U. S. Department of Commerce Maurice.H. Stans Secretary National Bereau of Standards

Certificate of Analysis Standard Reference Material 1095 AISI 4340 Steel

(Gasometric Standard)

This standard is in the form of rods 6.4 mm (1/4 in) in diameter and 102 mm (4 in) long for the determination of gases in metals by vacuum or inert gas fusion and neutron and vacuum or analyses.^a

Element
Oxygen
Nitrogen
Hydrogen

bThe certified value of 9 ppm oxygen is based on the following pertinent analytical day

NBS	Applite Research Laborat	ory; U. S. Steel Corp.
Vacuum	Vacuum	Neutron
Fusion	Frsion	Activation
X s	$\frac{X}{X}$ $\frac{n}{X}$	X s n
$\overline{1.2}$ $\overline{44}$	$\overline{10.0}$ $\overline{1.4}$ $\overline{12}$	8.8. 1.3 4 *

 $[\]overline{X}$ = mean oxygen value s = standard leviation of a single-differentiation; n = number of independent determinations

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of O. Menis and J. T. Sterling.

The technical and support aspects involved in the preparation, certification, and issuance of this standard reference material were coordinated through the Office of Standard Reference Materials by R. E. Michaelis.

Washington, D. C. 20234 October 23, 1970 J. Paul Cali, Acting Chief Office of Standard Reference Materials

(over)

^a This material also is available in the form of disks, SRM 1261, 31 km (1 1/4 in) in diameter and 19 mm (3/4 in) thick for use in optical emission and x-ray spectrometric analysis; chips, SRM 361, for use in chemical methods of analysis; and rods, SRM 661, 3.2 mm (1/8 in) in diameter and 51 mm (2 in) long for application in anisoponemical methods of analysis such as electron probe microanalysis, spark source mass spectrometric analysis, and laser probe analysis.

^{*}The average of 0 replicate masulements was reported for each of 4 samples.

cValues bear enthesis are not certified since they are based on the results from a single laboratory.

PLANNING, PREPARATION, TESTING, ANALYSIS: This standard is one of five replacements for the original eight 1100 series iron and steel SRMs. Material from the same melt is available in a variety of forms to serve in checking methods of analysis and in calibrating instrumental techniques.

The material for this standard was vacuum melted and east at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Burear of Standards. The contract was made possible by a grant from the American Iron and Steel Ip finite.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NIS analyses. selected portions of the ingot material were extensively to ed for homogeneit in NBS by D. M. Bouchette, S. D. Rasberry, and J. L. Weber, Jr. Only that material neeting a critical evaluation was processed to the final shapes and sizes.

Cooperative analyses for oxygen were perferned in the Applied Research Labor States Steel Corporation, Monroeville, Pennsylvania, LyJ. F. Martin and E. E. Wicker. arch Laboratory, United

Analytical Chemistry Division of the National Analyses for oxygen were perform Bureau of Standards by J. T. Sterling

CAUTION: Oxygen determinations should be made at thoroughly and freshly cleaned samples.

PREPARATION FOR THE DETERMINATION OF OXYGEN:

- 1. Samples should be cut from the original rod to minimize heating of the sample; i.e., by a hand hacksaw
- 2. All surfaces of the cut-cample bould be thoroughly cleaned with a fine file.

 3. Samples should be washed with C. P. ether, acetone, or other suitable solvent, dried in a stream of warm clean air and then wandled only with clean forceps.
- 4. Malyses hould be made as soon as possible after cleaning the sample.

. S. Department/of Commerce Malcoln/Baldrige Secretary

National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis

Standard Reference Material 1096

AISI 94B17 Steel (Modified)

(Gasometric Standard)

This Standard Reference Material (SRM) is in the form of a rod 6.4 mm (1/4 in) in diameter and 102 mm (4 ip) or SRM 1096 is intended for use in the determination of gases in metals by vacuum or inert gas fusion and neutron activation methods of analyses.

Element	PPM by Weight
Oxygen	10.7
Nitrogen	49.6
Hydrogen	Carry No.
^a The values given in this certif	icate are based on the analytical data

Value in parentheses is not certified

Number of Standard Deviation 1 Laboratory Average Determinations Bethlehem Steel 1.4 20 U.S. Steel 0.9 28 Armco Steel 1.2 28 Average² - - -_ _ _ NBS³

	Nitroge	n	
Bethlehem Steel	39.5	0.5	10
U.S. Steel	42.0		
Armco Sleet	39.7	1.9	29
Average	40.4		
NBS ³	40.0		
Inland Steel ³	40.6		

¹Of single determination

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R.E. Michaelis.

