
NIST Special Publication 800
NIST SP 800-228

Guidelines for API Protection for
Cloud-Native Systems

Ramaswamy Chandramouli
Zack Butcher

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-228

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-228

NIST Special Publication 800
NIST SP 800-228

Guidelines for API Protection for
Cloud-Native Systems

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

Zack Butcher
Tetrate, Inc.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-228

June 2025

U.S. Department of Commerce
Howard Lutnick, Secretary

National Institute of Standards and Technology
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified
in this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Authority
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is
responsible for developing information security standards and guidelines, including minimum requirements for
federal information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate federal officials exercising policy authority over such systems. This
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines
be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the
OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary
basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2025-06-20

How to Cite this NIST Technical Series Publication:
Chandramouli R, Butcher Z (2025) Guidelines for API Protection for Cloud-Native Systems. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-228.
https://doi.org/10.6028/NIST.SP.800-228

Author ORCID iDs
Ramaswamy Chandramouli: 0000-0002-7387-5858

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

Contact Information
sp800-228-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/228/final, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:sp800-228-comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/228/final

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

i

Abstract

Modern enterprise IT systems rely on a family of application programming interfaces (APIs) for
integration to support organizational business processes. Hence, a secure deployment of APIs is
critical for overall enterprise security. This, in turn, requires the identification of risk factors or
vulnerabilities in various phases of the API life cycle and the development of controls or
protection measures. This document addresses the following aspects of achieving that goal: (a)
the identification and analysis of risk factors or vulnerabilities during various activities of API
development and runtime, (b) recommended basic and advanced controls and protection
measures during the pre-runtime and runtime stages of APIs, and (c) an analysis of the
advantages and disadvantages of various implementation options for those controls to enable
security practitioners to adopt an incremental, risk-based approach to securing their APIs.

Keywords

API; API endpoint; API gateway; API key; API schema; web application firewall.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems. The Special Publication 800-series reports on ITL’s
research, guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

ii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

iii

Table of Contents

Executive Summary ..1
1. Introduction ...2

2. API Risks: Vulnerabilities and Exploits ...7

2.4.1. Unrestricted Compute Resource Consumption ... 9
2.4.2. Unrestricted Physical Resource Consumption ... 9

2.6.1. Input Validation .. 11
2.6.2. Malicious Input Protection ... 11

2.7.1. Gateways Straddle Boundaries .. 12
2.7.2. Requests With a Service Identity But No User Identity .. 12
2.7.3. Requests With a User Identity But No Service Identity .. 13
2.7.4. Requests With Both User and Service Identities .. 14
2.7.5. Reaching Out to Other Systems ... 15
2.7.6. Mitigating the Confused Deputy .. 15
2.7.7. Identity Canonicalization .. 16

3. Recommended Controls for APIs... 17

3.1.1. Basic Pre-Runtime Protections ... 18
3.1.2. Advanced Pre-Runtime Protections ... 19

3.2.1. Basic Runtime Protections .. 20
3.2.2. Advanced Runtime Protections .. 26

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

iv

4. Implementation Patterns and Trade-Offs for API Protections .. 30

4.4.1. Web Application Firewalls .. 39
4.4.2. Bot Detection.. 40
4.4.3. Distributed Denial of Service (DDoS) Mitigation .. 40
4.4.4. API Endpoint Protection ... 41
4.4.5. Web Application and API Protection (WAAP) .. 41

5. Conclusions and Summary .. 42
References ... 43
Appendix A. API Classification Taxonomy ... 45

Appendix B. DevSecOps Phases and Associated Classes of API Controls ... 47
Appendix C. Limit Types Configured During Runtime ... 48

List of Figures

Fig. 1. API, API endpoint, service, and service instance ..2
Fig. 2. Service API, facade API, and application (monolithic) ..3
Fig. 3. DevSecOps life cycle phases ...5
Fig. 4. Handling API calls with user identity but no service identity .. 14
Fig. 5. Identity canonicalization for handling API calls .. 16
Fig. 6. API gateway patterns ... 31
Fig. 7. Centralized API gateway pattern .. 32
Fig. 8. Hybrid gateway pattern ... 34
Fig. 9. Distributed API gateway pattern... 37
Fig. 10. Service-to-service traffic flows in distributed API gateway pattern .. 38

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

v

Acknowledgments

The authors would like to thank Orion Letizi, technical writer at Tetrate, for providing
continuous, ongoing edits during the development of this document. The authors also thank
Erica Hughberg (an engineer at Tetrate) and James Gough (a Distinguished Engineer at Morgan
Stanley) for their feedback on the initial outline for controls. Their extensive hands-on
experience in running API security programs in large enterprises helped NIST address current
API security issues and incorporate state-of-practice API security controls in these
recommendations. Last but not the least, the authors would also like to express their thanks to
Isabel Van Wyk of NIST for her detailed and extensive editorial review.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

1

Executive Summary

Application programming interfaces (APIs) provide the means to integrate and communicate
with the modern enterprise IT application systems that support business processes. However, a
lack of due diligence can introduce vulnerabilities and risk factors that exploit the connectivity
and accessibility features of APIs. If these vulnerabilities are not identified, analyzed, and
addressed through control measures, attack vectors could threaten the security posture of the
application systems spanned by these APIs. A systematic and effective means of identifying and
addressing these vulnerabilities is only possible by treating the development and deployment of
APIs as an iterative life cycle using paradigms like development, security, and operations
(DevSecOps).

This document provides guidelines and recommendations on controls and protection measures
for secure API deployments in the enterprise. In addition, an analysis of the advantages and
disadvantages of various implementation options (called patterns) for those controls enable
security practitioners to choose the most effective option for their IT ecosystem.

Developing these controls and analyzing their implementation options should be guided by
several overarching principles:

• The guidance for controls should cover all APIs, regardless of whether they are exposed
to customers/partners or used internally within the enterprise.

• With the vanishing of perimeters in modern enterprise IT applications, all controls
should incorporate the concept of zero trust.

• The controls should span the entire API life cycle and be classified into (a) pre-runtime
protections and (b) runtime protections that are then subdivided into basic and
advanced protections to enable incremental risk-based adoption.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

2

1. Introduction

Application programming interfaces (APIs) represent an abstraction of the underlying
implementation of a digital enterprise — they describe what actions users are allowed to take.
Given the spatial (e.g., on-premises, multiple clouds) and logical (e.g., microservices) nature of
current enterprise applications, APIs are needed to integrate and establish communication
pathways between internal and third-party services and applications. The growing prevalence
of microservice-oriented architectures and software as a service (SaaS), which are nearly always
delivered via APIs, has resulted in network-based APIs being utilized across organizations in
every type of application, including server-based monolithic, microservices-based, browser-
based client, and the Internet of Things (IoT).

An API is a collection of commands or endpoints that operate on data or objects via some
protocol to define how two pieces of software communicate. At runtime, service instances send
requests to a specific API endpoint. An API gateway hosts many APIs and is responsible for
mapping each request to its target API endpoint, applying policy for that endpoint (e.g.,
authentication, rate limiting), and routing that request to a service instance, which implements
that API endpoint, as shown in Fig. 1.

Fig. 1. API, API endpoint, service, and service instance

Network-based APIs are built to be consumed by remote applications over the network and
present a unique set of challenges. Traditionally, network-based APIs are thought of as being
customer-oriented, partner-oriented, or internal, which are referred to as “third-party,”
“second-party,” and “first-party” APIs, respectively. First-party APIs can be exposed to callers
inside of the organization on the same API gateway, but they are also often consumed directly
by internal callers without traversing a dedicated API serving stack. Second- and third-party
APIs are typically exposed to callers outside of the organization via an API gateway.

Most first-party API integrations occur via a service API (i.e., they map to a single service).
However, APIs that are hosted by the API gateway typically have endpoints that map to many
different services, especially for second- and third-party APIs. These are called facade APIs

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

3

because they present a single facade to an outside caller over potentially many different service
APIs. Multiple services are commonly grouped together into an application along organizational
lines with an application mapping to a team. Fig. 2 shows a schematic diagram of a service API,
a facade API, and an application (i.e., monolithic) API.

Fig. 2. Service API, facade API, and application (monolithic)

Whenever systems communicate, there is some API involved (e.g., Comma-Separated Values
(CSV) over File Transfer Protocol (FTP)). While this Special Publication (SP) focuses on “modern”
APIs that are exposed via mechanisms like Hypertext Transfer Protocol (HTTP)/
Representational State Transfer (REST), gRPC Remote Procedure Calls (gRPC), or Simple Object
Access Protocol (SOAP), the principles are universal and should be applied to all APIs and
various communication styles (e.g., request/response, message-based/asynchronous).

1.1. Zero Trust and APIs: The Vanishing Perimeter

One of the most important implications of zero trust is that there is no meaningful distinction
between an “internal” and “external” caller because the perimeter is the service instance itself.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

4

That is, all callers are trusted if they are authorized to be trusted. This contrasts with traditional
approaches to API security in which the only “APIs” are those exposed to “external” callers, and
API-oriented controls are only enforced at the perimeter, typically via an API gateway.

SP 800-207A [6] discusses zero trust at runtime and the principle of shrinking the perimeter to
the service instance using the five runtime controls of identity-based segmentation:

1. Encryption in transit — To ensure message authenticity and prevent eavesdropping,
thus preserving confidentiality

2. Authenticate the calling service — Verify the identity of the software sending requests

3. Authorize the service — Using that authenticated identity, check that the action or
communication being performed by the service is allowed

4. Authenticate the end user — Verify the identity of the entity triggering the software to
send the request, often a non-person entity (NPE) (e.g., service account, system
account)

5. Authorize the end user to access resources — Using the authenticated end-user identity,
check that they are allowed to perform the requested action on the target resource

Achieving a zero-trust runtime requires applying these five controls to all API communications.
Additional controls that are necessary for safe and secure API operations beyond identity-based
segmentation should be enforced on all APIs in a system, including those exposed to the
outside world (i.e., public APIs) and those intended only for other applications in a given
infrastructure (i.e., internal APIs).

1.2. API Life Cycle

Like all software, APIs grow and change over time as requirements drift and usage patterns
change. They also go through a continuous, iterative life cycle, including:

• Plan, Develop, Build, Test, Release — These “pre-runtime” life cycle phases lead to a
service that can be deployed in production.

• Deploy, Operate, Monitor, Feedback — These “runtime” life cycle phases involve
running and operating a service in production.

