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Abstract 

Modern enterprise IT systems rely on a family of application programming interfaces (APIs) for 
integration to support organizational business processes. Hence, a secure deployment of APIs is 
critical for overall enterprise security. This, in turn, requires the identification of risk factors or 
vulnerabilities in various phases of the API life cycle and the development of controls or 
protection measures. This document addresses the following aspects of achieving that goal: (a) 
the identification and analysis of risk factors or vulnerabilities during various activities of API 
development and runtime, (b) recommended basic and advanced controls and protection 
measures during the pre-runtime and runtime stages of APIs, and (c) an analysis of the 
advantages and disadvantages of various implementation options for those controls to enable 
security practitioners to adopt an incremental, risk-based approach to securing their APIs. 

Keywords 

API; API endpoint; API gateway; API key; API schema; web application firewall. 

Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include 
the development of management, administrative, technical, and physical standards and 
guidelines for the cost-effective security and privacy of other than national security-related 
information in federal information systems. The Special Publication 800-series reports on ITL’s 
research, guidelines, and outreach efforts in information system security, and its collaborative 
activities with industry, government, and academic organizations.  
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Executive Summary 

Application programming interfaces (APIs) provide the means to integrate and communicate 
with the modern enterprise IT application systems that support business processes. However, a 
lack of due diligence can introduce vulnerabilities and risk factors that exploit the connectivity 
and accessibility features of APIs. If these vulnerabilities are not identified, analyzed, and 
addressed through control measures, attack vectors could threaten the security posture of the 
application systems spanned by these APIs. A systematic and effective means of identifying and 
addressing these vulnerabilities is only possible by treating the development and deployment of 
APIs as an iterative life cycle using paradigms like development, security, and operations 
(DevSecOps).  

This document provides guidelines and recommendations on controls and protection measures 
for secure API deployments in the enterprise. In addition, an analysis of the advantages and 
disadvantages of various implementation options (called patterns) for those controls enable 
security practitioners to choose the most effective option for their IT ecosystem. 

Developing these controls and analyzing their implementation options should be guided by 
several overarching principles:  

• The guidance for controls should cover all APIs, regardless of whether they are exposed 
to customers/partners or used internally within the enterprise. 

• With the vanishing of perimeters in modern enterprise IT applications, all controls 
should incorporate the concept of zero trust. 

• The controls should span the entire API life cycle and be classified into (a) pre-runtime 
protections and (b) runtime protections that are then subdivided into basic and 
advanced protections to enable incremental risk-based adoption. 
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1. Introduction  

Application programming interfaces (APIs) represent an abstraction of the underlying 
implementation of a digital enterprise — they describe what actions users are allowed to take. 
Given the spatial (e.g., on-premises, multiple clouds) and logical (e.g., microservices) nature of 
current enterprise applications, APIs are needed to integrate and establish communication 
pathways between internal and third-party services and applications. The growing prevalence 
of microservice-oriented architectures and software as a service (SaaS), which are nearly always 
delivered via APIs, has resulted in network-based APIs being utilized across organizations in 
every type of application, including server-based monolithic, microservices-based, browser-
based client, and the Internet of Things (IoT). 

An API is a collection of commands or endpoints that operate on data or objects via some 
protocol to define how two pieces of software communicate. At runtime, service instances send 
requests to a specific API endpoint. An API gateway hosts many APIs and is responsible for 
mapping each request to its target API endpoint, applying policy for that endpoint (e.g., 
authentication, rate limiting), and routing that request to a service instance, which implements 
that API endpoint, as shown in Fig. 1.  

 

Fig. 1. API, API endpoint, service, and service instance 

Network-based APIs are built to be consumed by remote applications over the network and 
present a unique set of challenges. Traditionally, network-based APIs are thought of as being 
customer-oriented, partner-oriented, or internal, which are referred to as “third-party,” 
“second-party,” and “first-party” APIs, respectively. First-party APIs can be exposed to callers 
inside of the organization on the same API gateway, but they are also often consumed directly 
by internal callers without traversing a dedicated API serving stack. Second- and third-party 
APIs are typically exposed to callers outside of the organization via an API gateway. 

Most first-party API integrations occur via a service API (i.e., they map to a single service). 
However, APIs that are hosted by the API gateway typically have endpoints that map to many 
different services, especially for second- and third-party APIs. These are called facade APIs 
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because they present a single facade to an outside caller over potentially many different service 
APIs. Multiple services are commonly grouped together into an application along organizational 
lines with an application mapping to a team. Fig. 2 shows a schematic diagram of a service API, 
a facade API, and an application (i.e., monolithic) API. 

 
Fig. 2. Service API, facade API, and application (monolithic) 

Whenever systems communicate, there is some API involved (e.g., Comma-Separated Values 
(CSV) over File Transfer Protocol (FTP)). While this Special Publication (SP) focuses on “modern” 
APIs that are exposed via mechanisms like Hypertext Transfer Protocol (HTTP)/ 
Representational State Transfer (REST), gRPC Remote Procedure Calls (gRPC), or Simple Object 
Access Protocol (SOAP), the principles are universal and should be applied to all APIs and 
various communication styles (e.g., request/response, message-based/asynchronous). 

1.1. Zero Trust and APIs: The Vanishing Perimeter 

One of the most important implications of zero trust is that there is no meaningful distinction 
between an “internal” and “external” caller because the perimeter is the service instance itself. 
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That is, all callers are trusted if they are authorized to be trusted. This contrasts with traditional 
approaches to API security in which the only “APIs” are those exposed to “external” callers, and 
API-oriented controls are only enforced at the perimeter, typically via an API gateway. 

SP 800-207A [6] discusses zero trust at runtime and the principle of shrinking the perimeter to 
the service instance using the five runtime controls of identity-based segmentation: 

1. Encryption in transit — To ensure message authenticity and prevent eavesdropping, 
thus preserving confidentiality 

2. Authenticate the calling service — Verify the identity of the software sending requests 

3. Authorize the service — Using that authenticated identity, check that the action or 
communication being performed by the service is allowed 

4. Authenticate the end user — Verify the identity of the entity triggering the software to 
send the request, often a non-person entity (NPE) (e.g., service account, system 
account) 

5. Authorize the end user to access resources — Using the authenticated end-user identity, 
check that they are allowed to perform the requested action on the target resource 

Achieving a zero-trust runtime requires applying these five controls to all API communications. 
Additional controls that are necessary for safe and secure API operations beyond identity-based 
segmentation should be enforced on all APIs in a system, including those exposed to the 
outside world (i.e., public APIs) and those intended only for other applications in a given 
infrastructure (i.e., internal APIs). 

1.2. API Life Cycle 

Like all software, APIs grow and change over time as requirements drift and usage patterns 
change. They also go through a continuous, iterative life cycle, including: 

• Plan, Develop, Build, Test, Release — These “pre-runtime” life cycle phases lead to a 
service that can be deployed in production. 

• Deploy, Operate, Monitor, Feedback — These “runtime” life cycle phases involve 
running and operating a service in production. 

Department of Defense (DoD) Enterprise DevSecOps is an example of a software development 
life cycle paradigm. A detailed description of each phase of this paradigm is given in [1]. 
Application of the DevSecOps paradigm in the context of cloud-native applications can be found 
in [4][5]. 
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Fig. 3. DevSecOps life cycle phases 

1.3. Document Goals  

This document recommends controls for API protection except for API tools that embed one or 
more of the following control categories as part of its feature set: 

1. Pre-runtime API protections — These controls need to be applied when designing and 
building APIs. 

2. Runtime API protections — These controls need to be applied to every API request that 
an infrastructure serves, not just at the perimeter. 

Each of these two categories is further divided into two subcategories based on organizational 
maturity (i.e., basic and advanced), which enables enterprises to adopt them using an 
incremental, risk-based approach.  

A prerequisite for defining any API protection measure or policy irrespective of its category or 
sub-category is that the protections m ust be expressed in terms of nouns (e.g., resource) and 
verbs (e.g., “create customer record” using the verb POST/CR) that pertain to API components, 
API endpoint components, API requests, and API responses. These, in turn, contain references 
to resources (e.g., customer record [CR]), data, and operations on those resources.  

1.4. Relationship to Other NIST Documents  

Today, most software development and integration are based on APIs. Section 1.2 articulated 
the close relationship between software and APIs, demonstrated that API development and 
deployment follow the same iterative life cycle as the software, and provided NIST guidelines 
on DevSecOps.  
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Another distinguishing feature of the controls recommended for protecting APIs is the capacity 
to provide assurance for conforming to the principles of zero trust. This is because there is no 
distinction between internal and external API requests or calls due to the absence of an 
identifiable network perimeter and the distributed nature of applications on-premises and in 
multiple clouds. This security assurance can be achieved with authentication and authorization 
controls using identity-based segmentation [2]. Documents that provide recommendations on 
the configuration of authentication and authorization controls in the context of cloud-native 
applications (e.g., [2][3]) are also relevant in the context of configuring controls for API 
protection. 

1.5. Document Structure 

This document is organized as follows: 

• Section 2 describes risk factors and vulnerabilities associated with APIs and the attack 
vectors that could exploit those vulnerabilities. 

• Section 3 recommends controls to protect APIs and classifies them into basic and 
advanced categories that need to be applied prior to runtime or enforced during 
runtime. 

• Section 4 provides a detailed analysis of implementation options or patterns for the 
controls described in Sec. 3 and outlines the advantages and disadvantages of each 
pattern. 

• Section 5 provides the summary and conclusions. 

• Appendix A provides the classification taxonomy for APIs. 

• Appendix B illustrates the API controls related to each DevSecOps phase 

• Appendix C provides a list of Limit Types 
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2. API Risks: Vulnerabilities and Exploits 

This section considers some common risk factors that are associated with API deployments, 
including: 

• Lack of visibility of APIs in the enterprise inventory [7] 

• Missing, incorrect, or insufficient authorization [7] 

• Broken authentication [7] 

• Unrestricted resource consumption [7] 

• Leaking of sensitive information  

• Insufficient verification of input data 

2.1. Lack of Visibility of APIs in the Enterprise Inventory 

Most organizations have gaps in their API inventories, even if they otherwise have mature 
inventory management capabilities. The enterprise estate cannot be protected without an 
accurate API inventory, and unknown incidents may occur at the API level. Common reasons for 
the lack of visibility include: 

• Organizational silos: APIs are built by many teams across an organization, deployed 
across cloud and on-premises environments, and inherited in mergers and acquisitions. 
Security concerns may not receive sufficient attention, and establishing accurate, up-to-
date inventories may be difficult. Further, a lack of automation and integration with the 
API inventory management system exacerbates the challenge of maintaining an 
accurate inventory. 

• Rogue or shadow APIs: APIs that are defined for internal use (e.g., debugging, testing, ad 
hoc solutions to business problems) may not be appropriately documented and often 
bypass standard security review practices. 

