Distillation-molybdenum blue-photometric method. - ¹¹ Tin reduced with lead in the presence of added antimony and titrated with iodine. - O Dimethylglyoxime-photometric method. - p NH₄CNS-photometric method. - ^q Antimony and tin separated from copper by the manganese coprecipitation method and digested in H₂SO₄·HNO₃. Antimony reduced with hydrazine sulfate and titrated with KBrO₃. - r Weighed as PbSO₄. - 8 Tin reduced with iron and titrated with iodine. - ^t Nickel precipitated with dimethylglyoxime. - u Iron reduced with H2S and titrated with Ce(SO4)2. - V Antimony reduced with H₂SO₃ and titrated with KBrO₃. - WDistillation-As₂S₃-gravimetric method. - X Arsenic separated by distillation and titrated with iodine. - y Tin reduced with iron and zinc, and titrated with KIO3. - $^{\rm Z}$ Tin reduced with iron-antimony alloy and titrated with KIO $_{\rm 3}.$ - Z1 Metastannic-acid precipitate separated from a nitric acid solution and tin volatilized with HBr. The residual solution combined with the first filtrate and iron titrated with Ti₂(SO₄)₃. - Antimony separated by the manganese coprecipitation method and titrated with KBrO₃. - 23 Phosphomolybdate-alkalimetric method. - Copper deposited in the presence of tin in HNO₃-HF solution. - Tin reduced with iron in the presence of added antimony and titrated with KIO₃. - Antimony reduced with tartaric acid and titrated with ${\rm KMnO_4}$. - ²⁷ HBr evolution method-titration with KIO₃. J. Paul Cali, Acting Chief Office of Standard Reference Materials Washington, D. C. 20234 November 6, 1970 (Replaces Prov. Cert. 8/5/59) (over) ## List of Analysts - 1. R. K.Bell, E. E. Maczkowske, B. B. Bendigo and T. W. Freeman, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards. - 2. W. A. Eddie and J. T. Krantz, National Bearing Division, American Brake Shoe Company; St. Louis, Missouri. - 3. O. O. Knopf, Janney Cylinder Company, Philadelphia, Pennsylvania. - 4. B. A. Stoltz and J. Long, Ajax Metal Division, H. Kramer and Company, Philadelphia, Pennsylvania. - 5. O. W. De Jarnett, Olin-Mathieson Chemical Corporation, East Alton, Illinois. - 6. J. W. Claypool and H. E. Kurg, Nassau Smelting and Refining Company, New York, New York.