Gaithersburg, MD 20899 April 21, 1986 (Revision of Certificate dated 6-13-72) Stanley D. Rasberry, Chief Office of Standard Reference Materials

²Unweighted arithmetic average

³For information only

The material for this standard was vacuum melted and cast at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Bureau of Standards. The contract was made possible by a grant from the American Iron and Steel Institute.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NBS analyses, selected portions of the irgot material were extensively tested for homogeneity at NBS by D.M. Bouchette, S.D. Rasberry, and J. ... Veber, J. () that material meeting a critical evaluation was processed to the final shapes and sizes.

Cooperative analyses for oxygen and nitrogen were performed in the Applied Research Laboratory, United States Steel Corporation, Monroeville, Pennsylvania, by J.F. Martin; Homer Research Doratories Bethlehen Steel Corporation, Bethlehem, Pennsylvania, by F.H. Ruch; and Research and Technology, Amico Stee Corporation, Middletown, Ohio, by L.C. Ikenberry.

Analyses for oxygen and nitrogen on samples from the melt were performed that Analytical Chemistry Division of the National Bureau of Standards by J.T. Sterling; and for nurgen only in the Analytical Laboratory of Inland Steel Company, East Orange, Indiana, by J.E. Joyce.

CAUTION: Oxygen determinations should be mide on thoroughly and freshly cleaned samples.

PREPARATION FOR THE DETERMINATION OF

- 1. Samples should be cut from the obsided rod to minimize nearing of the sample; e.g., by a hand hacksaw.
- 2. All surfaces of the cut samples should be thoroughly cleaned with a fine file.
- 3. Samples should be washed with C.P. ering a etone, of other suitable solvent, dried in a stream of warm clean air and then handled only with lean forceps then handled only with lean forceps.

 4. Analyses should be chade as soon as possible after cleaning the sample.

SRM (06) AS Possit

Department of Commerce Malcolm Baldrige Secretary ational Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis

Standard Reference Material 1097

Cr-V Steel (Modified)

(Gasometric Standard)

This Standard Reference Material (SRM) is in the form of a rod 6.4 mm (1/4 in) in diameter and 102 mts (4 in) long. SRM 1097 is intended for use in the determination of gases in metals by vacuum or inertials fusion and neutron activation methods of analyses.

Element	
Oxygen Nitrogen Hydrogen	SOM
Nitrogen	SOL

^aThe certified value by oxygen is based on the analytical data

Values in parentheses are not certified.

Laborator	Average, (Ph. by wt)	Standard Deviation 1	Number of Determinations
Battelle U.S. Steel	6.67	0.82 1.03	25 31
Average ²	6.6		
NBS ³ J & L ³	6.0 10.7		

¹Of single determination

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R.E. Michaelis.

Gaithersburg, MD 20899 April 21, 1986 (Revision of Certificate dated 5-26-72) Stanley D. Rasberry, Chief Office of Standard Reference Materials

²Arithmetic average of two averages above

³For information only

The material for this standard was vacuum melted and cast at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Bureau of Standards. The contract was made possible by a grant from the American Iron and Steel Institute.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NBS analyses, selected portions of the ingot material were extensively tested for homogeneity at NBS by D.M. Bouchette, S.D. Rasberry, and J.L. Weber, Jr. Only that material meeting a critical evaluation was processed to the final shapes and sizes.

Cooperative analyses for oxygen were performed in the Applied Research Laboratory, United States and Corporation, Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, by J.F. Martin; and for oxygen and nitrogen in the Commbu Monroeville, Pennsylvania, Pennsylv Memorial Institute, Columbus, Ohio, by M.A. Van Camp; and in the Graham Receich Laboratory, Jones & Laughlin Steel Corporation, Pittsburgh, Pennsylvania, by C.R. Hines.

cal Chamistry Division of the Analyses for oxygen and nitrogen on samples from the melt were performed National Bureau of Standards by J.T. Sterling.

CAUTION: Oxygen determinations should be made on thorstichly and freshly cleaned

PREPARATION FOR THE DETERMINATION OF GXYGE

- 1. Samples should be cut from the original rod to minimize heating of the sample; e.g., by a hand hacksaw.
- All surfaces of the cut samples should be the roughly cleaned with a pre-file.
 Samples should be washed with C.P. ether, acetone, or other suitable solvent, dried in a stream of warm clean air and
- 4. Analyses should be made as soon spossible after cleaning the sample.

al rod to a call be theroug.