Department of Defense (DoD) Enterprise DevSecOps is an example of a software development
life cycle paradigm. A detailed description of each phase of this paradigm is given in [1].
Application of the DevSecOps paradigm in the context of cloud-native applications can be found
in [4][5].

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

5

Fig. 3. DevSecOps life cycle phases

1.3. Document Goals

This document recommends controls for API protection except for API tools that embed one or
more of the following control categories as part of its feature set:

1. Pre-runtime API protections — These controls need to be applied when designing and
building APIs.

2. Runtime API protections — These controls need to be applied to every API request that
an infrastructure serves, not just at the perimeter.

Each of these two categories is further divided into two subcategories based on organizational
maturity (i.e., basic and advanced), which enables enterprises to adopt them using an
incremental, risk-based approach.

A prerequisite for defining any API protection measure or policy irrespective of its category or
sub-category is that the protections m ust be expressed in terms of nouns (e.g., resource) and
verbs (e.g., “create customer record” using the verb POST/CR) that pertain to API components,
API endpoint components, API requests, and API responses. These, in turn, contain references
to resources (e.g., customer record [CR]), data, and operations on those resources.

1.4. Relationship to Other NIST Documents

Today, most software development and integration are based on APIs. Section 1.2 articulated
the close relationship between software and APIs, demonstrated that API development and
deployment follow the same iterative life cycle as the software, and provided NIST guidelines
on DevSecOps.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

6

Another distinguishing feature of the controls recommended for protecting APIs is the capacity
to provide assurance for conforming to the principles of zero trust. This is because there is no
distinction between internal and external API requests or calls due to the absence of an
identifiable network perimeter and the distributed nature of applications on-premises and in
multiple clouds. This security assurance can be achieved with authentication and authorization
controls using identity-based segmentation [2]. Documents that provide recommendations on
the configuration of authentication and authorization controls in the context of cloud-native
applications (e.g., [2][3]) are also relevant in the context of configuring controls for API
protection.

1.5. Document Structure

This document is organized as follows:

• Section 2 describes risk factors and vulnerabilities associated with APIs and the attack
vectors that could exploit those vulnerabilities.

• Section 3 recommends controls to protect APIs and classifies them into basic and
advanced categories that need to be applied prior to runtime or enforced during
runtime.

• Section 4 provides a detailed analysis of implementation options or patterns for the
controls described in Sec. 3 and outlines the advantages and disadvantages of each
pattern.

• Section 5 provides the summary and conclusions.

• Appendix A provides the classification taxonomy for APIs.

• Appendix B illustrates the API controls related to each DevSecOps phase

• Appendix C provides a list of Limit Types

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

7

2. API Risks: Vulnerabilities and Exploits

This section considers some common risk factors that are associated with API deployments,
including:

• Lack of visibility of APIs in the enterprise inventory [7]

• Missing, incorrect, or insufficient authorization [7]

• Broken authentication [7]

• Unrestricted resource consumption [7]

• Leaking of sensitive information

• Insufficient verification of input data

2.1. Lack of Visibility of APIs in the Enterprise Inventory

Most organizations have gaps in their API inventories, even if they otherwise have mature
inventory management capabilities. The enterprise estate cannot be protected without an
accurate API inventory, and unknown incidents may occur at the API level. Common reasons for
the lack of visibility include:

• Organizational silos: APIs are built by many teams across an organization, deployed
across cloud and on-premises environments, and inherited in mergers and acquisitions.
Security concerns may not receive sufficient attention, and establishing accurate, up-to-
date inventories may be difficult. Further, a lack of automation and integration with the
API inventory management system exacerbates the challenge of maintaining an
accurate inventory.

• Rogue or shadow APIs: APIs that are defined for internal use (e.g., debugging, testing, ad
hoc solutions to business problems) may not be appropriately documented and often
bypass standard security review practices.

• Zombie or deprecated APIs: APIs may have been replaced or superseded by newer
systems but have not yet been entirely removed (e.g., because all callers have not yet
migrated to the alternative, there no longer exists a team responsible for the system).
They risk falling behind the latest security policies and protections.

2.2. Missing, Incorrect, or Insufficient Authorization

Authorization requires a high-reliability, low-latency system for making decisions about user
access to resources at request time. Application developers must integrate their application
with the same authorization system to keep it updated on users, resources, and permissions as
the system changes over time (e.g., users create and delete resources, assign new permissions).
Even then, developers may incorrectly enforce access decisions in their application code. In the
industry-recognized catalogue of API risks, three of the top 10 (i.e., 1, 3, and 5) focus on
authorization [7].

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

8

In line with identity-based segmentation, every service for an API endpoint should perform two
levels of authorization: 1) service authorization and 2) end-user-to-resource authorization [6].
However, implementing both levels of authorization can still leave many APIs open to risk.
Individual fields of a resource often need to be authorized independently of the resource itself.
For example, if additional debug information is embedded in an internal field of the API object,
that field should not be visible to external callers (i.e., callers not authorized to see privileged
debug information).

There are at least three sources of authorization risks:

1. Missing authorization: There is no fine-grained, resource-level authorization present.
For example, a legacy system may be operating under different access models (e.g., in a
perimeter-based model, access is authorization), or there may be implementation bugs
(i.e., an access check that should be enforced is not).

2. Incorrect authorization: The application performs an end-user-to-resource authorization
check but fails because it checks the wrong end-user identity, the wrong permission,
and/or the wrong target resource.

3. Insufficient authorization: The application performs a resource-level authorization that
is successful, but the resource itself contains privileged information that is not intended
for the level of access implied by access to the resource itself. This is often the root
cause of leaking sensitive information (see Sec. 2.5).

2.3. Broken Authentication

Authentication is a prerequisite for authorization, particularly two aspects: the authentication
system itself is robust, and the application uses the authenticated identities correctly. Risks that
an authentication system needs to mitigate include [8]:

• Credential Stuffing is a type of brute force attack, where an attacker knows an account's
name, and tries to brute force a ton of different passwords to unlock it. (They "stuff all
the credentials they can find" into the victim system's authorization system in the hopes
that something will stick). The attacker is able to carry out this since mitigation features
such as rate limits, Captcha are absent.

• Brute-force attacks on a single account without mitigations, which is closely related to
unrestricted resource consumption (see Sec. 2.4)

• Insecure practices, such as weak passwords, passing sensitive data in public channels
(e.g., the URL), missing password validation for changes to sensitive account data, and
using weak keys or poor algorithms to encrypt user data in transit and at rest

• Bad or incorrect token validation, including not validating at all, ignoring expiry, and
using insecure signing schemes or weak signing keys

With a robust and secure authentication system in place, the application must use those
credentials correctly. Risks to mitigate include:

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

9

• Missing authentication (e.g., tokens can be present but simply not checked), often due
to a bug or misconfiguration in the application

• Weak or predictable tokens, default accounts, and default passwords (e.g., a hard-coded
bootstrap account with the same username and password on all devices, test accounts
with predictable names and weak/guessable passwords)

2.4. Unrestricted Resource Consumption

Services consume resources to serve APIs, many of which can affect external systems or the
real world when serving an API call. The effects are an intended part of the business flow, but
automation creates avenues for abuse by malicious users. Therefore, usage must be restricted
to protect against malicious attackers abusing the system with a denial-of-service attack (DoS)
or for its impact on external systems.

2.4.1. Unrestricted Compute Resource Consumption

Broadly, the risks associated with unrestricted compute resource consumption (e.g., memory,
CPU, storage) are best mitigated via a combination of rate limiting, timeouts, circuit breaking
(i.e., limits on the number of concurrent outstanding requests), bot/abuse detection, and
application changes (e.g., reject file uploads over 20MB in size, return at most 10 items in
response to a list request). These risks manifest as:

• DoS attacks via bandwidth saturation or resource starvation

• Unreliable performance due to resource utilization for one user or service that impacts
others

• Cost amplification, in which an attacker can spend a small amount of resources (e.g.,
money, compute, bandwidth) to make requests that trigger a system to spend a much
larger amount of resources to service the request

Even internal API consumption poses many of these risks. In most organizations, it is much
easier for a developer to accidentally cause a DoS on an internal service than for an external
attacker to maliciously cause such an attack. This is a potential security event that necessitates
the need for a zero trust approach.

2.4.2. Unrestricted Physical Resource Consumption

Critical business operations can be impacted when an attacker targets software systems that
control physical processes (e.g., SCADA systems). APIs may also result in text messages being
sent to users, charges to credit cards, or the consumption of expensive third-party resources.
For example, a common challenge seen by organizations that adopt AI is the accidental over-
use of expensive AI APIs, which can result in large unplanned expenses for the business. These
risks may manifest as:

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

10

• Impacts on business operations (e.g., damage to equipment and personnel, the creation
of fake orders that require human effort to sort and remove)

• Impacts on customer relationships (e.g., scalpers automatically buying inventory to relist
at a higher price elsewhere)

• Infrastructure co-opted for abuse or harassment (e.g., multi-factor authentication
fatigue attacks, where an attacker triggers text spam to a user’s phone via an SMS 2-
factor authentication system [9])

• Unplanned expenses (e.g., consuming far more of a third-party service than planned by
satisfying requests made by a malicious user)

These risks are best mitigated by a combination of rate limiting, quotas, spending policy
controls in third-party software, bot/abuse detection, and application or business flow changes.
Mitigations for both compute and physical resource consumption are similar. For compute
resources, how users interact with a system should be limited. For physical resources, how the
user interacts with a system and how a system interacts with external systems should be
limited and considered early in the design phase. Mitigating these risks can sometimes require
business flow changes.

2.5. Leaking Sensitive Information to Unauthorized Callers

Unintentionally leaking business data via APIs is closely related to missing, incorrect, or
insufficient authorization (see Sec. 2.2). While correct and robust authorization should mitigate
this risk, sensitive data can still be leaked from APIs via side channels. The two most common
side channels exploited by attackers are response codes and error information, and common
risks include:

• Enumeration of the resources (e.g., users, objects) in a system: This can have secondary
impacts on the business, like revealing the customer set, information about product
inventory, or the identity of employees in an organization. A common method of
enumeration is enabled by services responding with “Not Found” status codes instead
of “Permission Denied,” allowing an attacker to distinguish between resources that exist
(403) and those that do not (404).

• Revealing information about the internal implementation of the infrastructure to
attackers: While security through obscurity is no security at all, it is still prudent to make
it as hard as possible for attackers to discover an infrastructure’s fine-grained specifics,
which are often included in error messages (e.g., the exact versions of common
software being run, internal names of systems for future pivot attacks).