• Zombie or deprecated APIs: APIs may have been replaced or superseded by newer 
systems but have not yet been entirely removed (e.g., because all callers have not yet 
migrated to the alternative, there no longer exists a team responsible for the system). 
They risk falling behind the latest security policies and protections. 

2.2. Missing, Incorrect, or Insufficient Authorization 

Authorization requires a high-reliability, low-latency system for making decisions about user 
access to resources at request time. Application developers must integrate their application 
with the same authorization system to keep it updated on users, resources, and permissions as 
the system changes over time (e.g., users create and delete resources, assign new permissions). 
Even then, developers may incorrectly enforce access decisions in their application code. In the 
industry-recognized catalogue of API risks, three of the top 10 (i.e., 1, 3, and 5) focus on 
authorization [7]. 
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In line with identity-based segmentation, every service for an API endpoint should perform two 
levels of authorization: 1) service authorization and 2) end-user-to-resource authorization [6]. 
However, implementing both levels of authorization can still leave many APIs open to risk. 
Individual fields of a resource often need to be authorized independently of the resource itself. 
For example, if additional debug information is embedded in an internal field of the API object, 
that field should not be visible to external callers (i.e., callers not authorized to see privileged 
debug information). 

There are at least three sources of authorization risks: 

1. Missing authorization: There is no fine-grained, resource-level authorization present. 
For example, a legacy system may be operating under different access models (e.g., in a 
perimeter-based model, access is authorization), or there may be implementation bugs 
(i.e., an access check that should be enforced is not). 

2. Incorrect authorization: The application performs an end-user-to-resource authorization 
check but fails because it checks the wrong end-user identity, the wrong permission, 
and/or the wrong target resource. 

3. Insufficient authorization: The application performs a resource-level authorization that 
is successful, but the resource itself contains privileged information that is not intended 
for the level of access implied by access to the resource itself. This is often the root 
cause of leaking sensitive information (see Sec. 2.5). 

2.3. Broken Authentication 

Authentication is a prerequisite for authorization, particularly two aspects: the authentication 
system itself is robust, and the application uses the authenticated identities correctly. Risks that 
an authentication system needs to mitigate include [8]:   

• Credential Stuffing is a type of brute force attack, where an attacker knows an account's 
name, and tries to brute force a ton of different passwords to unlock it. (They "stuff all 
the credentials they can find" into the victim system's authorization system in the hopes 
that something will stick). The attacker is able to carry out this since mitigation features 
such as rate limits, Captcha are absent. 

• Brute-force attacks on a single account without mitigations, which is closely related to 
unrestricted resource consumption (see Sec. 2.4) 

• Insecure practices, such as weak passwords, passing sensitive data in public channels 
(e.g., the URL), missing password validation for changes to sensitive account data, and 
using weak keys or poor algorithms to encrypt user data in transit and at rest 

• Bad or incorrect token validation, including not validating at all, ignoring expiry, and 
using insecure signing schemes or weak signing keys 

With a robust and secure authentication system in place, the application must use those 
credentials correctly. Risks to mitigate include:  
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• Missing authentication (e.g., tokens can be present but simply not checked), often due 
to a bug or misconfiguration in the application 

• Weak or predictable tokens, default accounts, and default passwords (e.g., a hard-coded 
bootstrap account with the same username and password on all devices, test accounts 
with predictable names and weak/guessable passwords) 

2.4. Unrestricted Resource Consumption 

Services consume resources to serve APIs, many of which can affect external systems or the 
real world when serving an API call. The effects are an intended part of the business flow, but 
automation creates avenues for abuse by malicious users. Therefore, usage must be restricted 
to protect against malicious attackers abusing the system with a denial-of-service attack (DoS) 
or for its impact on external systems. 

2.4.1. Unrestricted Compute Resource Consumption 

Broadly, the risks associated with unrestricted compute resource consumption (e.g., memory, 
CPU, storage) are best mitigated via a combination of rate limiting, timeouts, circuit breaking 
(i.e., limits on the number of concurrent outstanding requests), bot/abuse detection, and 
application changes (e.g., reject file uploads over 20MB in size, return at most 10 items in 
response to a list request). These risks manifest as:  

• DoS attacks via bandwidth saturation or resource starvation 

• Unreliable performance due to resource utilization for one user or service that impacts 
others 

• Cost amplification, in which an attacker can spend a small amount of resources (e.g., 
money, compute, bandwidth) to make requests that trigger a system to spend a much 
larger amount of resources to service the request 

Even internal API consumption poses many of these risks. In most organizations, it is much 
easier for a developer to accidentally cause a DoS on an internal service than for an external 
attacker to maliciously cause such an attack. This is a potential security event that necessitates 
the need for a zero trust approach. 

2.4.2. Unrestricted Physical Resource Consumption 

Critical business operations can be impacted when an attacker targets software systems that 
control physical processes (e.g., SCADA systems). APIs may also result in text messages being 
sent to users, charges to credit cards, or the consumption of expensive third-party resources. 
For example, a common challenge seen by organizations that adopt AI is the accidental over-
use of expensive AI APIs, which can result in large unplanned expenses for the business. These 
risks may manifest as:  
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• Impacts on business operations (e.g., damage to equipment and personnel, the creation 
of fake orders that require human effort to sort and remove) 

• Impacts on customer relationships (e.g., scalpers automatically buying inventory to relist 
at a higher price elsewhere)  

• Infrastructure co-opted for abuse or harassment (e.g., multi-factor authentication 
fatigue attacks, where an attacker triggers text spam to a user’s phone via an SMS 2-
factor authentication system [9])   

• Unplanned expenses (e.g., consuming far more of a third-party service than planned by 
satisfying requests made by a malicious user) 

These risks are best mitigated by a combination of rate limiting, quotas, spending policy 
controls in third-party software, bot/abuse detection, and application or business flow changes. 
Mitigations for both compute and physical resource consumption are similar. For compute 
resources, how users interact with a system should be limited. For physical resources, how the 
user interacts with a system and how a system interacts with external systems should be 
limited and considered early in the design phase. Mitigating these risks can sometimes require 
business flow changes. 

2.5. Leaking Sensitive Information to Unauthorized Callers 

Unintentionally leaking business data via APIs is closely related to missing, incorrect, or 
insufficient authorization (see Sec. 2.2). While correct and robust authorization should mitigate 
this risk, sensitive data can still be leaked from APIs via side channels. The two most common 
side channels exploited by attackers are response codes and error information, and common 
risks include:  

• Enumeration of the resources (e.g., users, objects) in a system: This can have secondary 
impacts on the business, like revealing the customer set, information about product 
inventory, or the identity of employees in an organization. A common method of 
enumeration is enabled by services responding with “Not Found” status codes instead 
of “Permission Denied,” allowing an attacker to distinguish between resources that exist 
(403) and those that do not (404).  

• Revealing information about the internal implementation of the infrastructure to 
attackers: While security through obscurity is no security at all, it is still prudent to make 
it as hard as possible for attackers to discover an infrastructure’s fine-grained specifics, 
which are often included in error messages (e.g., the exact versions of common 
software being run, internal names of systems for future pivot attacks). 

2.6. Insufficient Verification of Input Data 

Trusting unverified inputs is one of a major class of recurring security bugs in software. There 
are at least two levels of verification that APIs need to consider:  
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• Validating that the input is syntactically correct 

• Ensuring that valid input is not malicious 

2.6.1. Input Validation 

A service must validate that each request (i.e., input) matches the API’s definition, all expected 
fields are present and of the correct type, and no unexpected fields are present. For example, 
an API definition may say, “The ‘name’ field is required and must be a non-empty string less 
than 100 characters long,” which must be verified at runtime on every request. 

The lack of input validation results in a variety of risks, including:  

• Impacting the availability of APIs  

o The “query of death” (QoD) [24] is a DoS attack via specially crafted requests 
that trigger pathological worst-case behavior in the server (i.e., the server itself 
may crash due to bad input handling).  

• Invalid or malicious data being stored in the system, which can cause latent issues (e.g., 
failure to restart during recovery, crashes when accessing invalid records)  

• Unanticipated error handling during request processing, which leaks internal 
information 

2.6.2. Malicious Input Protection 

While the input may satisfy “syntactic” validation, it also needs to be verified as non-malicious 
before it is used. Malicious input is any input that is syntactically valid but attempts to get the 
system to misbehave, potentially in a way that can be exploited to trigger an attack. Extending 
the “name” example above, a caller may send a request that contains a name field with a string 
less than 100 characters (i.e., valid), but that string may be a Structured Query Language (SQL) 
injection attack. Common risks include:  

• Data leaks, which may lead to regulatory fines (General Data Protection Regulation 
(GDPR), California Consumer Privacy Act (CCPA)) or corruption (e.g., a SQL injection 
attack [7]) 

• Unanticipated or unrestricted resource utilization (e.g., an attacker automates account 
creation and uploads multi-gigabyte “profile pictures” to each account) 

• Exposing a surface that attackers can use to pivot within the infrastructure or leverage 
to mount further attacks on others (e.g., by allowing servers to be used for server-side 
request forgery [SSRF])  

• Cost amplification attacks, like the “billion laughs attack” (XML expansion) [10] or “zip 
bombs” (zip archive expansion) [11]  
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2.7. Credential Canonicalization: Preparatory Step for Controls  

A common problem at the API gateway is handling the many different credentials that clients 
use to call APIs. For example, mobile apps use a certificate, clients use an API key and expect 
HTTPS, internal users may use JWTs, internal applications expect an mTLS connection with a 
SPIFFE identity, and others use HTTPS and a Kerberos ticket. All of them also need to convey the 
user’s credential (e.g., OAuth Bearer token, a custom JWT, some trusted internal header). The 
combination is immense and challenging for application developers to perform correctly. As a 
result, organizations may only perform authentication and authorization at the edge via the API 
gateway. A solution to this problem is to standardize the credentials that an application sees at 
the API gateway — that is, to canonicalize them.  

2.7.1. Gateways Straddle Boundaries  

A gateway is something in an infrastructure that straddles a boundary and is typically the only 
way for traffic to cross that boundary. One of the most important policies that the API gateway 
enforces is authentication, ideally of both the user and the calling service.  

Identity-based segmentation states that every server should authenticate and authorize both 
the calling service and the end user of every request and that those policies should be enforced 
at every hop in the infrastructure [6]. However, changing legacy systems to support new 
identities is often not possible. The challenge lies in implementing identity-based segmentation 
and support for both service and user identities without impacting other parts of the 
infrastructure.  

API gateways can be used to draw a boundary around the parts of an infrastructure that 
perform identity-based segmentation. Within that boundary, all applications expect a standard 
set of credentials (e.g., user identity via a JWT in a specific header and service identity via a 
SPIFFE X.509 certificate). Common policies, practices, and tooling can then be used to ensure 
that all applications perform authentication and authorization correctly. Legacy schemes may 
continue to be used outside of the boundary. To reach inside, traffic must traverse a gateway 
that can canonicalize the incoming request’s credentials into the expected form.  