J.P. ether, acetone, a forcept.

as soon as possible after cla

S. Department of Commerce Malcolin Baldrige Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards Certificate of Analysis

Standard Reference Material 1098

High-Carbon Steel (Modified)

(Gasometric Standard)

This Standard Reference Material (SRM) is in the form of a rod 6.4 mm (N 4 in) in displacter and 102 mm (4 in) long. SRM 1098 is intended for use in the determination of gases in metals by vacuum or the gas fusion and neutron activation methods of analyses.

Element ^a	Mes	Midiange V	A
Oxygen	D/, V(7 10	8.
Nitrogen	- G , `	3	
^a Hydrogen is no include	(AS ppm)	CA	
bAverage of midrange val		perating labora	tories.

	Laboratory O	Range of Results 1	Midrange Value
_0	12. VO.	Oxygen	
S	NO	9.2 to 12.0	10.6
	Battelle	6.8 to 11.3	9.0
~	0	Nitrogen	
(S)	NEO	31.1 to 36.7	33.9
	Battelle	27.5 to 33.5	30.5

¹Average of duplicate vacuum fusion determinations made on samples cut from 12 individual rods.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R.E. Michaelis.

Gaithersburg, MD 20899 April 21, 1986 (Revision of Certificate dated 10-3-73) Stanley D. Rasberry, Chief Office of Standard Reference Materials

The material for this standard was vacuum melted and cast at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Bureau of Standards. The contract was made possible by a grant from the American Iron and Steel Institute.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NBS analyses, selections of the ingot material were extensively tested for homogeneity at NBS by D.M. Bouchette, S.D. Rasberry, and J.L. Webel, Jr. Only that material meeting a critical evaluation was processed to the final shapes and sizes.

Cooperative analysis for oxygen and nitrogen were performed in the columbia, laboratorie, Battelle Memorial Institute, Columbus, Ohio by R.E. Heffelfinger; and in the Analysis Chemistry Branch, Naval Research Laboratory, Washington, D.C., by W.A. Fraser.

CAUTION: Oxygen determinations should be made on thoroughly and reshly cleaned samples.

PREPARATION FOR THE DETERMINATION OF OXYGEN.

- 1. Samples should be cut from the original room minimize heating of the sample; e.g., by a hand hacksaw.
- 2. All surfaces of the cut samples should be thoroughly channed with a kine file.
- 3. Samples should be washed with C.P. ther, acetand of other suitable solvent, dried in a stream of warm clean air and then handled only with clean forces.

 4. Analyses should be made as soon as possible after cleaning the sample.

 SRM 1098
 Page 2 then handled only with clean forces

National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards

Certificate of Analysis

1095et 09)
Andards and 2025.
Book ember 2025. Standard Reference Material Electrolytic Iron (Gasometric Standar

This Standard Reference Material (SRM) is in the form of a roof) mm (1/4 m) in diameter and 102 mm (4 in) long. SRM 1099 is intended for use in the determination of gases in metals by vacuum or inert gas fusion and neutron activation methods of analyses. The oxygen content of this standard was determined by vacuum fusion at NBS.

> (13)(<5)

istion of a single determination based on 126 measurement on selected rod material.

parentheses are not certified.

The overall direction and coordination of the technical measurements at NBS leading to certification were performed under the direction of O. Menis and J.T. Sterling.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R.E. Michaelis.

Gaithersburg, MD 20899 April 21, 1986 (Revision of Certificate dated 7-28-70)

Stanley D. Rasberry, Chief Office of Standard Reference Materials

(over)

The material for this standard was vacuum melted and cast at the Carpenter Technology Corporation, Reading, Pennsylvania, under a contract with the National Bureau of Standards. The contract was made possible by a grant from the American Iron and Steel Institute.

The ingots were processed by Carpenter Technology Corporation to provide material of the highest possible homogeneity. Following acceptance of the composition based on NBS analyses, selected portions of the ingot material were extensively tested for homogeneity at NBS by D.M. Bouchette, S.D. Rasberry, and J.L. Weber, Jr. Only that material meeting a critical evaluation was processed to the final shapes and sizes.

Analyses for oxygen were performed in the Analytical Chemistry Division of the Nation J.T. Sterling.

CAUTION: Oxygen determinations should be made on thoroughly and freshled

PREPARATION FOR THE DETERMINATION OF OXYGEN:

- 1. Samples should be cut from the original rod to minimize heating of the sample
- 2. All surfaces of the cut samples should be thoroughly cleaned with a fin Oile
- 3. Samples should be washed with C.P. ether, acetone, or other shitable solvine, dried in stream of warm clean air and then handled only with clean forceps.
- 4. Analyses should be made as soon as possible after

CONDITIONS FOR ANALYSIS AT NBS

Method

Furnace temperature

Furnace pressure

Collection time

Bath material

Carbon monorate determination

SRM 099
Page 2

Intrared absorption