2.6. Insufficient Verification of Input Data

Trusting unverified inputs is one of a major class of recurring security bugs in software. There
are at least two levels of verification that APIs need to consider:

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

11

• Validating that the input is syntactically correct

• Ensuring that valid input is not malicious

2.6.1. Input Validation

A service must validate that each request (i.e., input) matches the API’s definition, all expected
fields are present and of the correct type, and no unexpected fields are present. For example,
an API definition may say, “The ‘name’ field is required and must be a non-empty string less
than 100 characters long,” which must be verified at runtime on every request.

The lack of input validation results in a variety of risks, including:

• Impacting the availability of APIs

o The “query of death” (QoD) [24] is a DoS attack via specially crafted requests
that trigger pathological worst-case behavior in the server (i.e., the server itself
may crash due to bad input handling).

• Invalid or malicious data being stored in the system, which can cause latent issues (e.g.,
failure to restart during recovery, crashes when accessing invalid records)

• Unanticipated error handling during request processing, which leaks internal
information

2.6.2. Malicious Input Protection

While the input may satisfy “syntactic” validation, it also needs to be verified as non-malicious
before it is used. Malicious input is any input that is syntactically valid but attempts to get the
system to misbehave, potentially in a way that can be exploited to trigger an attack. Extending
the “name” example above, a caller may send a request that contains a name field with a string
less than 100 characters (i.e., valid), but that string may be a Structured Query Language (SQL)
injection attack. Common risks include:

• Data leaks, which may lead to regulatory fines (General Data Protection Regulation
(GDPR), California Consumer Privacy Act (CCPA)) or corruption (e.g., a SQL injection
attack [7])

• Unanticipated or unrestricted resource utilization (e.g., an attacker automates account
creation and uploads multi-gigabyte “profile pictures” to each account)

• Exposing a surface that attackers can use to pivot within the infrastructure or leverage
to mount further attacks on others (e.g., by allowing servers to be used for server-side
request forgery [SSRF])

• Cost amplification attacks, like the “billion laughs attack” (XML expansion) [10] or “zip
bombs” (zip archive expansion) [11]

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

12

2.7. Credential Canonicalization: Preparatory Step for Controls

A common problem at the API gateway is handling the many different credentials that clients
use to call APIs. For example, mobile apps use a certificate, clients use an API key and expect
HTTPS, internal users may use JWTs, internal applications expect an mTLS connection with a
SPIFFE identity, and others use HTTPS and a Kerberos ticket. All of them also need to convey the
user’s credential (e.g., OAuth Bearer token, a custom JWT, some trusted internal header). The
combination is immense and challenging for application developers to perform correctly. As a
result, organizations may only perform authentication and authorization at the edge via the API
gateway. A solution to this problem is to standardize the credentials that an application sees at
the API gateway — that is, to canonicalize them.

2.7.1. Gateways Straddle Boundaries

A gateway is something in an infrastructure that straddles a boundary and is typically the only
way for traffic to cross that boundary. One of the most important policies that the API gateway
enforces is authentication, ideally of both the user and the calling service.

Identity-based segmentation states that every server should authenticate and authorize both
the calling service and the end user of every request and that those policies should be enforced
at every hop in the infrastructure [6]. However, changing legacy systems to support new
identities is often not possible. The challenge lies in implementing identity-based segmentation
and support for both service and user identities without impacting other parts of the
infrastructure.

API gateways can be used to draw a boundary around the parts of an infrastructure that
perform identity-based segmentation. Within that boundary, all applications expect a standard
set of credentials (e.g., user identity via a JWT in a specific header and service identity via a
SPIFFE X.509 certificate). Common policies, practices, and tooling can then be used to ensure
that all applications perform authentication and authorization correctly. Legacy schemes may
continue to be used outside of the boundary. To reach inside, traffic must traverse a gateway
that can canonicalize the incoming request’s credentials into the expected form.

2.7.2. Requests With a Service Identity But No User Identity

Consider a batch job that runs nightly and touches data for many users. This is a risk because it
requires special casing by the applications. For some service identities, end-user authorization is
not required, but for all others, it is required. Any special casing increases the opportunity for
incorrect or insufficient authorization.

The solution is to adopt service accounts that represent some system in a user identity domain.
That service account can be for an internal system and, therefore, have permission to act on
the data of many other users, or it can be for a user’s applications with correspondingly fewer
permissions. The API gateway can mediate with the user authentication system to exchange the
service’s runtime identity for a service account credential that represents the service in the user
identity domain and attach that service account credential as the end-user credential to

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

13

requests that it forwards into the part of the infrastructure that supports identity-based
segmentation.

Applications that perform identity-based segmentation will need to configure a policy for that
service account user so that it can act on all of the data that the batch job previously used its
service identity to access. At the same time, the application can remove any support for special
data access without an end-user credential. Finally, the existing infrastructure can be leveraged
to audit and manage both user and service access to data.

An implication of this is that all applications that attempt to implement identity-based
segmentation without a user identity should adopt service accounts by changing their
application code. This will simplify future migration into the identity segmentation domain and
make the system more secure overall.

2.7.3. Requests With a User Identity But No Service Identity

Consider a cloud-provider API gateway that receives user traffic, terminates TLS, performs end-
user authentication, and forwards requests to the infrastructure. The gateway enforces
authentication, so some user credential is present. However, unless special care has been taken
to communicate the service identity (e.g., via an API key or service account JWT), most notions
of the calling workload will be lost at the external gateway provider.

Depending on the specifics of the setup, the only option may be to configure service identity-
level policy via the external API gateway’s controls and then implement fine-grained service-to-
service policy for how requests can flow from that external gateway into the infrastructure. In
other cases, the external gateway can be configured to pass some notion of the external
workload (e.g., forwarding the client’s certificate as a header) and then use that to create some
canonical workload credential for internal communication (e.g., forwarding the client’s
certificate and creating a JWT that represents the external service identity from the certificate’s
common name).

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

14

Fig. 4. Handling API calls with user identity but no service identity

However, the gateway’s service identity is already in place between the gateway and the first
service that performs identity-based segmentation. For that first hop, three identities need to
be handled on the request: the gateway’s service identity, the service identity of the external
service, and the end user’s identity. As before, external service authorization can be performed
via the gateway and simply drop the external service identity. Services should support
validating both the end user and a workload identity via metadata from the request in addition
to validating workload identity via the transport (e.g., mTLS certificates).

For example, suppose that an organization A) uses a SPIFFE X.509 identity via mutual TLS for
service identity as a service mesh does, B) uses a JWT bearer token for user identity, and C)
chooses to represent an external service identity as a JWT token attached to the request. The
mesh can then enforce that the gateway forward traffic to the service via (A), authenticate the
service JWT and authorize the external service (C), and authenticate the end user (B) before
forwarding a request to the application. This would fully support authenticating and authorizing
all of the communicating parties, and the service in question would not need to be aware of the
external service identity or credential. This is accomplished by Gateway bridging two identity
domains (Kerberos and SPIFFE as shown in Fig.4). Gateways act as a policy enforcement point
where we can "canonicalize" incoming credentials (e.g. a Kerberos ticket) into a standard form
expected by internal systems (e.g. a SPIFFE Verifiable Identity Document -- "SVID"). The
Gateways would simply need to manage a policy of “allowed external service callers” alongside
their set of “allowed internal service callers.”

2.7.4. Requests With Both User and Service Identities

In the best case, the legacy systems in question are already doing nearly the right thing in that
they have both an end user and a service identity attached to requests. However, legacy system
credentials likely do not fully conform to the credentials expected by the parts of the system

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

15

that implement identity-based segmentation. In that case, those other credentials will need to
be translated into the canonical form expected by services that perform identity-based
segmentation in the infrastructure. Essentially, the user’s authenticated credential should be
exchanged with an identity provider for the canonical form expected by the identity-based
segmentation portion of the infrastructure (e.g., a JWT bearer token), and the external service’s
identity should be represented to the internal system as a token so that the policy can be
enforced on all three identities in the first hop.

2.7.5. Reaching Out to Other Systems

A similar problem presents itself in reverse when a service that performs identity-based
segmentation needs to reach out to legacy systems that expect legacy credentials. One option
is to integrate modern applications with legacy credential systems so that those applications
can fetch the legacy credential they need, which can significantly delay the sunsetting of those
legacy systems. A better option is to perform a credential exchange on traffic leaving the
identity-based segmentation subset of the infrastructure.

For example, an external SaaS API may expect a cloud provider service account as credentials.
An egress gateway can be deployed to authenticate and authorize credentials that are used
inside of the organization (i.e., identity-based segmentation) and exchange the internal
identities for the external identities that are needed by the other system. In this way, services
that perform modern identity-based segmentation can integrate with legacy systems with little
impact and minimize any code dependencies on those legacy systems.

2.7.6. Mitigating the Confused Deputy

A 'confused deputy' is a type of privilege escalation where a privileged entity (the 'deputy') is
tricked into using its authority on behalf of another, less privileged entity. One of the biggest
risks in any scheme that involves credential exchange is a confused deputy [25], where one
caller can trick the “deputy” responsible for handling credentials into using credentials that
belong to another caller on its behalf, most often to escalate privileges. Any system that
brokers multiple credentials needs more and better authentication and authorization before
allowing credentials to be accessed.

An alternative approach is to break down the deputy into separate entities that hold only a
single credential and map closely to a single application or service. This is the core idea behind
the service mesh’s sidecar presenting a service identity on behalf of the application: because
the sidecar is one-to-one with a service instance, a service’s identity cannot be confused for
another at runtime. This same idea can be applied to API and egress gateways. Deploying them
granularly — ideally per application — can minimize or eliminate any mixing of credentials,
thereby mitigating any risk of a confused deputy. Section 4 discusses API gateway deployment
patterns at length.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

16

2.7.7. Identity Canonicalization

Canonicalizing credentials is really canonicalizing the identity domains for which one needs to
write policy. Integrating identity providers to standardize credentials at the gateway inherently
brings those identities into two identity domains: one for users and one for workloads. This
allows for concise and consistent sets of policy that govern access to other services and user
access to data. Having both policies in place implements identity-based segmentation and
dramatically improves security posture.

