National Bureau of Standards

Certificate of Analysis

Standard Reference Material 124d Ounce Metal

ANALYST	COPPER Electrolytic	LEAD Weighed as PbO ₂	ZINC ZnS-ZnO	TIN SnCl ₂ -K10 ₃	NICKEL Weighed as nickel dimethylglyoxime	IRON Photometric	ANTIMONY	SILVER Weighed as AgCl	PHOSPHORUS Photometric	ARSENIC Photometric	SULFUR
l	83.59a	5.16 ^b	5.07	4.53 ^e	0.99	0.18 ^d	0.16 ^e	0.021	0.022 ^f	0.015 ^g	0.096 ^h
2	83.62	5.15	5.11	4.55 ⁱ	1.00	.19 ^j	.17 ^k	.018	.025 ^l	.019 ^m	.094 ^h
3	83,64	5.20	5.03	4.48 ⁿ	0.980	.18 ^p	.19 ^q	.026	.022 ^l	.017	.092 ^h
4	83.63	5.13 ^r	5.07	4.57 ⁸	1.00 ^t	.18 ^u	.16 ^v	.020	.025 ^l	${021^{w} \choose .025^{x}}$.092 ^h
5	83.56	5.22	5.04	${4.57^{y} \atop 4.56^{z}}$	0.99	.19 ^{z1}	.17"2	.020	.026 ^{z3}		.092 ^h
6	83.60 ^{z4}	5.22	5.06	4.64 ²⁵	1.00°	.18 ^p	.19 ^{z6}		.023 ^l		.08 ^{z7}
Average	83,61	5.18	5.06	4.56	0.99	0.18	0.17	0.021	0.024	0.019	0.091

- d Sample dissolved in HNO₃ (1+2). Solution digested, filtered, and the precipitate washed with hot HNO₃ (1+99). Vertastannic-acid precipitate treated with HNO₃-HClO₄-HBr and the residual solution combined with the first filtrate. Solution diluted to 275 ml, electrolyzed for 2 hours, two drops of 0.1N HCl added, and electrolysis continued overnight, using a current density of 0.5 amp/dm². Residual copper and lead in the electrolyte precipitated with H₂S and determined by electrolysis. Correction made for silver in the cathode deposit.
- b Lead deposited electrolytically as PbO₂ and weighed as PbCrO₄.
- ^c Sample dissolved in HCl-HNO₃, iron added, and tin precipitated twice with NH₄OH. Precipitate dissolved in HCl, tin reduced with test lead and titrated with KlO₃ standardized with high-purity tin.
- d SnCl₂-K₂Cr₂O₇ method.
- $^{\rm c}$ Antimony separated by distillation from a 10-g sample, precipitated with $\rm H_2S$ and titrated with KMnO4 standardized against sodium oxalate.
- f Phosphomolybdenum blue photometric method,
- g Sodium hypophosphite-ammonium molybdate-photometric method.
- h Combustion-iodate titration method.
- ¹ Tin reduced with nickel and titrated with KIO₃.
- 1. 10-phenanthroline photometric method.
- k Metastannic-acid precipitate separated and digested in II₂SO₄-HNO₃-Na₂SO₄. Antimony reduced with Na₂SO₃ and titrated with KBrO₃.
- ¹ Molybdivanadophosphoric acid-photometric method.
- III Distillation-molybdenum blue-photometric method.
- ¹¹ Tin reduced with lead in the presence of added antimony and titrated with iodine.

- O Dimethylglyoxime-photometric method.
- p NH₄CNS-photometric method.
- ^q Antimony and tin separated from copper by the manganese coprecipitation method and digested in H₂SO₄·HNO₃. Antimony reduced with hydrazine sulfate and titrated with KBrO₃.
- r Weighed as PbSO₄.
- 8 Tin reduced with iron and titrated with iodine.
- ^t Nickel precipitated with dimethylglyoxime.
- u Iron reduced with H2S and titrated with Ce(SO4)2.
- V Antimony reduced with H₂SO₃ and titrated with KBrO₃.
- WDistillation-As₂S₃-gravimetric method.
- X Arsenic separated by distillation and titrated with iodine.
- y Tin reduced with iron and zinc, and titrated with KIO3.
- $^{\rm Z}$ Tin reduced with iron-antimony alloy and titrated with KIO $_{\rm 3}.$
- Z1 Metastannic-acid precipitate separated from a nitric acid solution and tin volatilized with HBr. The residual solution combined with the first filtrate and iron titrated with Ti₂(SO₄)₃.
- Antimony separated by the manganese coprecipitation method and titrated with KBrO₃.
- 23 Phosphomolybdate-alkalimetric method.
- Copper deposited in the presence of tin in HNO₃-HF solution.
- Tin reduced with iron in the presence of added antimony and titrated with KIO₃.
- Antimony reduced with tartaric acid and titrated with ${\rm KMnO_4}$.
- ²⁷ HBr evolution method-titration with KIO₃.

J. Paul Cali, Acting Chief Office of Standard Reference Materials

Washington, D. C. 20234 November 6, 1970

(Replaces Prov. Cert. 8/5/59)

(over)

List of Analysts

- 1. R. K.Bell, E. E. Maczkowske, B. B. Bendigo and T. W. Freeman, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. W. A. Eddie and J. T. Krantz, National Bearing Division, American Brake Shoe Company; St. Louis, Missouri.
- 3. O. O. Knopf, Janney Cylinder Company, Philadelphia, Pennsylvania.
- 4. B. A. Stoltz and J. Long, Ajax Metal Division, H. Kramer and Company, Philadelphia, Pennsylvania.
- 5. O. W. De Jarnett, Olin-Mathieson Chemical Corporation, East Alton, Illinois.
- 6. J. W. Claypool and H. E. Kurg, Nassau Smelting and Refining Company, New York, New York.