2.7.2. Requests With a Service Identity But No User Identity  

Consider a batch job that runs nightly and touches data for many users. This is a risk because it 
requires special casing by the applications. For some service identities, end-user authorization is 
not required, but for all others, it is required. Any special casing increases the opportunity for 
incorrect or insufficient authorization.  

The solution is to adopt service accounts that represent some system in a user identity domain. 
That service account can be for an internal system and, therefore, have permission to act on 
the data of many other users, or it can be for a user’s applications with correspondingly fewer 
permissions. The API gateway can mediate with the user authentication system to exchange the 
service’s runtime identity for a service account credential that represents the service in the user 
identity domain and attach that service account credential as the end-user credential to 
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requests that it forwards into the part of the infrastructure that supports identity-based 
segmentation.  

Applications that perform identity-based segmentation will need to configure a policy for that 
service account user so that it can act on all of the data that the batch job previously used its 
service identity to access. At the same time, the application can remove any support for special 
data access without an end-user credential. Finally, the existing infrastructure can be leveraged 
to audit and manage both user and service access to data.  

An implication of this is that all applications that attempt to implement identity-based 
segmentation without a user identity should adopt service accounts by changing their 
application code. This will simplify future migration into the identity segmentation domain and 
make the system more secure overall.  

2.7.3. Requests With a User Identity But No Service Identity  

Consider a cloud-provider API gateway that receives user traffic, terminates TLS, performs end-
user authentication, and forwards requests to the infrastructure. The gateway enforces 
authentication, so some user credential is present. However, unless special care has been taken 
to communicate the service identity (e.g., via an API key or service account JWT), most notions 
of the calling workload will be lost at the external gateway provider.  

Depending on the specifics of the setup, the only option may be to configure service identity-
level policy via the external API gateway’s controls and then implement fine-grained service-to-
service policy for how requests can flow from that external gateway into the infrastructure. In 
other cases, the external gateway can be configured to pass some notion of the external 
workload (e.g., forwarding the client’s certificate as a header) and then use that to create some 
canonical workload credential for internal communication (e.g., forwarding the client’s 
certificate and creating a JWT that represents the external service identity from the certificate’s 
common name).  



NIST SP 800-228    Guidelines for API Protection 
June 2025   for Cloud-Native Systems

                                                                                                                                                                                                        

14 
 

 
Fig. 4. Handling API calls with user identity but no service identity 

However, the gateway’s service identity is already in place between the gateway and the first 
service that performs identity-based segmentation. For that first hop, three identities need to 
be handled on the request: the gateway’s service identity, the service identity of the external 
service, and the end user’s identity. As before, external service authorization can be performed 
via the gateway and simply drop the external service identity. Services should support 
validating both the end user and a workload identity via metadata from the request in addition 
to validating workload identity via the transport (e.g., mTLS certificates).  

For example, suppose that an organization A) uses a SPIFFE X.509 identity via mutual TLS for 
service identity as a service mesh does, B) uses a JWT bearer token for user identity, and C) 
chooses to represent an external service identity as a JWT token attached to the request. The 
mesh can then enforce that the gateway forward traffic to the service via (A), authenticate the 
service JWT and authorize the external service (C), and authenticate the end user (B) before 
forwarding a request to the application. This would fully support authenticating and authorizing 
all of the communicating parties, and the service in question would not need to be aware of the 
external service identity or credential.  This is accomplished by Gateway bridging two identity 
domains (Kerberos and SPIFFE as shown in Fig.4). Gateways act as a policy enforcement point 
where we can "canonicalize" incoming credentials (e.g. a Kerberos ticket) into a standard form 
expected by internal systems (e.g. a SPIFFE Verifiable Identity Document -- "SVID"). The 
Gateways would simply need to manage a policy of “allowed external service callers” alongside 
their set of “allowed internal service callers.”  

2.7.4. Requests With Both User and Service Identities  

In the best case, the legacy systems in question are already doing nearly the right thing in that 
they have both an end user and a service identity attached to requests. However, legacy system 
credentials likely do not fully conform to the credentials expected by the parts of the system 
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that implement identity-based segmentation. In that case, those other credentials will need to 
be translated into the canonical form expected by services that perform identity-based 
segmentation in the infrastructure. Essentially, the user’s authenticated credential should be 
exchanged with an identity provider for the canonical form expected by the identity-based 
segmentation portion of the infrastructure (e.g., a JWT bearer token), and the external service’s 
identity should be represented to the internal system as a token so that the policy can be 
enforced on all three identities in the first hop.  

2.7.5. Reaching Out to Other Systems  

A similar problem presents itself in reverse when a service that performs identity-based 
segmentation needs to reach out to legacy systems that expect legacy credentials. One option 
is to integrate modern applications with legacy credential systems so that those applications 
can fetch the legacy credential they need, which can significantly delay the sunsetting of those 
legacy systems. A better option is to perform a credential exchange on traffic leaving the 
identity-based segmentation subset of the infrastructure.  

For example, an external SaaS API may expect a cloud provider service account as credentials. 
An egress gateway can be deployed to authenticate and authorize credentials that are used 
inside of the organization (i.e., identity-based segmentation) and exchange the internal 
identities for the external identities that are needed by the other system. In this way, services 
that perform modern identity-based segmentation can integrate with legacy systems with little 
impact and minimize any code dependencies on those legacy systems.  

2.7.6. Mitigating the Confused Deputy  

A 'confused deputy' is a type of privilege escalation where a privileged entity (the 'deputy') is 
tricked into using its authority on behalf of another, less privileged entity. One of the biggest 
risks in any scheme that involves credential exchange is a confused deputy [25], where one 
caller can trick the “deputy” responsible for handling credentials into using credentials that 
belong to another caller on its behalf, most often to escalate privileges. Any system that 
brokers multiple credentials needs more and better authentication and authorization before 
allowing credentials to be accessed.  

An alternative approach is to break down the deputy into separate entities that hold only a 
single credential and map closely to a single application or service. This is the core idea behind 
the service mesh’s sidecar presenting a service identity on behalf of the application: because 
the sidecar is one-to-one with a service instance, a service’s identity cannot be confused for 
another at runtime. This same idea can be applied to API and egress gateways. Deploying them 
granularly — ideally per application — can minimize or eliminate any mixing of credentials, 
thereby mitigating any risk of a confused deputy. Section 4 discusses API gateway deployment 
patterns at length.  
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2.7.7. Identity Canonicalization  

Canonicalizing credentials is really canonicalizing the identity domains for which one needs to 
write policy. Integrating identity providers to standardize credentials at the gateway inherently 
brings those identities into two identity domains: one for users and one for workloads. This 
allows for concise and consistent sets of policy that govern access to other services and user 
access to data. Having both policies in place implements identity-based segmentation and 
dramatically improves security posture.  

 
Fig. 5. Identity canonicalization for handling API calls 

For most organizations, implementing credential canonicalization will require either adopting 
an identity provider wholesale and standardizing on that throughout (including working out 
legacy integration so that legacy credentials can be used to get credentials via the new 
provider) or performing identity exchanges, as described in this section. The API gateway is 
ideally situated to enforce either choice. Performing identity exchanges also requires a mapping 
of identities across domains as well as a “token server,” which uses that mapping to mint 
credentials. Fig.5 shows a Token Server that is a natural extension to the idea of canonicalizing 
credentials as they enter the system's boundary at the Gateway: rather than managing policy 
pair-wise for each potential type of credential that a Gateway may have to handle, we 
specialize and centralize that logic into a broker -- the Token Server -- that is responsible for 
mapping different types of identity tokens to (and from) the canonical credential the system 
expects (e.g. an SVID). An Egress Gateway (or the API Gateway itself) can also leverage such a 
token server to handle mapping from "internal" credentials (an SVID) to "external" credentials 
on behalf of an application (e.g. a Kerberos ticket or OAuth Bearer token). 
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3. Recommended Controls for APIs 

In their earliest form, controls for APIs focused primarily on encryption in transit while 
delegating most other concerns to the application. Over time, a variety of challenges have 
emerged that necessitate the evolution of controls, including: 

• The distributed nature of modern enterprise applications, which span multiple on-
premises and cloud environments and communicate over the network using APIs  

• The requirement to build robust systems that work around transient failures and handle 
large volumes of traffic 

• An increasingly interconnected API with substantial system logic driven by business 
needs to integrate more deeply with partners and expose richer functionality to users 

• Increasingly sophisticated attackers who have moved up the stack from low-level 
exploits and DoS attacks to application-level attacks that leverage the APIs that systems 
use to function 

Controls for APIs should address all of the APIs in the organization, including those exposed to 
end users, those exposed to partners, and those that are only intended for internal 
consumption. This document’s controls are structured into two primary sections based on the 
iterative API life cycle (see Sec. 1.2):   

1. Pre-runtime protections, which should be applied during design, development, and 
testing. These include:  

a. Creating a well-defined specification for the API’s contract using some interface 
definition language (IDL) (e.g., OpenAPI, gRPC, Thrift)  

b. Defining request and response schemas as part of that API specification 

c. Defining valid ranges of values for fields of each request and response 

d. Tagging the semantic type of each field of each request and response  

e. Creating and maintaining an inventory of these API specifications across the 
organization, including ownership information 

2. Runtime protections, which should be applied to each request and response to the API 
at runtime. These include: 

a. Encryption in transit  

b. End-user authentication and authorization  

c. Service-to-service authentication and authorization  

d. Request and response validation  

e. Resource consumption mitigations, including rate limiting, timeouts, and circuit 
breaking 
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f. Telemetry (e.g., logging and monitoring) to assess enforcement and detect 
attacks with minimum log data fields that include a timestamp, client ID, 
request/response status, and endpoint identifier 

Within each section, the controls are grouped into “basic” and “advanced” categories:  

• Basic protections should be pursued immediately with the goal of obtaining basic insight 
into the APIs that exist in an organization (Identify in NIST Cybersecurity Framework 
(CSF) [12]) and can be used to implement essential best practice controls (Protect). 
Generally, basic protections do not require deep introspection of the API’s request and 
response payloads but operate at the connection or request metadata level (i.e., on 
HTTP headers rather than the HTTP body).  

• Advanced protections perform deeper analysis on requests and responses. Many of 
these policies require payload inspection, which is CPU- and latency-intensive. The goal 
is to enhance basic Protection and begin to cover the Detect and Respond functions in 
NIST CSF [12]. Addressing these concurrently with basic controls is recommended, but 
the basic protections may provide the most benefit for resource-constrained 
organizations.  

All organizations should move immediately to act on basic controls, while advanced controls 
should be evaluated by the organization and applied to APIs based on risk profile. 

3.1. Pre-Runtime Protections 

All API controls must be well-defined and inventoried. 