Fig. 5. Identity canonicalization for handling API calls

For most organizations, implementing credential canonicalization will require either adopting
an identity provider wholesale and standardizing on that throughout (including working out
legacy integration so that legacy credentials can be used to get credentials via the new
provider) or performing identity exchanges, as described in this section. The API gateway is
ideally situated to enforce either choice. Performing identity exchanges also requires a mapping
of identities across domains as well as a “token server,” which uses that mapping to mint
credentials. Fig.5 shows a Token Server that is a natural extension to the idea of canonicalizing
credentials as they enter the system's boundary at the Gateway: rather than managing policy
pair-wise for each potential type of credential that a Gateway may have to handle, we
specialize and centralize that logic into a broker -- the Token Server -- that is responsible for
mapping different types of identity tokens to (and from) the canonical credential the system
expects (e.g. an SVID). An Egress Gateway (or the API Gateway itself) can also leverage such a
token server to handle mapping from "internal" credentials (an SVID) to "external" credentials
on behalf of an application (e.g. a Kerberos ticket or OAuth Bearer token).

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

17

3. Recommended Controls for APIs

In their earliest form, controls for APIs focused primarily on encryption in transit while
delegating most other concerns to the application. Over time, a variety of challenges have
emerged that necessitate the evolution of controls, including:

• The distributed nature of modern enterprise applications, which span multiple on-
premises and cloud environments and communicate over the network using APIs

• The requirement to build robust systems that work around transient failures and handle
large volumes of traffic

• An increasingly interconnected API with substantial system logic driven by business
needs to integrate more deeply with partners and expose richer functionality to users

• Increasingly sophisticated attackers who have moved up the stack from low-level
exploits and DoS attacks to application-level attacks that leverage the APIs that systems
use to function

Controls for APIs should address all of the APIs in the organization, including those exposed to
end users, those exposed to partners, and those that are only intended for internal
consumption. This document’s controls are structured into two primary sections based on the
iterative API life cycle (see Sec. 1.2):

1. Pre-runtime protections, which should be applied during design, development, and
testing. These include:

a. Creating a well-defined specification for the API’s contract using some interface
definition language (IDL) (e.g., OpenAPI, gRPC, Thrift)

b. Defining request and response schemas as part of that API specification

c. Defining valid ranges of values for fields of each request and response

d. Tagging the semantic type of each field of each request and response

e. Creating and maintaining an inventory of these API specifications across the
organization, including ownership information

2. Runtime protections, which should be applied to each request and response to the API
at runtime. These include:

a. Encryption in transit

b. End-user authentication and authorization

c. Service-to-service authentication and authorization

d. Request and response validation

e. Resource consumption mitigations, including rate limiting, timeouts, and circuit
breaking

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

18

f. Telemetry (e.g., logging and monitoring) to assess enforcement and detect
attacks with minimum log data fields that include a timestamp, client ID,
request/response status, and endpoint identifier

Within each section, the controls are grouped into “basic” and “advanced” categories:

• Basic protections should be pursued immediately with the goal of obtaining basic insight
into the APIs that exist in an organization (Identify in NIST Cybersecurity Framework
(CSF) [12]) and can be used to implement essential best practice controls (Protect).
Generally, basic protections do not require deep introspection of the API’s request and
response payloads but operate at the connection or request metadata level (i.e., on
HTTP headers rather than the HTTP body).

• Advanced protections perform deeper analysis on requests and responses. Many of
these policies require payload inspection, which is CPU- and latency-intensive. The goal
is to enhance basic Protection and begin to cover the Detect and Respond functions in
NIST CSF [12]. Addressing these concurrently with basic controls is recommended, but
the basic protections may provide the most benefit for resource-constrained
organizations.

All organizations should move immediately to act on basic controls, while advanced controls
should be evaluated by the organization and applied to APIs based on risk profile.

3.1. Pre-Runtime Protections

All API controls must be well-defined and inventoried.

3.1.1. Basic Pre-Runtime Protections

REC-API-1: All APIs must have a specification in the form of a document that describes what
endpoints the API exposes (“API spec” for short). To begin, the API spec can be a literal
document, a set of internal wiki pages maintained by a team, or something similar. However, it
should eventually migrate to a state-of-the-art IDL.

REC-API-2: API specifications should use a well-defined IDL (e.g., OpenAPI for HTTP/REST, gRPC
for protobuf, Thrift, SOAP for XML).

• REC-API-2-1: API specs and implementations should conform to industry best practices
(e.g., a Create-Read-Update-Delete [CRUD] API exposed as HTTP/REST should map the
CRUD endpoints to the HTTP verbs POST, GET, PUT, and DELETE, respectively) for
consistency [13]. For operations that do not cleanly map to CRUD, guidance should be
provided to maintain consistency and avoid misuse of HTTP verbs.

REC-API-3: Request and response schema for each endpoint should be defined by the API
specification, including validation guidelines for the values of each field of the request and
response (e.g., “the name field is a string and must be shorter than 100 characters”). Additional
information makes integration easier and less error-prone for clients and presents the

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

19

opportunity for automated enforcement, such as the maximum latency (e.g., “the server will
drop requests that take longer than 5 seconds to process”) and rate limits (e.g., “by default, 5
calls per minute are allowed”).

REC-API-4: Establish a centralized API governance framework. The framework should
incorporate the following functions at a minimum:

• REC-API-4.1: A centralized API platform team model should be created in which a central
team provides a self-service platform for application teams to build APIs

• REC-API-4.2: Organizational API inventory of all internal (including shadow and Zombie
APIs) and external APIs should be maintained. This is in line with the Identify directive of
the CSF [12]. The documentation requirements for the inventory should include:

o Each API’s specification, though the inventory does not need to be the API
documentation

o Ownership information about the API to simplify the translation of runtime
problems to organizational response

o Runtime information to enable operations and security teams to understand the
impact of each API (e.g., service instances, instance IP addresses, runtime service
ID, traffic volume, rate of requests and errors, the status of policy enforcement)

• REC-API-4.3: Use tools to improve visibility, such as API discovery tools and scheduled
automated scans to detect all running APIs.

• REC-API-4.4: Establish strategies regarding API versioning, deprecation, and sunsetting,
including a focus on secure migration paths.

3.1.2. Advanced Pre-Runtime Protections

REC-API-5: Request and response validation in the schema should be included in the API’s
specification (e.g., a string field must be non-empty and shorter than 255 characters, or an
integer value must be non-negative and less than 2 million). This simplifies documentation and
enables runtime tooling to validate request and response schema and syntax.

• Use primitive types in API schemas to reinforce this. For example, if a value is always
semantically positive, model it in the schema as an unsigned integer rather than a
regular integer (e.g., protobuf’s “uint” rather than “int”). Negative values are then
disallowed by construction without any validation needed [14].

• This principle extends to zero or default values as well. Users (malicious or not) will
frequently omit fields that the application expects. One approach to this is annotating
fields as “required” or “optional” and rejecting requests with zero values for required
fields. However, the application must handle missing optional fields. A second approach
adopted by both Golang and protobuf/gRPC is to define “zero values” for each primitive
type. Application code must either handle the zero value for each field or reject the
request with a validation error.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

20

REC-API-6: Annotate each field as public or internal for each request and response or with the
level of trust or permission required for access. These annotations simplify documentation and
enable runtime tooling to remove trusted data for untrusted callers as a cross-cutting policy
rather than something that must be built into the business logic of each service. An in-
application approach is much harder to implement correctly and to audit in practice.

• REC-API-6.1: Annotate endpoints and fields with required permissions to enable the use
of tooling to automate fine-grained per-field authorization checks. Those authorization
checks could then be performed by the API serving infrastructure on behalf of the
application or via a common library in the application with standard logging and metrics
to facilitate easy audits and ensure continuous enforcement. Once the annotations are
present, a variety of runtime implementations are possible.

REC-API-7: Annotate each field with its semantic type to indicate fields that contain sensitive
information, such as personally identifiable information (PII), protected health information
(PHI), or payment card information (PCI). This enables runtime systems to track data flow
through the system, trigger alerting, and apply cross-cutting policy to ensure that data does not
leak across inappropriate boundaries.

REC-API-8: Include runtime information in the API inventory with ownership (REC-API-4). This
becomes substantially more valuable when annotated with runtime information (e.g., service
instances and their IP addresses, runtime identities of the service instances, metrics or health
information for the service, runtime metrics for traffic between services). This information can
help security identify the blast radius of an event, operations to identify problems and root
causes, and application teams to understand their application’s behavior. Correlating this
information with the APIs being served makes it simple to link clients to servers as the problem
is traced back to its root.

• API discovery tools must be deployed during runtime and reconciliation between
declared specifications, and live traffic must be performed as part of maintaining an
accurate API inventory. The objective of this type of discovery and reconciliation is to
identify differences between what is deployed and what should be deployed in
production, including shadow, orphan, and zombie API endpoints.

3.2. Runtime Protections

For runtime protections for APIs, apply zero trust principles as a baseline, and augment them
with additional policy on requests and their payloads.

3.2.1. Basic Runtime Protections

REC-API-9: All runtime communication must be encrypted, even when the API is “public data”
or otherwise unauthenticated. This is necessary to ensure that data has not been tampered
with (integrity) and to prevent eavesdropping (confidentiality). Details on encryption in transit
can be found in SP 800-53, control SC-8 [15] and SP 800-207A, control ID-SEG-REC-1 [6]. Details

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

21

on cryptographic algorithms and key lengths can be found in SP 800-57 [16] and Federal
Information Processing Standards (FIPS) publication 140-3 [17].

REC-API-10: Perform general request and response validation policies (e.g., WAF, bot detection,
DoS mitigation) to mitigate malicious payloads and unrestricted resource consumption. These
can and should be executed early in the API serving stack to protect other components (e.g.,
authentication system) from DoS attacks. Since these protections are general and cross-cutting,
there is little risk of unintentionally leaking sensitive information.

REC-API-11: Ensure the robust authentication and correct processing of authentication
credentials.

• REC-API-11-1: Protect against credential stuffing and other brute-force attacks:

o Implement rate limiting and account lockouts after repeated failed login
attempts.

o Enforce multi-factor authentication (MFA) to prevent account takeovers.

o Use bot detection and CAPTCHAs to prevent automated attacks.

o Implement adaptive authentication that adjusts security controls based on login
behavior and risk level.

o Leverage credential screening services (e.g., Have I Been Pwned API) to detect
compromised credentials.

• REC-API-11-2: Authenticate the calling user and service, as described in SP 800-207A,
controls ID-SEG-REC2 and ID-SEG-REC4 [6].

• There are (at minimum) two identities in every API communication: the software
calling the API and the end user of that software. For example, it is common to use
an API key to identify calling software and an OAuth Bearer token to identify the end
user. This is true even if the end-user identity is an NPE (i.e., internal software calling
other internal software should use something like a service account to identify the
user making the requests). The service identity may contain information (e.g., the
device being used to access the system) in addition to a token from the software
itself (e.g., an API key).

