U. S. DEPARTMENT OF COMMERCE

National Bureau of Standards Certificate of Analyses

STANDARD SAMPLE 101c 18 CHROMIUM—9 NICKEL STEEL

	\mathbf{c}	Mn	P		S			Si		Ni	Cr			İ	i			
ANAL YST*	Direct combustion	Zinc Oxide-Persullate- Arsenite	Gravimetric (weighed as Mg2P2O; after removal of arsenic)	A!kali-molybdate •	Gravimetric (direct oxidation and precipitation after reduction of iron)	Evolution (HCl sp gr 1.18- ZnS-iodine-theoretical sulfur titer) b	Combustion	Perchloric acid dehydra- tion	COPPER H ₂ S-CuS-CuO	Weighed as nickel dimethylglyoxime	FeSO,-KMnO, titration	VANADIUM	MOL YBDENUM Colorimetric	COBALT Zinc oxide-a-nitroso- β-naphthol	СОГОМВІОМ	TIN	NITROGEN Solution—Distillation	
1	0.074	°0.644	0.023	$^{ m d}0.024$	0.016	0.016	°0.016	f0.586	0.123	9.25	≈18.21	ь0.051	0.094	0.085	i0.103	^j 0.007	k 0.036	
2	.073	1.638		d.025			e.016	.595	m.127	9.26	18.22		.10	n.095		^j .008	°.034 ₋	
3	.070	.642		.023	.018		P.018	f.601	a.130	r9.26	18.18	°.046	.093	.077	t.098		u.035 _	
4	.074	.655		$^{ m d}.023$.017		₽.018	.592	v.127	r 9.28	18.20	₩.049	.098	×.089	у.115	i.009	°.034 _	
5	.072	¹ .647	z.023	d.023	.016		₽.016	.576	z1.118	9.29	18.24	h.052	.096	z2.078	z3.109	i.009	۔ 036ء	
6	.074	z4.622		.024	z5.016	.015	₽.014	.594	z6.126	9.26	18.23	^h .046	.090		i.116		z7.034 _	
	.069	1.632	.021	.022	.016		z8.015	f.582	.114	9.31	18.22	h.048		.08	z9.095	009،ن	z10.036 _	
Averages	0.072	0.640	0.022	0.023	0.017	0.016	0.016	0.589	9.124	9.27	18.21	0.049	0.095	0.084	0.106	0.008	0.035	
General averages	0.072	0.640	0.023		0.016		0.589	0.124	9.27	18.21	0.049	0.095	0.084	0.106	0.008	0.035		

- ^a Precipitated at 40° C, washed with a 1-percent solution of KNO₃, and titrated with alkali standardized by the use of acid potassium phthalate and the ratio 23NaOH:1P.

 ^b Value obtained by standardizing the titrating solution by means of sodium oxalate through KMnO₄ and use of the ratio 21:18.

- by means of sodulm oxatate through K.MiO4 and use of the ratio 2I:1S.

 Bicarbonate-bismuthate-FeSO4-KMnO4 titration method.

 Molybdenum-blue photometric method.

 1-g sample burned in oxygen at 1,400° C. and sulfur dioxide absorbed in starch-iodine solution. Iodine liberated from iodide by titration, during the combustion, with standard KIO2 solution based on 93 percent of the theoretical factor.

 Posuliate oxidation with intervening filtration.

 Persulfate oxidation and potentiometric titration with ferrous ammonium sulfate standardized against potassium dichromate.

 Nitrie acid oxidation, potentiometric titration with ferrous ammonium sulfate.

 HCl solution of a 10-g sample treated with cupferron. Precipitate ignited, fused in bisulfate, leached with HCl.

diluted and treated with H₂SO₂. Precipitate filtered, ignited, treated with H₂SO₄-HClO₄-HF. Solution treated with excess of NH₄OH, and filtered. Precipitate digested with HCl, diluted and treated with H₂SO₂. Mixed oxides ignited, weighed and calculated to Cb by use of ratio 2Cb:Cb₂O₃.

Sulfide-iodine method. See BS J. Research 8, 309 (1932) RP415.

Semimicrodistillation-titration method. 0.5 g sample digested 4 hours with H₂SO₄.

Chromium volatilized as CrO₂Cl₂.

CuCNS precipitation, CuCl₂ photometric method.

Ether extraction-CrO₂Cl₂ volatilization-cupferronanitrose-β-napthol method.

Solution in HCl, distillation-titration method.

Solution in HCl, distillation-titration method.

Glyoxime precipitate titrated with KCN and AgNO₃.

Cupferron-KMnO₄ titration method.

Cupferron-KMnO₄ titration method.

Cupferron-KMnO₄ titration method.

- t Double hydrolysis from acid solution with H₂SO₃. u Solution in HCl-HF, distillation-titration method.

- v Diethyldithiocarbamate photometric method.
 v CrO₂Cl₂ volatilization. Differential titration with
 o-phenanthroline indicator.
 z no-HCl photometric method.
 v Double hydrolysis from acid solution with H₂SO₃,
 with intervening treatment with NH₄OH.
 v Weighed as ammonium phosphomolybdate.
 H₃S-a-benzoinoxime-CuO method.
 v Nitroso R-photometric method.
 sh As in (t), photometric determination using H₂O₂ color.

- s² As in (t), photometric determination using H₂O₂ color.

 **P PbCrO₄-bismuthate-arsenite method.

 **S Meineke method.

 **H₂S-pbenyithiohydantoic acid-CuO method.

 **T As in (o), finished photometrically with Nessler's reagent.

 **E As in (e), except tin used as flux, and factor based on standard steel.

 **O Lupierron-double SO₂ hydrolysis. Columbium reduced and titrated with KMnO₄.

 **O As in (u), except insoluble residue fumed in H₂SO₄ and added to main solution.

*LIST OF ANALYSTS

- Ferrous Laboratory, National Bureau of Standards, John L. Hague in charge, analysis by J. I. Shultz, R. A. Watson, J. R. Baldwin and C. Litsey.
- Rustless Iron and Steel Division, The American Rolling Mill Co., Baltimore, Md. Analysis by N. L. Smith and R. W.
- 3. E. B. Welch, Firth-Sterling Steel Co., McKeesport, Pa.

- O. L. Van Valkenburgh, Crucible Steel Co. of America, Halcomb Works, Syracuse, N. Y.
 Industrial Test Laboratory, Philadelphia Naval Shipyard, Philadelphia, Pa.
 H. Kirtchik, F. M. Claflin, R. S. Newhall and A. P. Scanzillo, Thomson Laboratory, General Electric Co., Lynn, Mass.
 L. P. Chase, Carnegie-Illinois Steel Corp., South Works, Chicago, Ill.

steel for the preparation of this standard was furnished by the Rustless Iron and Steel Division of the American Rolling Mill Co.