3.1.1. Basic Pre-Runtime Protections 

REC-API-1: All APIs must have a specification in the form of a document that describes what 
endpoints the API exposes (“API spec” for short). To begin, the API spec can be a literal 
document, a set of internal wiki pages maintained by a team, or something similar. However, it 
should eventually migrate to a state-of-the-art IDL. 

REC-API-2: API specifications should use a well-defined IDL (e.g., OpenAPI for HTTP/REST, gRPC 
for protobuf, Thrift, SOAP for XML).  

• REC-API-2-1: API specs and implementations should conform to industry best practices 
(e.g., a Create-Read-Update-Delete [CRUD] API exposed as HTTP/REST should map the 
CRUD endpoints to the HTTP verbs POST, GET, PUT, and DELETE, respectively) for 
consistency [13]. For operations that do not cleanly map to CRUD, guidance should be 
provided to maintain consistency and avoid misuse of HTTP verbs. 

REC-API-3: Request and response schema for each endpoint should be defined by the API 
specification, including validation guidelines for the values of each field of the request and 
response (e.g., “the name field is a string and must be shorter than 100 characters”). Additional 
information makes integration easier and less error-prone for clients and presents the 
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opportunity for automated enforcement, such as the maximum latency (e.g., “the server will 
drop requests that take longer than 5 seconds to process”) and rate limits (e.g., “by default, 5 
calls per minute are allowed”). 

REC-API-4: Establish a centralized API governance framework. The framework should 
incorporate the following functions at a minimum: 

• REC-API-4.1: A centralized API platform team model should be created in which a central 
team provides a self-service platform for application teams to build APIs 

• REC-API-4.2: Organizational API inventory of all internal (including shadow and Zombie 
APIs) and external APIs should be maintained. This is in line with the Identify directive of 
the CSF [12]. The documentation requirements for the inventory should include: 

o Each API’s specification, though the inventory does not need to be the API 
documentation  

o Ownership information about the API to simplify the translation of runtime 
problems to organizational response  

o Runtime information to enable operations and security teams to understand the 
impact of each API (e.g., service instances, instance IP addresses, runtime service 
ID, traffic volume, rate of requests and errors, the status of policy enforcement) 

• REC-API-4.3: Use tools to improve visibility, such as API discovery tools and scheduled 
automated scans to detect all running APIs. 

• REC-API-4.4: Establish strategies regarding API versioning, deprecation, and sunsetting, 
including a focus on secure migration paths.  

3.1.2. Advanced Pre-Runtime Protections 

REC-API-5: Request and response validation in the schema should be included in the API’s 
specification (e.g., a string field must be non-empty and shorter than 255 characters, or an 
integer value must be non-negative and less than 2 million). This simplifies documentation and 
enables runtime tooling to validate request and response schema and syntax.  

• Use primitive types in API schemas to reinforce this. For example, if a value is always 
semantically positive, model it in the schema as an unsigned integer rather than a 
regular integer (e.g., protobuf’s “uint” rather than “int”). Negative values are then 
disallowed by construction without any validation needed [14].  

• This principle extends to zero or default values as well. Users (malicious or not) will 
frequently omit fields that the application expects. One approach to this is annotating 
fields as “required” or “optional” and rejecting requests with zero values for required 
fields. However, the application must handle missing optional fields. A second approach 
adopted by both Golang and protobuf/gRPC is to define “zero values” for each primitive 
type. Application code must either handle the zero value for each field or reject the 
request with a validation error. 
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REC-API-6: Annotate each field as public or internal for each request and response or with the 
level of trust or permission required for access. These annotations simplify documentation and 
enable runtime tooling to remove trusted data for untrusted callers as a cross-cutting policy 
rather than something that must be built into the business logic of each service. An in-
application approach is much harder to implement correctly and to audit in practice. 

• REC-API-6.1: Annotate endpoints and fields with required permissions to enable the use 
of tooling to automate fine-grained per-field authorization checks. Those authorization 
checks could then be performed by the API serving infrastructure on behalf of the 
application or via a common library in the application with standard logging and metrics 
to facilitate easy audits and ensure continuous enforcement. Once the annotations are 
present, a variety of runtime implementations are possible. 

REC-API-7: Annotate each field with its semantic type to indicate fields that contain sensitive 
information, such as personally identifiable information (PII), protected health information 
(PHI), or payment card information (PCI). This enables runtime systems to track data flow 
through the system, trigger alerting, and apply cross-cutting policy to ensure that data does not 
leak across inappropriate boundaries. 

REC-API-8: Include runtime information in the API inventory with ownership (REC-API-4). This 
becomes substantially more valuable when annotated with runtime information (e.g., service 
instances and their IP addresses, runtime identities of the service instances, metrics or health 
information for the service, runtime metrics for traffic between services). This information can 
help security identify the blast radius of an event, operations to identify problems and root 
causes, and application teams to understand their application’s behavior. Correlating this 
information with the APIs being served makes it simple to link clients to servers as the problem 
is traced back to its root. 

• API discovery tools must be deployed during runtime and reconciliation between 
declared specifications, and live traffic must be performed as part of maintaining an 
accurate API inventory. The objective of this type of discovery and reconciliation is to 
identify differences between what is deployed and what should be deployed in 
production, including shadow, orphan, and zombie API endpoints.  

3.2. Runtime Protections 

For runtime protections for APIs, apply zero trust principles as a baseline, and augment them 
with additional policy on requests and their payloads. 

3.2.1. Basic Runtime Protections 

REC-API-9: All runtime communication must be encrypted, even when the API is “public data” 
or otherwise unauthenticated. This is necessary to ensure that data has not been tampered 
with (integrity) and to prevent eavesdropping (confidentiality). Details on encryption in transit 
can be found in SP 800-53, control SC-8 [15] and SP 800-207A, control ID-SEG-REC-1 [6]. Details 
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on cryptographic algorithms and key lengths can be found in SP 800-57 [16] and Federal 
Information Processing Standards (FIPS) publication 140-3 [17]. 

REC-API-10: Perform general request and response validation policies (e.g., WAF, bot detection, 
DoS mitigation) to mitigate malicious payloads and unrestricted resource consumption. These 
can and should be executed early in the API serving stack to protect other components (e.g., 
authentication system) from DoS attacks. Since these protections are general and cross-cutting, 
there is little risk of unintentionally leaking sensitive information. 

REC-API-11: Ensure the robust authentication and correct processing of authentication 
credentials.  

• REC-API-11-1: Protect against credential stuffing and other brute-force attacks: 

o Implement rate limiting and account lockouts after repeated failed login 
attempts.  

o Enforce multi-factor authentication (MFA) to prevent account takeovers.  

o Use bot detection and CAPTCHAs to prevent automated attacks.  

o Implement adaptive authentication that adjusts security controls based on login 
behavior and risk level.  

o Leverage credential screening services (e.g., Have I Been Pwned API) to detect 
compromised credentials.  

• REC-API-11-2: Authenticate the calling user and service, as described in SP 800-207A, 
controls ID-SEG-REC2 and ID-SEG-REC4 [6]. 

• There are (at minimum) two identities in every API communication: the software 
calling the API and the end user of that software. For example, it is common to use 
an API key to identify calling software and an OAuth Bearer token to identify the end 
user. This is true even if the end-user identity is an NPE (i.e., internal software calling 
other internal software should use something like a service account to identify the 
user making the requests). The service identity may contain information (e.g., the 
device being used to access the system) in addition to a token from the software 
itself (e.g., an API key).  

• REC-API-11-3: Identities (e.g., tokens) must be cryptographically verifiable and should 
not use weak signing algorithms (e.g., no JWTs with “alg: none,” weak algorithms, or 
short key lengths) or long expiration times (i.e., credentials are cycled regularly). SP 800-
57 [16] discusses the strengths of cryptographic algorithms and the necessary key 
lengths for each. Token signing keys must also be rotated periodically to prevent token 
forgery attacks. 

• REC-API-11-4: Authentication should use standard mechanisms whenever possible. For 
example, end-user authentication should use a mechanism such as OpenID Connect 
(OIDC), OAuth2, or SAML. Services should use a mechanism like SPIFFE SVIDs, JSON Web 
Tokens (JWTs), API keys, or similar. 
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• REC-API-11-5: Use opaque tokens for untrusted systems. Credential tokens commonly 
encode information about the internals of the system (e.g., minting a JWT to represent a 
user in the infrastructure that includes claims that represent the user’s capabilities in 
the system) to simply and reliably enforce authorization per hop (e.g., validate the JWT, 
and check whether it contains the “claim” that represents the permission for an API 
endpoint). These claims encode all local operations that can be performed with data 
from the request and the local application. Returning a token with these details to an 
external user may risk leaking information about the internals of the system. This is 
where the following issues become critical to the safety of the API: how permissions are 
modeled, the set of internal permissions/claims that map to a given external API 
endpoint, and information about the path that the request traverses through the 
infrastructure. 

• REC-API-11-6: Secure the storage and transmission of tokens using robust encryption 
algorithms (e.g., AES-256) during transit (e.g., TLS 1.2+). Authentication tokens should 
be sent using securing HTTP headers, not URLs. 

• REC-API-11-7: Verify signatures, and check for expiry during token validation. For 
example, when processing JWTs, the “exp” claim RFC 7519 [18] must be checked. 
Similarly, when processing an X.509 SVID, check the validity period’s “Not Before” and 
“Not After” [19].  

REC-API-12: Authorize the calling user and service for each identity on the request, including 
whether the calling software system is allowed to access the API endpoint and whether the end 
user is authorized to take the action on the resource represented by the endpoint (see SP 800-
207A [6], controls ID-SEG-REC2 and ID-SEG-REC4). 

• REC-API-12.1: Use access control models (e.g., attribute-based access control) to achieve 
fine-grained (granular) service-to-service authorization. 

• REC-API-12.2: Use standardized authorization schemes (e.g., OAuth 2.0 or JWT) for end-
user-to-resource authorization. 

• REC-API-12.3: Implement an authorization auditing tool to regularly check for missing or 
weak authorization mechanisms (see Sec. 2.2). Additionally, use unit and integration 
tests that identify exposed data to ensure that role permission assignments are 
consistent with data sensitivity levels. 

• REC-API-6 discusses annotating each request or endpoint with the permission 
required by the end user to call that endpoint on a resource. Runtime tooling can 
then be implemented to ensure that those annotations are transformed into 
runtime permission checks against the authorization system. Combined with a 
robust DevOps process to ensure that annotations are present on APIs before they 
can be deployed, there can be a high degree of assurance that the correct 
authorization is being performed at the platform level. SP 800-204B discusses using 
the service mesh to achieve this [3]. 
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REC-API-13: Validate each request and response per the API schema before it is processed by 
the business logic (e.g., ensure that the request has a “name” field that is a string and no other 
fields). This ensures that applications only receive well-formed input (called client-side 
validation) and minimizes a class of errors and data leaks due to inline validation in the business 
logic. Additionally, validate that each response from the server (called server-side validation) 
conforms to the expected response schema to help prevent a variety of data leaks, abuses, or 
mistakes. Responses after the repeated invocation of APIs are checked to ensure that 
implementation conforms to API specification. 