• REC-API-11-3: Identities (e.g., tokens) must be cryptographically verifiable and should
not use weak signing algorithms (e.g., no JWTs with “alg: none,” weak algorithms, or
short key lengths) or long expiration times (i.e., credentials are cycled regularly). SP 800-
57 [16] discusses the strengths of cryptographic algorithms and the necessary key
lengths for each. Token signing keys must also be rotated periodically to prevent token
forgery attacks.

• REC-API-11-4: Authentication should use standard mechanisms whenever possible. For
example, end-user authentication should use a mechanism such as OpenID Connect
(OIDC), OAuth2, or SAML. Services should use a mechanism like SPIFFE SVIDs, JSON Web
Tokens (JWTs), API keys, or similar.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

22

• REC-API-11-5: Use opaque tokens for untrusted systems. Credential tokens commonly
encode information about the internals of the system (e.g., minting a JWT to represent a
user in the infrastructure that includes claims that represent the user’s capabilities in
the system) to simply and reliably enforce authorization per hop (e.g., validate the JWT,
and check whether it contains the “claim” that represents the permission for an API
endpoint). These claims encode all local operations that can be performed with data
from the request and the local application. Returning a token with these details to an
external user may risk leaking information about the internals of the system. This is
where the following issues become critical to the safety of the API: how permissions are
modeled, the set of internal permissions/claims that map to a given external API
endpoint, and information about the path that the request traverses through the
infrastructure.

• REC-API-11-6: Secure the storage and transmission of tokens using robust encryption
algorithms (e.g., AES-256) during transit (e.g., TLS 1.2+). Authentication tokens should
be sent using securing HTTP headers, not URLs.

• REC-API-11-7: Verify signatures, and check for expiry during token validation. For
example, when processing JWTs, the “exp” claim RFC 7519 [18] must be checked.
Similarly, when processing an X.509 SVID, check the validity period’s “Not Before” and
“Not After” [19].

REC-API-12: Authorize the calling user and service for each identity on the request, including
whether the calling software system is allowed to access the API endpoint and whether the end
user is authorized to take the action on the resource represented by the endpoint (see SP 800-
207A [6], controls ID-SEG-REC2 and ID-SEG-REC4).

• REC-API-12.1: Use access control models (e.g., attribute-based access control) to achieve
fine-grained (granular) service-to-service authorization.

• REC-API-12.2: Use standardized authorization schemes (e.g., OAuth 2.0 or JWT) for end-
user-to-resource authorization.

• REC-API-12.3: Implement an authorization auditing tool to regularly check for missing or
weak authorization mechanisms (see Sec. 2.2). Additionally, use unit and integration
tests that identify exposed data to ensure that role permission assignments are
consistent with data sensitivity levels.

• REC-API-6 discusses annotating each request or endpoint with the permission
required by the end user to call that endpoint on a resource. Runtime tooling can
then be implemented to ensure that those annotations are transformed into
runtime permission checks against the authorization system. Combined with a
robust DevOps process to ensure that annotations are present on APIs before they
can be deployed, there can be a high degree of assurance that the correct
authorization is being performed at the platform level. SP 800-204B discusses using
the service mesh to achieve this [3].

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

23

REC-API-13: Validate each request and response per the API schema before it is processed by
the business logic (e.g., ensure that the request has a “name” field that is a string and no other
fields). This ensures that applications only receive well-formed input (called client-side
validation) and minimizes a class of errors and data leaks due to inline validation in the business
logic. Additionally, validate that each response from the server (called server-side validation)
conforms to the expected response schema to help prevent a variety of data leaks, abuses, or
mistakes. Responses after the repeated invocation of APIs are checked to ensure that
implementation conforms to API specification.

REC-API-14: Authenticate, authorize, then validate in that order to minimize the risk of leaking
data to attackers, since validation messages are at especially high risk of leaking information.
For example, rejecting a request with a validation error for using a duplicate user-supplied
name as another user may unintentionally leak information to callers regarding the existence of
a resource. A likely mitigation may be an underlying per-user segregation of user-provided data,
which often requires business logic changes in the application. Generic validations (REC-API-10)
are exceptions to this because they are not business logic-aware and do not risk leaking
information. They can be safely implemented by the platform ahead of authentication, which is
often desirable to help protect the authentication and authorization systems from DoS and
other attacks.

REC-API-15: Enforce limits on API and resource usage. API gateway teams should provide
reasonable defaults for the organization, and application teams should be able to enforce more
fine-grained limits in their application or leverage the platform. Those limits should include:

• REC-API-15-1: Rate-limit all API access for all callers to ensure fair utilization across
users, help with capacity planning, and mitigate the risk of unrestricted resource
consumption. See REC-API-16 for recommendations on specific rate-limiting
implementations.

• REC-API-15-2: Apply timeouts to all requests, including the API gateway. This should be
done at the TCP level, where connections are automatically timed out after a modest
time (e.g., 5 minutes) rather than the operating system’s default of more than one hour
per connection. Timeouts should also be configured at the application level. If a
required operation should complete in five seconds as part of the API contract, set a 6-
second timeout for it. This ensures that the resources in a service do not wait for a
response that will never arrive.

• REC-API-15-3: Apply bandwidth and payload limits to enforce maximum request and
response sizes. The “correct” limit is highly contextual and based on the organization
and application (e.g., a bank will have very different expectations than a video streaming
company). This helps avoid a variety of risks related to malicious input and DoS.

• REC-API-15-4: Validate and limit user-supplied query parameters (e.g., amount of
processing done, size of their response based on user input), especially in the context of
what the system can support and what is typical for users of the system. For example:

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

24

o The number of elements returned per page of a paginated list API. If a typical
user has 100 items, cap the maximum number of elements per page to 1000.

o Time ranges in dynamic queries. If a system is intended for viewing recent
events, and the user can provide a time range, limit that range to the last 30 days
rather than allowing the user to query “from 1972 onward.”

o GraphQL and similar API facade systems that support query languages over many
APIs. Enforce limits on the queries that users can execute (i.e., approved or
predefined queries only) and caps on the number of outbound calls that are
allowed in the execution of a single query.

REC-API-16: Rate limiting recommendations1

1 Appendix C provides a non-exhaustive list of potential limit types.

 are one of the most effective tools to mitigate
unrestricted resource consumption and can increase the attacker’s cost of many attacks that try
to leak sensitive information via data exfiltration from API calls (e.g., scraping all chat logs from
an organization with a script impersonating a chat client). Most organizations apply some type
of rate limit to external traffic, but it is equally important to rate-limit internal callers. Poorly
conceived code can unintentionally cause a DoS on an internal system. It is equally critical to
consider the limits placed on internal software that call out to external systems (see Sec. 2.6.2).
The following recommendations on rate-limiting configuration address common pitfalls and
misunderstandings:

• REC-API-16-1: Rate limits are not quotas. A quota is a usage limit on an API over an
extended duration (e.g., per month) that is associated with a user’s payment or billing
structure. Many organizations have “API usage tiers” that map prices to higher per-
month limits. These quotas need to be strictly enforced and are typically used to
generate billing reports that are sent to customers. In contrast, rate limits are intended
to protect the system from overuse and help ensure fair usage across separate,
concurrent callers. Rate limits do not need to be exact in the way that quotas must be.

• REC-API-16-2: Rate limits for total load provide little benefit and should be dimensioned
by user (e.g., 83 requests per 5 minutes per user) using the source IP address or end-
user credential as the key. Rate limits without a user dimension (e.g., service can receive
1,000 requests per 5 minutes total) are not particularly effective and allow some users
to impact others (e.g., DoS risk). This is true even when total limits are dimensioned by
service instance (e.g., a single instance cannot receive more than 100 requests per 5
minutes). Circuit-breaking functions must be used to provide protective limits on
concurrency for a service instance. More information on circuit breaking and other
resiliency and load-shedding techniques can be found in SP 800-204A, Sec. 2.3 [2].

• REC-API-16-3: Rate limits should be short in duration (e.g., per 60 seconds, per five
minutes). A rate limit is defined as the number of calls allowed over a time period (e.g.,
24,000 requests per 24 hours; 1,000 requests per hour; 16.5 requests per minute). Most
systems allow for the configuration of both the number of calls and the amount of time
over which they are allowed. Shorter time limits allow clients to experience a few

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

25

intermittent failures every one or five minutes as their traffic grows organically rather
than total failure with 24-hour limits. Additionally, the system will experience smoother
traffic overall because a single client must pace their consumption over a longer
duration, resulting in less load from each client at any given time.

• REC-API-16.4: Rate limits should be defined per user, service, or network parameter
(e.g., IP).

• REC-API-16-5: Adopt robust threshold-setting strategies to avoid arbitrary or ineffective
limits, such as token bucket or leaky bucket algorithms or adaptive limits based on user
behavior or service tier.

• REC-API-16-6: Set limits for concurrent requests.

• REC-API-16-7: Deploy real-time monitoring tools (e.g., Open Telemetry) to detect
sudden traffic spikes and send alerts. Set hard limits on third-party API consumption.

REC-API-17: Fine-grained request and user blocking allows the API serving stack to block
individual users via their end-user credential and/or network address, which enables an
effective response during an ongoing incident (see the Respond function in the CSF [12]). The
actual enforcement can be handled by separate components (e.g., network-level blocking
implemented by a firewall or the load balancer; credential-level blocking implemented by the
API gateway, bot/abuse detection systems, or the authorization system). For relevant
information on these techniques, refer to SP 800-53, AC-3 [15] and SP 800-204B, Sec. 4.6 [3].

REC-API-18: API access must be monitored to ensure that the API serving stack provides
sufficient telemetry to assess the availability of APIs and ensure that policies are being
enforced. The traditional triad of logging, metrics, and distributed traces is recommended. All
three should be tagged with information about the API being accessed in addition to the
runtime service so that service calls can be traced back to APIs. For the API gateway itself, a
range of signals should be produced to enable the identification of:

• Basic communication information, like the information included in the Common Log
Format [20] (e.g., who called, what method, from what origin)

• Health (e.g., rate of requests, rate of errors, latency) per API and API endpoint

• Enforcement results per policy class (e.g., requests allowed or denied due to missing or
incorrect authentication or authorization checks, requests blocked due to rate limiting)
to assess the aggregate enforcement of each policy

• The health of the services behind the API gateway

Fine-grained blocking by network addresses and user credentials (REC-API-17) that are
augmented with blocking based on monitored data (REC-API-18) (e.g., payload pattern or
anomaly score) is essential for real-time incident response and containment, especially for APIs
that handle sensitive data. General information on audit and logging controls can be found in
SP 800-53 [15], AU-2 Event Logging, AU-3 Content of Audit Records, and AU-12 Audit Record
Generation. Information on service mesh telemetry, which can be used for audit and logging,
can be found in SP 800-204A [2], SM-DR21 through SM-DR24.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

26

3.2.2. Advanced Runtime Protections

REC-API-19: Field-level validation using API schema annotations can be used to validate the
values of requests and responses at runtime. This is beyond the basic syntactic validation of
REC-API-13 (e.g., “there is a name field, and it is a string”) and more like semantic validation
(e.g., “the name field must not be longer than 100 characters,” or “the amount field must be
positive and less than 2 million”). This can be implemented by the API gateway as part of a
cross-cutting policy. An API spec is required (REC-API-2) and should be in a central inventory
(REC-API-4). The API gateway team can then enforce the validation of all requests traversing an
API gateway. This reduces the risks of insufficient input verification and leaking sensitive
information compared to ad hoc, error-prone implementations in each application or standard
implementations embedded in the application itself via SDK, which tend to be difficult to
update. A timely update is an imperative for infrastructure that enforces security policy. The
Controls REC-API-13 and REC-API-19 (Syntactic and Semantic Validation of API Schemas) should
occur at every hop within the infrastructure, including internal service-to-service
communications. This ensures that requests and responses are continuously validated,
regardless of their origin, and helps prevent lateral movement and bypasses inside the
environment.

REC-API-20: Authorization and filtering using API schema annotations enforce access to
resources and fields per caller. The API gateway itself is the policy enforcement point, and it
defers to an authorization system to make decisions. The information from the API schema is
enough to extract credentials from the request, identify the target endpoint and its associated
tags/permissions, and use them to form a call to the authorization service (e.g., “is the
request’s end user allowed to perform the endpoint’s permission on the object targeted by the
request?”). The API gateway can then enforce the result of the call at runtime. There are at
least three levels of assurance that can be achieved, and each build on the previous one to
further mitigate risks at increased runtime or development-time cost:

• REC-API-20-1: Resource-level authorization as a cross-cutting policy should be enforced
on all requests using endpoint-level annotations that define the permissions required to
call the endpoint (REC-API-6.1). This can be done at the platform level by leveraging the
API gateway. When combined with a distributed gateway pattern (Sec. 4.3), this
implements ID-SEG-REC-4 [6] at every hop.2

2 Other patterns have a wider perimeter and are susceptible to the API gateway being bypassed. Therefore, they do not satisfy ID-SEG-REC-4.

 This also helps prevent and potentially
eliminate missing authorizations (Sec. 2.2), depending on the organizational guardrails
in place. For example, an organization can build an API inventory by mandating an API
spec with endpoint-level permission annotations as part of each app’s “ticket to the
platform” (i.e., the data that an app team needs to submit to run their application on
the organization’s infrastructure and platform). Combined with standard patterns for
authentication (REC-API-11), this can ensure that the correct authentication and
authorization are performed. However, additional organizational controls are required
to ensure that the permissions are correct and sufficient to fully mitigate the risks
around authorization (see Sec. 2.2).

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

27

Achieving correct and sufficient authorization at the resource level is likely all that most
organizations need to achieve. It mitigates the predominant risks identified by the
OWASP API Security Top 10 [7] with respect to authorization. Moving beyond this level
of assurance into REC-API-20.2 and REC-API-20.3 shifts the focus to mitigating the risk of
leaking sensitive information.

• REC-API-20-2: Field-level visibility as a cross-cutting policy can leverage basic “public”
and “private” annotations on each field. The authorization check effectively asks
whether data should be visible to external callers.3

3 REC-API-19.1 focuses on requests, while this control focuses on the data that an application returns to callers in responses. They are
complementary controls.

 These coarse-grained public/private
annotations are particularly effective on common types that are shared across many
APIs in the organization. For example, a standard error reporting pattern used by all APIs
can leverage field-level annotations to differentiate user-facing errors versus developer-
facing errors to mitigate the risk of leaking sensitive information via errors. The gRPC
Status proto [21] is an example of a consistent error reporting pattern. In the gRPC case,
field-level annotations would reside in the message used for the status’s “details.”

• REC-API-20-3: Field-level authorization can be leveraged as a cross-cutting policy (REC-
API-6.1). This extends the idea of REC-API-19.1 down to the level of each individual field
of the response and allows for the filtering of API objects per use to implement
sophisticated access control schemes.

o While this kind of approach offers a very high level of data security, it causes a
sharp increase in the number of policy checks that the authorization system
must perform and requires active participation by application developers to keep
permissions per field up to date as the application evolves. For example, a
resource-level authorization check requires one authorization decision per
request. A field-level authorization check requires one authorization decision for
the request plus an additional decision for each field of the response. Even an
object with a modest number of fields (e.g., 5) results in whole-number multiples
more policy decisions made by the authorization system. For developers, the
purpose and permission of an endpoint rarely change, but the fields of the
request and response objects for that endpoint regularly evolve over time. This
makes upkeep for permissions at the field level more expensive for application
developers versus endpoint-level annotations (REC-API-19.1). As a result of the
cost and load on the authorization system, this level of fine-grained checking is
typically only used in the most high-risk situations and only by sophisticated
organizations.

SP 800-204B [3] discusses the advantages of using a distributed API gateway architecture when
implementing fine-grained authorization checks. When choosing to implement these
authorization policy checks under the centralized and hybrid patterns, care must be taken to
ensure that the gateways are not bypassed. For example, a service-level authorization policy

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

28

could disallow any traffic except from the API gateway as a means of defeating an attempt to
bypass gateway checks via pivoting inside the infrastructure.

REC-API-21: Traffic monitoring and policy using semantic field labels can log and monitor the
flow of sensitive data in a system. Further, the API gateway can be used as a policy
enforcement point to control the flow of that data, potentially blocking traffic flows that transit
significant amounts of data. Ultimately, with annotations and enforcement in place, the flow of
sensitive data in the organization can be governed by mandatory access control (MAC) policies.
A MAC policy is enforced by the authorization system, regardless of the user or resource in
question. For example, a MAC policy may require PCI data to be isolated from systems that do
not implement Payment Card Industry Data Security Standard (PCI DSS) controls to maintain
security and prevent potential breaches. Such a MAC policy can be enforced with a combination
of PCI-compliant services in the infrastructure and data tags on the semantic types of data that
flow through the system.

REC-API-22: Non-signature payload scanning for generative AI APIs analyzes request and
response data for sensitive information that may not be a literal attack signature. Tools typically
analyze (e.g., via regression, AI, simple matching, and word filtering) the responses returned by
servers to score the risk that they contain sensitive information and take action to block that
traffic. Increasingly, AI agents are being deployed to assess the risk of data generated by other
agents. At a high level, this technique is like a web application firewall (WAF), but WAFs are
fundamentally signature-based, while these analyses are fundamentally content-based.

This is a general category of data egress analysis that is relevant across all APIs, but it has
become increasingly important with the growth of generative AI. Generative agents are
frequently trained on business-sensitive data, have insight into sensitive business operations
and operational data, and are increasingly exposed to the organization and externally as APIs.
Since the inception of generative AI agents, a variety of prompt injection attacks [22] have been
created to exfiltrate data.

Tools for performing non-signature payload inspection should be used whenever an
organization is handling data returned by their system, especially when that data is generated
on demand (e.g., by AI agents). In most cases outside of dynamically generated output,
implementing simple semantic and syntactic validations (REC-API-13, REC-API-18) will typically
provide an organization with more risk mitigation for a lower runtime and operational cost.

• REC-API-22-1: Semantic data discovery tools are typically very good for identifying the
type of information flowing through a system (e.g., string, email address). Building the
inventory of APIs and adopting well-defined API schemas with meaningful annotations
takes time. Such runtime tools are helpful for initial discovery and ensure that rollout is
complete across all services and that services stay in compliance after the policy is rolled
out. When it is reasonable to leverage due to compute and latency constraints, an
organization benefits from inspecting traffic for sensitive data flow, even beyond field-
level annotations.

API payload scanning/inspection (REC-API-22) must be extended to include behavioral analysis
of API sessions, particularly for APIs that expose generative AI or dynamic content.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

29

REC-API-23: Design error codes such that they do not provide a means for resource
enumeration (e.g., return an error code 403 Forbidden instead of distinguishing between
missing and unauthorized resources).

REC-API-24: Block resource enumeration attacks through rate limiting, including anomaly
detection.

REC-API-25: Limit the exposure of sensitive data using data masking in responses and logs.

REC-API-26: Fine-grained blocking for specific requests can prevent a DoS or service crash.
These bad inputs can often trigger a cascading failure [23], but the queries may not be
malicious in nature (e.g., users using the system in ways that it was not intended or designed
for, such as QoD) [24]. These tools help mitigate the risks of unrestricted resource consumption
and malicious input validation. For APIs that expose generative AI or dynamic content, the
entire session must be blocked. Depending on the complexity of the query and environment, it
may be possible to leverage a WAF or non-signature payload scanning tools to block some
types of QoDs. However, application code changes may be required — sometimes even
rearchitecting the application itself — to mitigate the impact of these kinds of queries.

The detailed controls in this section fit into broad classes, and their association with the
DevSecOps phases is discussed in Appendix B. This emphasizes the observation that APIs should
be treated as any other software and go through an iterative, continuous life cycle.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

30

4. Implementation Patterns and Trade-Offs for API Protections

Regardless of the mechanism or architecture of an API and its services, the following
capabilities are required to realize the controls outlined in this document:

• Authentication and authorization

• Request and response validation

• Rate limiting

• Circuit breaking

• Error handling

• Logging and monitoring

In addition to these core capabilities for security, APIs that serve infrastructure typically deal
with other common concerns, such as:

• Service discovery

• Routing

• Protocol conversion

• Caching

The following components are often deployed to provide the above functionality to an API:

1. A gateway to implement the API-oriented policy

2. The service itself to implement the API’s business logic

3. A method to get traffic to gateway instances (e.g., DNS and a network load balancer) to
facilitate service discovery, load balancing, and network reachability to horizontally
scaled instances of the gateway itself

For example, if the gateway functionality is implemented via a Kubernetes ingress routing to a
pod (i.e., the service instance), then callers outside of the network will require the cloud
provider or data center network team to provision a network load balancer in front to route
network traffic to the Kubernetes load balancer service.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

31

Fig. 6. API gateway patterns

Three patterns have been developed by industry to implement these capabilities, as shown in
Fig. 6:

1. Centralized gateway — Protections for all APIs in the enterprise are implemented by a
single shared component: an API gateway.