REC-API-14: Authenticate, authorize, then validate in that order to minimize the risk of leaking 
data to attackers, since validation messages are at especially high risk of leaking information. 
For example, rejecting a request with a validation error for using a duplicate user-supplied 
name as another user may unintentionally leak information to callers regarding the existence of 
a resource. A likely mitigation may be an underlying per-user segregation of user-provided data, 
which often requires business logic changes in the application. Generic validations (REC-API-10) 
are exceptions to this because they are not business logic-aware and do not risk leaking 
information. They can be safely implemented by the platform ahead of authentication, which is 
often desirable to help protect the authentication and authorization systems from DoS and 
other attacks. 

REC-API-15: Enforce limits on API and resource usage. API gateway teams should provide 
reasonable defaults for the organization, and application teams should be able to enforce more 
fine-grained limits in their application or leverage the platform. Those limits should include: 

• REC-API-15-1: Rate-limit all API access for all callers to ensure fair utilization across 
users, help with capacity planning, and mitigate the risk of unrestricted resource 
consumption. See REC-API-16 for recommendations on specific rate-limiting 
implementations.  

• REC-API-15-2: Apply timeouts to all requests, including the API gateway. This should be 
done at the TCP level, where connections are automatically timed out after a modest 
time (e.g., 5 minutes) rather than the operating system’s default of more than one hour 
per connection. Timeouts should also be configured at the application level. If a 
required operation should complete in five seconds as part of the API contract, set a 6-
second timeout for it. This ensures that the resources in a service do not wait for a 
response that will never arrive.  

• REC-API-15-3: Apply bandwidth and payload limits to enforce maximum request and 
response sizes. The “correct” limit is highly contextual and based on the organization 
and application (e.g., a bank will have very different expectations than a video streaming 
company). This helps avoid a variety of risks related to malicious input and DoS. 

• REC-API-15-4: Validate and limit user-supplied query parameters (e.g., amount of 
processing done, size of their response based on user input), especially in the context of 
what the system can support and what is typical for users of the system. For example:  
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o The number of elements returned per page of a paginated list API. If a typical 
user has 100 items, cap the maximum number of elements per page to 1000.  

o Time ranges in dynamic queries. If a system is intended for viewing recent 
events, and the user can provide a time range, limit that range to the last 30 days 
rather than allowing the user to query “from 1972 onward.”  

o GraphQL and similar API facade systems that support query languages over many 
APIs. Enforce limits on the queries that users can execute (i.e., approved or 
predefined queries only) and caps on the number of outbound calls that are 
allowed in the execution of a single query.  

REC-API-16: Rate limiting recommendations1

1 Appendix C provides a non-exhaustive list of potential limit types. 

 are one of the most effective tools to mitigate 
unrestricted resource consumption and can increase the attacker’s cost of many attacks that try 
to leak sensitive information via data exfiltration from API calls (e.g., scraping all chat logs from 
an organization with a script impersonating a chat client). Most organizations apply some type 
of rate limit to external traffic, but it is equally important to rate-limit internal callers. Poorly 
conceived code can unintentionally cause a DoS on an internal system. It is equally critical to 
consider the limits placed on internal software that call out to external systems (see Sec. 2.6.2). 
The following recommendations on rate-limiting configuration address common pitfalls and 
misunderstandings:  

• REC-API-16-1: Rate limits are not quotas. A quota is a usage limit on an API over an 
extended duration (e.g., per month) that is associated with a user’s payment or billing 
structure. Many organizations have “API usage tiers” that map prices to higher per-
month limits. These quotas need to be strictly enforced and are typically used to 
generate billing reports that are sent to customers. In contrast, rate limits are intended 
to protect the system from overuse and help ensure fair usage across separate, 
concurrent callers. Rate limits do not need to be exact in the way that quotas must be.   

• REC-API-16-2: Rate limits for total load provide little benefit and should be dimensioned 
by user (e.g., 83 requests per 5 minutes per user) using the source IP address or end-
user credential as the key. Rate limits without a user dimension (e.g., service can receive 
1,000 requests per 5 minutes total) are not particularly effective and allow some users 
to impact others (e.g., DoS risk). This is true even when total limits are dimensioned by 
service instance (e.g., a single instance cannot receive more than 100 requests per 5 
minutes). Circuit-breaking functions must be used to provide protective limits on 
concurrency for a service instance. More information on circuit breaking and other 
resiliency and load-shedding techniques can be found in SP 800-204A, Sec. 2.3 [2].  

• REC-API-16-3: Rate limits should be short in duration (e.g., per 60 seconds, per five 
minutes). A rate limit is defined as the number of calls allowed over a time period (e.g., 
24,000 requests per 24 hours; 1,000 requests per hour; 16.5 requests per minute). Most 
systems allow for the configuration of both the number of calls and the amount of time 
over which they are allowed. Shorter time limits allow clients to experience a few 
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intermittent failures every one or five minutes as their traffic grows organically rather 
than total failure with 24-hour limits. Additionally, the system will experience smoother 
traffic overall because a single client must pace their consumption over a longer 
duration, resulting in less load from each client at any given time.  

• REC-API-16.4: Rate limits should be defined per user, service, or network parameter 
(e.g., IP). 

• REC-API-16-5: Adopt robust threshold-setting strategies to avoid arbitrary or ineffective 
limits, such as token bucket or leaky bucket algorithms or adaptive limits based on user 
behavior or service tier. 

• REC-API-16-6: Set limits for concurrent requests. 

• REC-API-16-7: Deploy real-time monitoring tools (e.g., Open Telemetry) to detect 
sudden traffic spikes and send alerts. Set hard limits on third-party API consumption. 

REC-API-17: Fine-grained request and user blocking allows the API serving stack to block 
individual users via their end-user credential and/or network address, which enables an 
effective response during an ongoing incident (see the Respond function in the CSF [12]). The 
actual enforcement can be handled by separate components (e.g., network-level blocking 
implemented by a firewall or the load balancer; credential-level blocking implemented by the 
API gateway, bot/abuse detection systems, or the authorization system). For relevant 
information on these techniques, refer to SP 800-53, AC-3 [15] and SP 800-204B, Sec. 4.6 [3]. 

REC-API-18: API access must be monitored to ensure that the API serving stack provides 
sufficient telemetry to assess the availability of APIs and ensure that policies are being 
enforced. The traditional triad of logging, metrics, and distributed traces is recommended. All 
three should be tagged with information about the API being accessed in addition to the 
runtime service so that service calls can be traced back to APIs. For the API gateway itself, a 
range of signals should be produced to enable the identification of:  

• Basic communication information, like the information included in the Common Log 
Format [20] (e.g., who called, what method, from what origin)  

• Health (e.g., rate of requests, rate of errors, latency) per API and API endpoint  

• Enforcement results per policy class (e.g., requests allowed or denied due to missing or 
incorrect authentication or authorization checks, requests blocked due to rate limiting) 
to assess the aggregate enforcement of each policy  

• The health of the services behind the API gateway  

Fine-grained blocking by network addresses and user credentials (REC-API-17) that are 
augmented with blocking based on monitored data (REC-API-18) (e.g., payload pattern or 
anomaly score) is essential for real-time incident response and containment, especially for APIs 
that handle sensitive data. General information on audit and logging controls can be found in 
SP 800-53 [15], AU-2 Event Logging, AU-3 Content of Audit Records, and AU-12 Audit Record 
Generation. Information on service mesh telemetry, which can be used for audit and logging, 
can be found in SP 800-204A [2], SM-DR21 through SM-DR24. 
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3.2.2. Advanced Runtime Protections 

REC-API-19: Field-level validation using API schema annotations can be used to validate the 
values of requests and responses at runtime. This is beyond the basic syntactic validation of 
REC-API-13 (e.g., “there is a name field, and it is a string”) and more like semantic validation 
(e.g., “the name field must not be longer than 100 characters,” or “the amount field must be 
positive and less than 2 million”). This can be implemented by the API gateway as part of a 
cross-cutting policy. An API spec is required (REC-API-2) and should be in a central inventory 
(REC-API-4). The API gateway team can then enforce the validation of all requests traversing an 
API gateway. This reduces the risks of insufficient input verification and leaking sensitive 
information compared to ad hoc, error-prone implementations in each application or standard 
implementations embedded in the application itself via SDK, which tend to be difficult to 
update. A timely update is an imperative for infrastructure that enforces security policy. The 
Controls REC-API-13 and REC-API-19 (Syntactic and Semantic Validation of API Schemas) should 
occur at every hop within the infrastructure, including internal service-to-service 
communications. This ensures that requests and responses are continuously validated, 
regardless of their origin, and helps prevent lateral movement and bypasses inside the 
environment. 

REC-API-20: Authorization and filtering using API schema annotations enforce access to 
resources and fields per caller. The API gateway itself is the policy enforcement point, and it 
defers to an authorization system to make decisions. The information from the API schema is 
enough to extract credentials from the request, identify the target endpoint and its associated 
tags/permissions, and use them to form a call to the authorization service (e.g., “is the 
request’s end user allowed to perform the endpoint’s permission on the object targeted by the 
request?”). The API gateway can then enforce the result of the call at runtime. There are at 
least three levels of assurance that can be achieved, and each build on the previous one to 
further mitigate risks at increased runtime or development-time cost:  

• REC-API-20-1: Resource-level authorization as a cross-cutting policy should be enforced 
on all requests using endpoint-level annotations that define the permissions required to 
call the endpoint (REC-API-6.1). This can be done at the platform level by leveraging the 
API gateway. When combined with a distributed gateway pattern (Sec. 4.3), this 
implements ID-SEG-REC-4 [6] at every hop.2

2 Other patterns have a wider perimeter and are susceptible to the API gateway being bypassed. Therefore, they do not satisfy ID-SEG-REC-4.  

 This also helps prevent and potentially 
eliminate missing authorizations (Sec. 2.2), depending on the organizational guardrails 
in place. For example, an organization can build an API inventory by mandating an API 
spec with endpoint-level permission annotations as part of each app’s “ticket to the 
platform” (i.e., the data that an app team needs to submit to run their application on 
the organization’s infrastructure and platform). Combined with standard patterns for 
authentication (REC-API-11), this can ensure that the correct authentication and 
authorization are performed. However, additional organizational controls are required 
to ensure that the permissions are correct and sufficient to fully mitigate the risks 
around authorization (see Sec. 2.2).  
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Achieving correct and sufficient authorization at the resource level is likely all that most 
organizations need to achieve. It mitigates the predominant risks identified by the 
OWASP API Security Top 10 [7] with respect to authorization. Moving beyond this level 
of assurance into REC-API-20.2 and REC-API-20.3 shifts the focus to mitigating the risk of 
leaking sensitive information. 