2. Hybrid gateway — Cross-cutting policies (e.g., authentication) are implemented in the
centralized shared gateway, but application-specific policies (e.g., authorization) are
implemented in the application itself or by components that are owned by the
application team.

3. Distributed gateway — All policy checks are performed by gateways that are dedicated
to each application, often deployed beside each service instance.

All three patterns can achieve all of the controls outlined in this document and be used by
organizations to operate their APIs safely and confidently. Further, many of these patterns may
be in use within a single organization. This section explores the engineering design trade-offs
that each pattern provides in terms of risks and operational overhead.

Many API gateway products provide management capabilities, such as API key issuance,
discovery documentation (i.e., API definition) hosting, documentation for client developers, and
support for quotas and billing tiers. These are all valuable features in the enterprise setting, but
all of them can be supported across any implementation pattern and are therefore not
addressed in this section.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

32

4.1. Centralized API Gateway

The centralized API gateway pattern implements protections for all APIs with a single
component (i.e., the API gateway) that is often deployed close to the perimeter of the system.
External traffic enters through the gateway, typically via a load balancer. Internal traffic
“hairpins” through the gateway as well, which facilitates service-to-service communication
inside the infrastructure. That internal, service-to-service traffic may also have to traverse the
load balancer for some service instances. Fig. 7 shows a common configuration for a centralized
API gateway pattern.

Fig. 7. Centralized API gateway pattern

An API gateway is typically a software application that can be scaled horizontally (i.e., more
instances can be deployed side by side). This is one of the reasons why an API gateway often
sits behind a load balancer, even for internal service-to-service traffic use cases. Advantages of
this pattern include:

• A single policy enforcement point that is easy to monitor and audit, making it simple to
verify that policy is enforced for all traffic that traverses the gateway.

• Implementation that matches the organizational structure. Typically, large organizations
have a single API team that owns the centralized gateway component and is responsible
for when an API is available, which API endpoints are failing, whether policies are being
enforced, whether the configuration is up to date, and other issues.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

33

• Streamlined setup for application developers who need to “onboard” their API but do
not need to deploy or maintain any additional runtime components.

Disadvantages of this pattern include:

• Shared fate outages. Because there is a single component, an outage of that component
causes an outage for all APIs, which can be problematic for mission-critical APIs that
need to operate continuously.

• Noisy neighbors, where traffic consumes resources for some APIs and increases latency
for all APIs. In the worst case, one application team may submit invalid configuration
parameters for a service that may crash or cause a DoS on the API gateway, triggering a
shared fate outage for other APIs.

• Long change lead times due to managing how the changes to an individual team’s API
configuration impact the shared gateway. This is a frequent side effect of controls that
are added to mitigate shared fate outages and noisy neighbors.

• Cost attribution. All requests are handled by the central gateways, and resources spent
per request per API (e.g., on payload validation) are uneven. Therefore, it can be difficult
to attribute API gateway runtime costs to internal application teams. This can be a
problem for companies that implement an internal resource economy for planning by
assigning cost centers for each application team.

• Caching the results of policy decisions at runtime becomes critical when implementing
the policies outlined in these guidelines due to the sheer number of policy checks
required. Caching both increases client-perceived availability and reduces the load on
key systems, like authentication and authorization. However, two layers of load
balancing (i.e., network load balancer to API gateway and API gateway to service
instance) tend to result in poor cache hit rates across policies enforced by the API
gateway and for user data in the application layer itself. While some techniques can
mitigate this (e.g., distributed caches or streaming connections), they generally add
additional development or operational overhead for the application team, API gateway
team, or both.

• Because a shared gateway is located at the perimeter, it can be bypassed (e.g., via an
attacker pivoting inside the perimeter), which in turn bypasses the policy checks that are
enforced by that gateway. This can be mitigated with techniques like service-to-service
access policies that ensure that applications only receive traffic via the centralized
gateway or by attaching proofs (i.e., credentials) to the request that allow an application
to authenticate that the request was handled by the gateway.

4.2. Hybrid Deployments

Hybrid gateway deployments split policy enforcement responsibilities between a centralized
gateway and the applications themselves. Cross-cutting policies (e.g., authentication, service
discovery, routing, rate limiting, caching) are handled by the centralized gateway. Application-

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

34

specific policies (e.g., authorization, request and response validation, protocol conversion, error
handling, logging, monitoring) are handled by the application team. This can manifest in the
application itself (e.g., gRPC) or as a separate deployment that handles traffic before the
application (e.g., GraphQL, Spring Cloud Gateway). As with the centralized pattern, all internal
and external traffic between applications must first go through the centralized gateway and, in
some instances, through the load balancer. Fig. 8 shows the schematic diagram of a Hybrid
gateway pattern.

Fig. 8. Hybrid gateway pattern

Overall, this pattern behaves similarly to the centralized API gateway pattern, except that some
of the most failure-prone parts of the centralized pattern are delegated to the application
teams. This streamlines API gateway operations and enables app teams to move at their own
pace. However, it also shifts the responsibility for some runtime operational and security
concerns from the API gateway team to those application teams. The exact split of these
responsibilities (e.g., sidecar in a service mesh architecture) can vary greatly across different
organizations based on their risk profiles and past experiences. Typically, the gateway takes
responsibility for:

• Authentication

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

35

• Rate limiting

• Circuit breaking

• Service discovery

• Routing

• Caching

• Network-level load balancing

The application or dedicated gateway is responsible for:

• Authorization

• Request/response validation

• Protocol conversion

• Error handling

• Application-instance load balancing

Both are responsible for logging and monitoring to enable visibility into the state of the system
and to ensure that policies are being enforced at runtime.

There are similar advantages as the centralized gateway pattern that also include:

• Mitigation of most shared-fate outages and noisy neighbors by moving the most error-
prone processing (e.g., request validation) out of the shared gateway and delegating to
the application or dedicated gateway.

• Increased iteration speed due to the ability to update configurations with less process
overhead and quicken the time involved. This is possible due to the reduced risk of a
shared fate outage.

Disadvantages include:

• The enforcement of policies is split across the API gateway and many service instances,
which makes it more challenging to ensure that the policy is being enforced consistently
and correctly.

• There is increased operational burden on application teams compared to the centralized
API gateway pattern, as they are now responsible for ensuring that some policies are
enforced in their application.

• Not all classes of shared fate outages and noisy neighbors can be eliminated because
the shared central gateway is doing at least some application layer processing.

• Cost attribution is significantly improved compared to the centralized pattern because
the most expensive runtime policies are implemented by the application teams.
However, the centralized gateway can still be very expensive to operate at high scales
and is as difficult to attribute costs as in the centralized pattern.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

36

• Caching hit rates also suffer similarly to the centralized pattern for the same reasons.

• Bypassability/pivot – the module that enforces policies may be bypassed

4.3. Distributed Gateway Pattern

In a distributed approach, the gateway is directly associated with the application, which is
owned by a single team. This ensures that changes are isolated to services owned by that team
and that the potential for shared fate outages does not arise. Changes to each gateway are
“safe” from the organization’s perspective: a bad change will not cause additional problems for
other teams, and the team that caused the outage to occur can fix the problem.

External traffic must still enter through a load balancer (see Fig. 9), which does not enforce any
policy and only performs routing. Internal traffic may use the same load balancer but may be
routed directly peer-to-peer, removing the central gateway from internal traffic as desired,
since enforcement of policy happens at the service instance.

This leaves two key challenges that the implementation must address:

1. Ensuring that the remaining shared configuration (i.e., the load balancer) is safe for each
team’s changes

2. Ensuring that both cross-cutting and application-specific policies are enforced
consistently across the organization

Keeping the load balancer’s configuration safe is a universal problem across all three
implementations. However, it is most acute in the distributed pattern because the load
balancer must cope with configuration for many applications, while only the API gateway’s
configuration needs to be present in the other patterns. Regardless of implementation pattern,
this is most often handled at the business process level. Organizations decide on a fixed naming
scheme that is enforced by the continuous integration and continuous delivery (CI/CD) process
or is otherwise hidden by the organization’s platform (e.g., subdomains-per-service, such as
foo.api.example.com and bar.api.example.com; paths-per-service, such as
api.example.com/v1/foo and api.example.com/v2/bar).

The challenge of a cross-cutting policy is unique to this pattern. In recent years, it has been
solved robustly in open source via the service mesh, which can provide a single point for policy
management and use its proxies to enforce those policies (i.e., API protections) at each service
instance. The service’s properties [2] and use for security [3][6] have been covered in other
NIST guidelines.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

37

Fig. 9. Distributed API gateway pattern

The advantages of a distributed gateway pattern include:

• All processing is done per application team (i.e., no noisy neighbors), and the risk of a
shared fate outage is only present on the load balancer (see Fig. 10), which is a risk
shared across all implementation patterns.

• It has the highest rate of change for app teams because they have no external
dependencies and little chance of causing outages for other teams.

• A cross-cutting policy can be managed by the central API gateway team via the
gateway’s control plane (e.g., with the service mesh). This pattern can be adopted
harmoniously in a mixed environment, where some APIs are implemented via any of the
three patterns in a single organization.

• Cost attribution is straightforward and no more or less challenging than attributing any
compute resource spent by teams in the organization.

• Cache locality is typically better than in the other patterns because there is only a single
layer of load balancing, and the gateway is co-located with the application. This means
that gateway policy checks for a given user are cached alongside the application
instance that caches business logic data for that user. However, if a user’s request is
load-balanced across multiple service instances, then duplicate policy checks have to be
performed that would not be required in the other patterns.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

38

Fig. 10. Service-to-service traffic flows in distributed API gateway pattern

Disadvantages include:

• Because the policy is checked and easily cached per application instance, there can be
many more policy checks in the system overall. Any time a user’s request is load-
balanced to a new service instance, it is highly likely that a new policy check has to be
performed. This is an inherent problem in any zero-trust system, which pushes
enforcement to the application instance and likely necessitates the adoption of a
distributed cache that is managed alongside or as part of the API-serving infrastructure.