• REC-API-20-2: Field-level visibility as a cross-cutting policy can leverage basic “public” 
and “private” annotations on each field. The authorization check effectively asks 
whether data should be visible to external callers.3

3 REC-API-19.1 focuses on requests, while this control focuses on the data that an application returns to callers in responses. They are 
complementary controls.  

 These coarse-grained public/private 
annotations are particularly effective on common types that are shared across many 
APIs in the organization. For example, a standard error reporting pattern used by all APIs 
can leverage field-level annotations to differentiate user-facing errors versus developer-
facing errors to mitigate the risk of leaking sensitive information via errors. The gRPC 
Status proto [21] is an example of a consistent error reporting pattern. In the gRPC case, 
field-level annotations would reside in the message used for the status’s “details.”  

• REC-API-20-3: Field-level authorization can be leveraged as a cross-cutting policy (REC-
API-6.1). This extends the idea of REC-API-19.1 down to the level of each individual field 
of the response and allows for the filtering of API objects per use to implement 
sophisticated access control schemes.  

o While this kind of approach offers a very high level of data security, it causes a 
sharp increase in the number of policy checks that the authorization system 
must perform and requires active participation by application developers to keep 
permissions per field up to date as the application evolves. For example, a 
resource-level authorization check requires one authorization decision per 
request. A field-level authorization check requires one authorization decision for 
the request plus an additional decision for each field of the response. Even an 
object with a modest number of fields (e.g., 5) results in whole-number multiples 
more policy decisions made by the authorization system. For developers, the 
purpose and permission of an endpoint rarely change, but the fields of the 
request and response objects for that endpoint regularly evolve over time. This 
makes upkeep for permissions at the field level more expensive for application 
developers versus endpoint-level annotations (REC-API-19.1). As a result of the 
cost and load on the authorization system, this level of fine-grained checking is 
typically only used in the most high-risk situations and only by sophisticated 
organizations. 

SP 800-204B [3] discusses the advantages of using a distributed API gateway architecture when 
implementing fine-grained authorization checks. When choosing to implement these 
authorization policy checks under the centralized and hybrid patterns, care must be taken to 
ensure that the gateways are not bypassed. For example, a service-level authorization policy 
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could disallow any traffic except from the API gateway as a means of defeating an attempt to 
bypass gateway checks via pivoting inside the infrastructure. 

REC-API-21: Traffic monitoring and policy using semantic field labels can log and monitor the 
flow of sensitive data in a system. Further, the API gateway can be used as a policy 
enforcement point to control the flow of that data, potentially blocking traffic flows that transit 
significant amounts of data. Ultimately, with annotations and enforcement in place, the flow of 
sensitive data in the organization can be governed by mandatory access control (MAC) policies. 
A MAC policy is enforced by the authorization system, regardless of the user or resource in 
question. For example, a MAC policy may require PCI data to be isolated from systems that do 
not implement Payment Card Industry Data Security Standard (PCI DSS) controls to maintain 
security and prevent potential breaches. Such a MAC policy can be enforced with a combination 
of PCI-compliant services in the infrastructure and data tags on the semantic types of data that 
flow through the system. 

REC-API-22: Non-signature payload scanning for generative AI APIs analyzes request and 
response data for sensitive information that may not be a literal attack signature. Tools typically 
analyze (e.g., via regression, AI, simple matching, and word filtering) the responses returned by 
servers to score the risk that they contain sensitive information and take action to block that 
traffic. Increasingly, AI agents are being deployed to assess the risk of data generated by other 
agents. At a high level, this technique is like a web application firewall (WAF), but WAFs are 
fundamentally signature-based, while these analyses are fundamentally content-based. 

This is a general category of data egress analysis that is relevant across all APIs, but it has 
become increasingly important with the growth of generative AI. Generative agents are 
frequently trained on business-sensitive data, have insight into sensitive business operations 
and operational data, and are increasingly exposed to the organization and externally as APIs. 
Since the inception of generative AI agents, a variety of prompt injection attacks [22] have been 
created to exfiltrate data. 

Tools for performing non-signature payload inspection should be used whenever an 
organization is handling data returned by their system, especially when that data is generated 
on demand (e.g., by AI agents). In most cases outside of dynamically generated output, 
implementing simple semantic and syntactic validations (REC-API-13, REC-API-18) will typically 
provide an organization with more risk mitigation for a lower runtime and operational cost.  

• REC-API-22-1: Semantic data discovery tools are typically very good for identifying the 
type of information flowing through a system (e.g., string, email address). Building the 
inventory of APIs and adopting well-defined API schemas with meaningful annotations 
takes time. Such runtime tools are helpful for initial discovery and ensure that rollout is 
complete across all services and that services stay in compliance after the policy is rolled 
out. When it is reasonable to leverage due to compute and latency constraints, an 
organization benefits from inspecting traffic for sensitive data flow, even beyond field-
level annotations. 

API payload scanning/inspection (REC-API-22) must be extended to include behavioral analysis 
of API sessions, particularly for APIs that expose generative AI or dynamic content. 
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REC-API-23: Design error codes such that they do not provide a means for resource 
enumeration (e.g., return an error code 403 Forbidden instead of distinguishing between 
missing and unauthorized resources). 

REC-API-24: Block resource enumeration attacks through rate limiting, including anomaly 
detection. 

REC-API-25: Limit the exposure of sensitive data using data masking in responses and logs.  

REC-API-26: Fine-grained blocking for specific requests can prevent a DoS or service crash. 
These bad inputs can often trigger a cascading failure [23], but the queries may not be 
malicious in nature (e.g., users using the system in ways that it was not intended or designed 
for, such as QoD) [24]. These tools help mitigate the risks of unrestricted resource consumption 
and malicious input validation. For APIs that expose generative AI or dynamic content, the 
entire session must be blocked. Depending on the complexity of the query and environment, it 
may be possible to leverage a WAF or non-signature payload scanning tools to block some 
types of QoDs. However, application code changes may be required — sometimes even 
rearchitecting the application itself — to mitigate the impact of these kinds of queries. 

The detailed controls in this section fit into broad classes, and their association with the 
DevSecOps phases is discussed in Appendix B. This emphasizes the observation that APIs should 
be treated as any other software and go through an iterative, continuous life cycle. 
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4. Implementation Patterns and Trade-Offs for API Protections 

Regardless of the mechanism or architecture of an API and its services, the following 
capabilities are required to realize the controls outlined in this document:  

• Authentication and authorization 

• Request and response validation 

• Rate limiting 

• Circuit breaking 

• Error handling 

• Logging and monitoring 

In addition to these core capabilities for security, APIs that serve infrastructure typically deal 
with other common concerns, such as:  

• Service discovery 

• Routing 

• Protocol conversion 

• Caching 

The following components are often deployed to provide the above functionality to an API:  

1. A gateway to implement the API-oriented policy  

2. The service itself to implement the API’s business logic 

3. A method to get traffic to gateway instances (e.g., DNS and a network load balancer) to 
facilitate service discovery, load balancing, and network reachability to horizontally 
scaled instances of the gateway itself 

For example, if the gateway functionality is implemented via a Kubernetes ingress routing to a 
pod (i.e., the service instance), then callers outside of the network will require the cloud 
provider or data center network team to provision a network load balancer in front to route 
network traffic to the Kubernetes load balancer service. 
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Fig. 6. API gateway patterns 

Three patterns have been developed by industry to implement these capabilities, as shown in 
Fig. 6:  

1. Centralized gateway — Protections for all APIs in the enterprise are implemented by a 
single shared component: an API gateway. 

2. Hybrid gateway — Cross-cutting policies (e.g., authentication) are implemented in the 
centralized shared gateway, but application-specific policies (e.g., authorization) are 
implemented in the application itself or by components that are owned by the 
application team. 

3. Distributed gateway — All policy checks are performed by gateways that are dedicated 
to each application, often deployed beside each service instance. 

All three patterns can achieve all of the controls outlined in this document and be used by 
organizations to operate their APIs safely and confidently. Further, many of these patterns may 
be in use within a single organization. This section explores the engineering design trade-offs 
that each pattern provides in terms of risks and operational overhead. 

Many API gateway products provide management capabilities, such as API key issuance, 
discovery documentation (i.e., API definition) hosting, documentation for client developers, and 
support for quotas and billing tiers. These are all valuable features in the enterprise setting, but 
all of them can be supported across any implementation pattern and are therefore not 
addressed in this section. 
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4.1. Centralized API Gateway 

The centralized API gateway pattern implements protections for all APIs with a single 
component (i.e., the API gateway) that is often deployed close to the perimeter of the system. 
External traffic enters through the gateway, typically via a load balancer. Internal traffic 
“hairpins” through the gateway as well, which facilitates service-to-service communication 
inside the infrastructure. That internal, service-to-service traffic may also have to traverse the 
load balancer for some service instances. Fig. 7 shows a common configuration for a centralized 
API gateway pattern. 

  

Fig. 7. Centralized API gateway pattern 

An API gateway is typically a software application that can be scaled horizontally (i.e., more 
instances can be deployed side by side). This is one of the reasons why an API gateway often 
sits behind a load balancer, even for internal service-to-service traffic use cases. Advantages of 
this pattern include:  

• A single policy enforcement point that is easy to monitor and audit, making it simple to 
verify that policy is enforced for all traffic that traverses the gateway. 

• Implementation that matches the organizational structure. Typically, large organizations 
have a single API team that owns the centralized gateway component and is responsible 
for when an API is available, which API endpoints are failing, whether policies are being 
enforced, whether the configuration is up to date, and other issues. 
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• Streamlined setup for application developers who need to “onboard” their API but do 
not need to deploy or maintain any additional runtime components.  

Disadvantages of this pattern include: 

• Shared fate outages. Because there is a single component, an outage of that component 
causes an outage for all APIs, which can be problematic for mission-critical APIs that 
need to operate continuously. 

• Noisy neighbors, where traffic consumes resources for some APIs and increases latency 
for all APIs. In the worst case, one application team may submit invalid configuration 
parameters for a service that may crash or cause a DoS on the API gateway, triggering a 
shared fate outage for other APIs. 

• Long change lead times due to managing how the changes to an individual team’s API 
configuration impact the shared gateway. This is a frequent side effect of controls that 
are added to mitigate shared fate outages and noisy neighbors. 

• Cost attribution. All requests are handled by the central gateways, and resources spent 
per request per API (e.g., on payload validation) are uneven. Therefore, it can be difficult 
to attribute API gateway runtime costs to internal application teams. This can be a 
problem for companies that implement an internal resource economy for planning by 
assigning cost centers for each application team. 

• Caching the results of policy decisions at runtime becomes critical when implementing 
the policies outlined in these guidelines due to the sheer number of policy checks 
required. Caching both increases client-perceived availability and reduces the load on 
key systems, like authentication and authorization. However, two layers of load 
balancing (i.e., network load balancer to API gateway and API gateway to service 
instance) tend to result in poor cache hit rates across policies enforced by the API 
gateway and for user data in the application layer itself. While some techniques can 
mitigate this (e.g., distributed caches or streaming connections), they generally add 
additional development or operational overhead for the application team, API gateway 
team, or both. 

• Because a shared gateway is located at the perimeter, it can be bypassed (e.g., via an 
attacker pivoting inside the perimeter), which in turn bypasses the policy checks that are 
enforced by that gateway. This can be mitigated with techniques like service-to-service 
access policies that ensure that applications only receive traffic via the centralized 
gateway or by attaching proofs (i.e., credentials) to the request that allow an application 
to authenticate that the request was handled by the gateway. 

4.2. Hybrid Deployments 

Hybrid gateway deployments split policy enforcement responsibilities between a centralized 
gateway and the applications themselves. Cross-cutting policies (e.g., authentication, service 
discovery, routing, rate limiting, caching) are handled by the centralized gateway. Application-
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specific policies (e.g., authorization, request and response validation, protocol conversion, error 
handling, logging, monitoring) are handled by the application team. This can manifest in the 
application itself (e.g., gRPC) or as a separate deployment that handles traffic before the 
application (e.g., GraphQL, Spring Cloud Gateway). As with the centralized pattern, all internal 
and external traffic between applications must first go through the centralized gateway and, in 
some instances, through the load balancer. Fig. 8 shows the schematic diagram of a Hybrid 
gateway pattern. 

 
Fig. 8.  Hybrid gateway pattern 

Overall, this pattern behaves similarly to the centralized API gateway pattern, except that some 
of the most failure-prone parts of the centralized pattern are delegated to the application 
teams. This streamlines API gateway operations and enables app teams to move at their own 
pace. However, it also shifts the responsibility for some runtime operational and security 
concerns from the API gateway team to those application teams. The exact split of these 
responsibilities (e.g., sidecar in a service mesh architecture) can vary greatly across different 
organizations based on their risk profiles and past experiences. Typically, the gateway takes 
responsibility for: 

• Authentication 
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• Rate limiting 

• Circuit breaking 

• Service discovery 

• Routing 

• Caching 

• Network-level load balancing 

The application or dedicated gateway is responsible for:  

• Authorization 

• Request/response validation 

• Protocol conversion 

• Error handling 

• Application-instance load balancing 

Both are responsible for logging and monitoring to enable visibility into the state of the system 
and to ensure that policies are being enforced at runtime. 

There are similar advantages as the centralized gateway pattern that also include: 

• Mitigation of most shared-fate outages and noisy neighbors by moving the most error-
prone processing (e.g., request validation) out of the shared gateway and delegating to 
the application or dedicated gateway. 

• Increased iteration speed due to the ability to update configurations with less process 
overhead and quicken the time involved. This is possible due to the reduced risk of a 
shared fate outage. 

Disadvantages include:  

• The enforcement of policies is split across the API gateway and many service instances, 
which makes it more challenging to ensure that the policy is being enforced consistently 
and correctly. 

• There is increased operational burden on application teams compared to the centralized 
API gateway pattern, as they are now responsible for ensuring that some policies are 
enforced in their application. 

• Not all classes of shared fate outages and noisy neighbors can be eliminated because 
the shared central gateway is doing at least some application layer processing. 

• Cost attribution is significantly improved compared to the centralized pattern because 
the most expensive runtime policies are implemented by the application teams. 
However, the centralized gateway can still be very expensive to operate at high scales 
and is as difficult to attribute costs as in the centralized pattern. 
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• Caching hit rates also suffer similarly to the centralized pattern for the same reasons. 

• Bypassability/pivot – the module that enforces policies may be bypassed 

4.3. Distributed Gateway Pattern 

In a distributed approach, the gateway is directly associated with the application, which is 
owned by a single team. This ensures that changes are isolated to services owned by that team 
and that the potential for shared fate outages does not arise. Changes to each gateway are 
“safe” from the organization’s perspective: a bad change will not cause additional problems for 
other teams, and the team that caused the outage to occur can fix the problem. 

External traffic must still enter through a load balancer (see Fig. 9), which does not enforce any 
policy and only performs routing. Internal traffic may use the same load balancer but may be 
routed directly peer-to-peer, removing the central gateway from internal traffic as desired, 
since enforcement of policy happens at the service instance. 

This leaves two key challenges that the implementation must address: 

1. Ensuring that the remaining shared configuration (i.e., the load balancer) is safe for each 
team’s changes 

2. Ensuring that both cross-cutting and application-specific policies are enforced 
consistently across the organization 

Keeping the load balancer’s configuration safe is a universal problem across all three 
implementations. However, it is most acute in the distributed pattern because the load 
balancer must cope with configuration for many applications, while only the API gateway’s 
configuration needs to be present in the other patterns. Regardless of implementation pattern, 
this is most often handled at the business process level. Organizations decide on a fixed naming 
scheme that is enforced by the continuous integration and continuous delivery (CI/CD) process 
or is otherwise hidden by the organization’s platform (e.g., subdomains-per-service, such as 
foo.api.example.com and bar.api.example.com; paths-per-service, such as 
api.example.com/v1/foo and api.example.com/v2/bar). 

The challenge of a cross-cutting policy is unique to this pattern. In recent years, it has been 
solved robustly in open source via the service mesh, which can provide a single point for policy 
management and use its proxies to enforce those policies (i.e., API protections) at each service 
instance. The service’s properties [2] and use for security [3][6] have been covered in other 
NIST guidelines. 
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Fig. 9. Distributed API gateway pattern 

The advantages of a distributed gateway pattern include:  

• All processing is done per application team (i.e., no noisy neighbors), and the risk of a 
shared fate outage is only present on the load balancer (see Fig. 10), which is a risk 
shared across all implementation patterns. 

• It has the highest rate of change for app teams because they have no external 
dependencies and little chance of causing outages for other teams. 

• A cross-cutting policy can be managed by the central API gateway team via the 
gateway’s control plane (e.g., with the service mesh). This pattern can be adopted 
harmoniously in a mixed environment, where some APIs are implemented via any of the 
three patterns in a single organization. 

• Cost attribution is straightforward and no more or less challenging than attributing any 
compute resource spent by teams in the organization. 

• Cache locality is typically better than in the other patterns because there is only a single 
layer of load balancing, and the gateway is co-located with the application. This means 
that gateway policy checks for a given user are cached alongside the application 
instance that caches business logic data for that user. However, if a user’s request is 
load-balanced across multiple service instances, then duplicate policy checks have to be 
performed that would not be required in the other patterns. 
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Fig. 10. Service-to-service traffic flows in distributed API gateway pattern 

Disadvantages include: 

• Because the policy is checked and easily cached per application instance, there can be 
many more policy checks in the system overall. Any time a user’s request is load-
balanced to a new service instance, it is highly likely that a new policy check has to be 
performed. This is an inherent problem in any zero-trust system, which pushes 
enforcement to the application instance and likely necessitates the adoption of a 
distributed cache that is managed alongside or as part of the API-serving infrastructure. 

• The pattern puts the most burden on application teams. Those teams have to interact 
with the team managing the load balancer for each API they expose and need to 
operate at least some of the API-serving infrastructure (e.g., making sure that they have 
a gateway deployed and routing). Technology like a service mesh can help simplify this, 
but a burden remains. 

• Auditing and verifying policy enforcement can be challenging as enforcement is 
distributed across all application instances. A robust, distributed gateway 
implementation (e.g., a service mesh) can help mitigate this via centralized 
configuration control combined with distributed enforcement and consistent telemetry. 
If an organization can audit and verify a hybrid gateway pattern, a distributed gateway 
pattern can be supported with little additional effort. 

4.4. Related Technologies 

Other technologies fit in and overlap with simplified API gateway patterns and architectures. 
Notable companion technologies include: 

• Web application firewalls (WAFs) 

• Bot detection 

• DoS and distributed denial of service (DDoS) mitigation 
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• API endpoint protection 

• Web application and API protection (WAAP) 

4.4.1. Web Application Firewalls 

WAFs mitigate risks related to a request’s metadata and payload without needing the 
application to be involved. In other words, they can be treated as a cross-cutting policy and 
managed by a central team. WAFs work at the application level and operate on parsed HTTP 
requests (i.e., they can implement policy per header and on request bodies). However, WAFs 
generally do not work at the API level. A WAF can scan a request for a payload that looks like a 
SQL injection attack, but it cannot assert, for example, that a request has a “name” field that is 
a string less than 100 characters long. As such, a WAF is an excellent first step for organizations 
to implement the policies outlined in this document, but it is not a complete solution. 

The Open Worldwide Application Security Project (OWASP) publishes research on 
vulnerabilities based on data from its partners [7] as well as a generic set of WAF rules — the 
Core Rule Set (CRS) [25] — that aim to mitigate many common attacks. The CRS should be 
treated as a starting point for any organization’s WAF policy. Deploying a WAF with at least the 
CRS enabled helps mitigate risks, including malicious inputs (see Sec. 2.6.2), unrestricted 
resource consumption (see Sec. 2.4), and the leaking of sensitive information (see Sec. 2.5). 

There are two primary downsides with WAFs: 

1. WAFs are relatively expensive to run in terms of both latency and compute. They need 
to parse every request, perform a variety of scans to identify attack signatures (the 
number of scans depends on the policy configured), and either block or forward the 
request. While this overlaps heavily with the functionality of an API gateway, a WAF is 
typically deployed and operated by a separate team in isolation from the API gateway, 
often as part of the load balancer. This is convenient because the load balancer is the 
first place where requests are decrypted in the infrastructure. A secondary consequence 
is that WAF policies are typically only enforced at the perimeter. 

2. WAFs are fundamentally reactive. They operate based on matching requests to known 
attack signatures. As a result, they are largely ineffective at mitigating novel attacks, and 
attackers can leverage a variety of obfuscation techniques to hide known attacks behind 
novel signatures. Care must be taken to ensure that the WAF is running with the latest 
attack signature configurations, and custom rules must often be written for the 
organization. 

In line with a zero trust posture, WAF policies should be enforced as close to the application as 
possible. This helps mitigate a variety of mechanisms that attackers might use to pivot within or 
otherwise compromise an infrastructure. As a practical matter, it can be cost-prohibitive to run 
a full suite of WAF mitigations on every internal and external request. This cost can be 
mitigated in two ways, which can be combined:  
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1. Incorporate the WAF as part of the overall API-serving infrastructure, deploy the WAF 
itself in a hybrid model (i.e., keep a centralized WAF at the load balancer with a full suite 
of policies to protect against untrusted traffic), and enforce a minimum set of app-
specific WAF policies near each of the applications (e.g., in the distributed gateway). 
This minimizes policies run on east-west (i.e., generally assumed to be trusted) traffic 
while still sanitizing less trusted external traffic and tends to result in a good 
compromise of risk versus cost. 

2. Deploy the WAF as part of the API gateway implementation itself, which can avoid 
parsing the request multiple times (i.e., reduce the latency and compute costs of WAF 
policies), regardless of the API-serving implementation pattern chosen. If the API 
gateway is hybrid or distributed, then this technique can also be incorporated for 
further performance improvement. 

4.4.2. Bot Detection 

Bot detection typically involves evaluating risk signals, including origin (e.g., source IP, user 
credentials) and API usage patterns, over time to determine whether a seemingly legitimate 
user is likely to be a bot (i.e., an automated script acting maliciously). In response to flagging a 
high-risk user, bot detection systems will either block traffic or serve some kind of bot-
defeating measure (e.g., CAPTCHA) before allowing the system to continue to be used. These 
tools primarily mitigate the risks of unrestricted resource access (see Sec. 2.4) (e.g., maliciously 
automating account creation in an email system) and leaking sensitive information (see Sec. 
2.5), especially data exfiltration by repeated calls. 

Bot detection is frequently deployed in user-facing applications. It can be more challenging with 
a purely machine-to-machine API because legitimate and malicious traffic patterns are even 
harder to differentiate. Many APIs are intended for use by scripts or non-user-facing 
applications, so human versus computer checks are irrelevant. 

4.4.3. Distributed Denial of Service (DDoS) Mitigation 

A DDoS attack is a DoS that originates from many different locations or users. This makes it 
more challenging to mitigate than a traditional DoS attack, which can often be prevented by 
blocking a small set of users. While DoS attacks may be targeted and application-level, DDoS 
attacks are often network-oriented in nature and seek to saturate the server’s bandwidth or 
ability to establish new connections. Because of the primarily network-oriented nature of DDoS 
attacks, most DDoS mitigation tools are deployed at the network edge as part of the load 
balancer or even before the load balancer as part of the CDN and DNS system (often called 
“Global Traffic Management”). Predictably, DDoS mitigation tools help mitigate unrestricted 
resource consumption (see Sec. 2.4). 
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4.4.4. API Endpoint Protection 

“API protection” or “API endpoint protection” are nebulous terms for describing a set of 
capabilities around API inventory, authentication, rate limiting, and data analysis. The exact set 
of capabilities tends to vary with the implementation. For example, sophisticated 
implementations can scan requests and responses to tag suspect data on the wire (e.g., to help 
tag sensitive data and pinpoint possible leaks or exfiltration). 

API protection products are typically packaged with the API gateway. API gateway vendors 
primarily deliver their products in the centralized API gateway pattern, so these controls are 
often only enforced at the perimeter. Like a WAF, the policies they enforce are typically cross-
cutting and do not require an in-depth understanding at the API payload level. As such, the two 
products are often marketed in a similar niche. The exact set of risks mitigated by these tools 
depends on the feature set, but they usually attempt to mitigate a lack of API visibility (see Sec. 
2.1), broken authentication (see Sec. 2.3), some aspects of unrestricted compute consumption 
(see Sec. 2.4), and the leaking of sensitive information (see Sec. 2.5). 

There is value in any tool that helps organizations inventory and manage their APIs and traffic. 
However, policy enforcement should be as close to the individual service instance as possible in 
order to achieve robust API security assurance. In the use case of data classification, these tools 
can be especially helpful when building an initial inventory. As API definitions are rolled out 
across the organization, data tagging should be implemented as part of the API schema, and the 
data flow policy should be enforced via explicit policy (e.g., with an authorization system). The 
runtime discovery of data flow is particularly important for protecting against exfiltration. 

4.4.5. Web Application and API Protection (WAAP) 

Gartner coined the term “web application and API protection” (WAAP) [27] to describe the 
trend of packaging these technologies (i.e., WAF, bot detection, DDoS mitigation, API 
protection) into a single product. Regardless of how the capabilities are implemented, 
organizations must understand the risks that they are trying to mitigate in the context of their 
existing security posture. 

4.5. Summary of Implementation Patterns 

Combining the three patterns in API gateway architecture with the companion technologies 
discussed Sec. 4.4 provides a comprehensive set of enterprise security solutions for API 
protection. The key point in each pattern is identifying where to enforce each policy. These 
decisions result in trade-offs in runtime, architecture, and operations for the application teams 
utilizing the API-serving infrastructure. Many organizations use a combination of all three 
patterns deployed in production precisely because of those trade-offs. While all three patterns 
can be used to successfully implement the controls outlined in this document, the distributed 
gateway pattern and its companion technologies best align with the principles of zero trust and 
are strongly recommended for organizations that want to adopt a security-forward approach. 
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5. Conclusions and Summary 

APIs are critical for integrating applications into the digital infrastructure of an enterprise. Given 
the highly distributed nature of both physical and logical applications, NIST recommends that 
APIs be operated under zero trust principles, irrespective of whether they are exposed to the 
outside world or meant to be consumed by other applications within the enterprise’s 
infrastructure. Like all software, APIs go through an iterative life cycle with phases (i.e., 
Develop, Build, Deploy, Operate) that can be broadly classified into pre-runtime and runtime 
stages. 

The sheer proliferation of API deployments, the heterogeneous infrastructures under which 
they operate, and the access to valuable corporate data that they enable make them targets for 
exploitation. A detailed analysis of their vulnerabilities and the potential attack vectors that can 
exploit them is a prerequisite for identifying the appropriate set of protection measures or 
controls to ensure API security. This document analyzes a spectrum of risk factors that give rise 
to vulnerabilities, such as the lack of a formal schema, improper inventorying, the lack of robust 
authentication and authorization support, the improper monitoring of resource consumption, 
and inadequate control over the leakage of sensitive information.  

The recommended controls in this document are classified into pre-runtime and runtime 
protections. They are further subdivided into basic and advanced protections to enable 
enterprises to use a risk-based and incremental approach to securing their digital assets. Pre-
runtime protections focus on API specification parameters (i.e., syntactic and semantic aspects), 
while runtime protections focus on API request and response operations (e.g., encrypted 
communication channels, proper authentication and authorization).  

These guidelines present a landscape of real-world and state-of-practice implementation 
options to configure and enforce the recommended controls by describing the advantages and 
disadvantages of each type of protection deployment or pattern. This will enable practitioners 
to make an informed decision to realize a robust and cost-effective API security infrastructure 
for their enterprises. 
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Appendix A. API Classification Taxonomy 

A.1. API Classification Based on Degree of Exposure 

Since APIs are interfaces that are exposed to relevant stakeholders, they should be classified 
based on their degree of exposure. Three kinds of APIs are prevalent:  

1. Open/public APIs are exposed to a broader and wider audience (i.e., customers) and 
used with external partnerships or services. These are also called “facade APIs,” as they 
may provide limited access to certain functionalities. 

2. Private APIs are used to link various systems within an enterprise and are closely 
guarded, such as a contract between microservices that are internal to an organization. 
Variations of private APIs are: 

a. Internal APIs (service APIs): Used by enterprises to streamline their internal 
workflows and create flexible systems that can adapt to changing business needs  

b. Composite APIs: Allow multiple data and service calls to be combined to realize 
efficiency in system design 

3. Partner APIs are used in the context of collaborative ventures between enterprises, as 
both rely on shared services or data to deliver value to their end users. In terms of 
exposure, they represent a middle ground between public and private APIs since access 
is restricted based on collaborative agreements.  

A.2. API Classification Based on Communication Patterns 

There are two fundamental API communication patterns that govern how information flows 
between the components involved in system interactions:  

1. Request-response APIs: A communication pattern in which a client sends a request to a 
server and awaits a corresponding response. It operates synchronously with stateless, 
independent requests. This pattern is widely employed in diverse API architectures (e.g., 
RESTful APIs, GraphQL, various web services) and is appropriate for immediate data 
retrieval or any instant action (e.g., downloading a user’s profile in a social media app). 
Requests are made with verbs that are appropriate for the API architecture (e.g., HTTP 
method GET in RESTful architecture, a structured query that specifies the exact data 
needed in GraphQL architecture).  

2. Event-driven APIs: A better choice for receiving real-time updates (e.g., user’s activities 
in the same app). 
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A.3. API Classification Based on Architectural Style or Pattern (API Types) 

Table 1. API classification based on architectural patterns 

API Name Network Protocols Supported Data/Message Formats Supported 
REST HTTP, HTTPS,FTP JSON, XML, HTML, Plaintext 
gRPC HTTP/2 Binary — Protocol Buffers 

(Protobuf) 
GraphQL HTTP – POST only JSON 
WebSocket WebSocket JSON 
SOAP HTTP, HTTPS, SMTP XML 

A.4 API Classification Based on Data Sensitivity 

There are environments where APIs must be classified based on sensitivity levels (e.g., public, 
internal, confidential, restricted) with targeted controls for each classification. 
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Appendix B. DevSecOps Phases and Associated Classes of API Controls 

The detailed controls in Sec. 3 fit into several broad classes, and Table 2 shows their 
associations with the DevSecOps phases (see Sec. 1.2).  

Table 2.  DevSecOps phases and associated classes of API controls 

DevSecOps Phase Class of API Controls 

Coding Well-defined API schema definition that calls to 
routines for annotating schema definitions 

Build Generate routines that validate on-field values in the 
request and response payloads of API calls and 
responses, respectively 

Test Ensure that validation routines perform as intended in 
various runs of API requests and responses 

Deployment Ensure that the deployment package contains all of 
the runtime policy enforcement routines, API schema 
definitions, and APIs and is signed off by appropriate 
authorities 

Observe and Monitor Ensure that certain security incidents (e.g., data 
leakage) do not occur due to (a) inherent flaws in API 
design, (b) the lack of input data validation, or (c) 
engineered attacks realized through a sequence of 
requests that each pass all validation tests 
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Appendix C. Limit Types Configured During Runtime 

Limit Type Description Examples 
1. Rate Limits Controls the number of requests that a client can 

make within a specific time frame 
• 100 requests per minute 
• 1,000 per hour 
• 10,000/day 

2. Quotas Restricts total usage over a longer period, often 
per user or API key 

• 1 GB data/month 
• 500,000 API calls/month 

3. Concurrent Connection 
Limits 

Limits the number of simultaneous requests or 
sessions per client 

• 5 concurrent connections 
• 10 sessions per API key 

4. Payload/Request Size 
Limits 

Restricts the maximum size of incoming data to 
prevent abuse 

• Max request body: 2 MB 
• Max file upload: 10 MB 

5. Response Size/Time 
Limits 

Prevents the excessive use of resources by limiting 
response time or size 

• Max response time: 5 sec 
• Max 1,000 

records/request 
6. IP-Based or Geographical 

Limits 
Restricts access based on IP addresses or 
geographical location 

• Block high-volume Ips 
• Restrict access by country 

7. User Role-Based Limits Applies different usage limits based on user roles 
or subscription levels 

• Free tier: 100 
requests/day 

• Pro: 10,000 requests/day 
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