• The pattern puts the most burden on application teams. Those teams have to interact
with the team managing the load balancer for each API they expose and need to
operate at least some of the API-serving infrastructure (e.g., making sure that they have
a gateway deployed and routing). Technology like a service mesh can help simplify this,
but a burden remains.

• Auditing and verifying policy enforcement can be challenging as enforcement is
distributed across all application instances. A robust, distributed gateway
implementation (e.g., a service mesh) can help mitigate this via centralized
configuration control combined with distributed enforcement and consistent telemetry.
If an organization can audit and verify a hybrid gateway pattern, a distributed gateway
pattern can be supported with little additional effort.

4.4. Related Technologies

Other technologies fit in and overlap with simplified API gateway patterns and architectures.
Notable companion technologies include:

• Web application firewalls (WAFs)

• Bot detection

• DoS and distributed denial of service (DDoS) mitigation

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

39

• API endpoint protection

• Web application and API protection (WAAP)

4.4.1. Web Application Firewalls

WAFs mitigate risks related to a request’s metadata and payload without needing the
application to be involved. In other words, they can be treated as a cross-cutting policy and
managed by a central team. WAFs work at the application level and operate on parsed HTTP
requests (i.e., they can implement policy per header and on request bodies). However, WAFs
generally do not work at the API level. A WAF can scan a request for a payload that looks like a
SQL injection attack, but it cannot assert, for example, that a request has a “name” field that is
a string less than 100 characters long. As such, a WAF is an excellent first step for organizations
to implement the policies outlined in this document, but it is not a complete solution.

The Open Worldwide Application Security Project (OWASP) publishes research on
vulnerabilities based on data from its partners [7] as well as a generic set of WAF rules — the
Core Rule Set (CRS) [25] — that aim to mitigate many common attacks. The CRS should be
treated as a starting point for any organization’s WAF policy. Deploying a WAF with at least the
CRS enabled helps mitigate risks, including malicious inputs (see Sec. 2.6.2), unrestricted
resource consumption (see Sec. 2.4), and the leaking of sensitive information (see Sec. 2.5).

There are two primary downsides with WAFs:

1. WAFs are relatively expensive to run in terms of both latency and compute. They need
to parse every request, perform a variety of scans to identify attack signatures (the
number of scans depends on the policy configured), and either block or forward the
request. While this overlaps heavily with the functionality of an API gateway, a WAF is
typically deployed and operated by a separate team in isolation from the API gateway,
often as part of the load balancer. This is convenient because the load balancer is the
first place where requests are decrypted in the infrastructure. A secondary consequence
is that WAF policies are typically only enforced at the perimeter.

2. WAFs are fundamentally reactive. They operate based on matching requests to known
attack signatures. As a result, they are largely ineffective at mitigating novel attacks, and
attackers can leverage a variety of obfuscation techniques to hide known attacks behind
novel signatures. Care must be taken to ensure that the WAF is running with the latest
attack signature configurations, and custom rules must often be written for the
organization.

In line with a zero trust posture, WAF policies should be enforced as close to the application as
possible. This helps mitigate a variety of mechanisms that attackers might use to pivot within or
otherwise compromise an infrastructure. As a practical matter, it can be cost-prohibitive to run
a full suite of WAF mitigations on every internal and external request. This cost can be
mitigated in two ways, which can be combined:

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

40

1. Incorporate the WAF as part of the overall API-serving infrastructure, deploy the WAF
itself in a hybrid model (i.e., keep a centralized WAF at the load balancer with a full suite
of policies to protect against untrusted traffic), and enforce a minimum set of app-
specific WAF policies near each of the applications (e.g., in the distributed gateway).
This minimizes policies run on east-west (i.e., generally assumed to be trusted) traffic
while still sanitizing less trusted external traffic and tends to result in a good
compromise of risk versus cost.

2. Deploy the WAF as part of the API gateway implementation itself, which can avoid
parsing the request multiple times (i.e., reduce the latency and compute costs of WAF
policies), regardless of the API-serving implementation pattern chosen. If the API
gateway is hybrid or distributed, then this technique can also be incorporated for
further performance improvement.

4.4.2. Bot Detection

Bot detection typically involves evaluating risk signals, including origin (e.g., source IP, user
credentials) and API usage patterns, over time to determine whether a seemingly legitimate
user is likely to be a bot (i.e., an automated script acting maliciously). In response to flagging a
high-risk user, bot detection systems will either block traffic or serve some kind of bot-
defeating measure (e.g., CAPTCHA) before allowing the system to continue to be used. These
tools primarily mitigate the risks of unrestricted resource access (see Sec. 2.4) (e.g., maliciously
automating account creation in an email system) and leaking sensitive information (see Sec.
2.5), especially data exfiltration by repeated calls.

Bot detection is frequently deployed in user-facing applications. It can be more challenging with
a purely machine-to-machine API because legitimate and malicious traffic patterns are even
harder to differentiate. Many APIs are intended for use by scripts or non-user-facing
applications, so human versus computer checks are irrelevant.

4.4.3. Distributed Denial of Service (DDoS) Mitigation

A DDoS attack is a DoS that originates from many different locations or users. This makes it
more challenging to mitigate than a traditional DoS attack, which can often be prevented by
blocking a small set of users. While DoS attacks may be targeted and application-level, DDoS
attacks are often network-oriented in nature and seek to saturate the server’s bandwidth or
ability to establish new connections. Because of the primarily network-oriented nature of DDoS
attacks, most DDoS mitigation tools are deployed at the network edge as part of the load
balancer or even before the load balancer as part of the CDN and DNS system (often called
“Global Traffic Management”). Predictably, DDoS mitigation tools help mitigate unrestricted
resource consumption (see Sec. 2.4).

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

41

4.4.4. API Endpoint Protection

“API protection” or “API endpoint protection” are nebulous terms for describing a set of
capabilities around API inventory, authentication, rate limiting, and data analysis. The exact set
of capabilities tends to vary with the implementation. For example, sophisticated
implementations can scan requests and responses to tag suspect data on the wire (e.g., to help
tag sensitive data and pinpoint possible leaks or exfiltration).

API protection products are typically packaged with the API gateway. API gateway vendors
primarily deliver their products in the centralized API gateway pattern, so these controls are
often only enforced at the perimeter. Like a WAF, the policies they enforce are typically cross-
cutting and do not require an in-depth understanding at the API payload level. As such, the two
products are often marketed in a similar niche. The exact set of risks mitigated by these tools
depends on the feature set, but they usually attempt to mitigate a lack of API visibility (see Sec.
2.1), broken authentication (see Sec. 2.3), some aspects of unrestricted compute consumption
(see Sec. 2.4), and the leaking of sensitive information (see Sec. 2.5).

There is value in any tool that helps organizations inventory and manage their APIs and traffic.
However, policy enforcement should be as close to the individual service instance as possible in
order to achieve robust API security assurance. In the use case of data classification, these tools
can be especially helpful when building an initial inventory. As API definitions are rolled out
across the organization, data tagging should be implemented as part of the API schema, and the
data flow policy should be enforced via explicit policy (e.g., with an authorization system). The
runtime discovery of data flow is particularly important for protecting against exfiltration.

4.4.5. Web Application and API Protection (WAAP)

Gartner coined the term “web application and API protection” (WAAP) [27] to describe the
trend of packaging these technologies (i.e., WAF, bot detection, DDoS mitigation, API
protection) into a single product. Regardless of how the capabilities are implemented,
organizations must understand the risks that they are trying to mitigate in the context of their
existing security posture.

4.5. Summary of Implementation Patterns

Combining the three patterns in API gateway architecture with the companion technologies
discussed Sec. 4.4 provides a comprehensive set of enterprise security solutions for API
protection. The key point in each pattern is identifying where to enforce each policy. These
decisions result in trade-offs in runtime, architecture, and operations for the application teams
utilizing the API-serving infrastructure. Many organizations use a combination of all three
patterns deployed in production precisely because of those trade-offs. While all three patterns
can be used to successfully implement the controls outlined in this document, the distributed
gateway pattern and its companion technologies best align with the principles of zero trust and
are strongly recommended for organizations that want to adopt a security-forward approach.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

42

5. Conclusions and Summary

APIs are critical for integrating applications into the digital infrastructure of an enterprise. Given
the highly distributed nature of both physical and logical applications, NIST recommends that
APIs be operated under zero trust principles, irrespective of whether they are exposed to the
outside world or meant to be consumed by other applications within the enterprise’s
infrastructure. Like all software, APIs go through an iterative life cycle with phases (i.e.,
Develop, Build, Deploy, Operate) that can be broadly classified into pre-runtime and runtime
stages.

The sheer proliferation of API deployments, the heterogeneous infrastructures under which
they operate, and the access to valuable corporate data that they enable make them targets for
exploitation. A detailed analysis of their vulnerabilities and the potential attack vectors that can
exploit them is a prerequisite for identifying the appropriate set of protection measures or
controls to ensure API security. This document analyzes a spectrum of risk factors that give rise
to vulnerabilities, such as the lack of a formal schema, improper inventorying, the lack of robust
authentication and authorization support, the improper monitoring of resource consumption,
and inadequate control over the leakage of sensitive information.

The recommended controls in this document are classified into pre-runtime and runtime
protections. They are further subdivided into basic and advanced protections to enable
enterprises to use a risk-based and incremental approach to securing their digital assets. Pre-
runtime protections focus on API specification parameters (i.e., syntactic and semantic aspects),
while runtime protections focus on API request and response operations (e.g., encrypted
communication channels, proper authentication and authorization).

These guidelines present a landscape of real-world and state-of-practice implementation
options to configure and enforce the recommended controls by describing the advantages and
disadvantages of each type of protection deployment or pattern. This will enable practitioners
to make an informed decision to realize a robust and cost-effective API security infrastructure
for their enterprises.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

43

References

[1] U.S. Department of Defense Chief Information Officer (2024) DoD Enterprise DevSecOps
Fundamentals. Version 2.5, October 2024. Available at
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSe
cOps%20Fundamentals%20v2.5.pdf

[2] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications
Using Service-Mesh Architecture. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204A.
https://doi.org/10.6028/NIST.SP.800-204A

[3] Chandramouli R, Butcher Z, Aradhna C (2021) Attribute-based Access Control for
Microservices-based Applications using a Service Mesh. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204B.
https://doi.org/10.6028/NIST.SP.800-204B

[4] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based
Application with Service Mesh. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C.
https://doi.org/10.6028/NIST.SP.800-204C

[5] Chandramouli R, Kautz F, Torres-Arias S (2024) Strategies for the Integration of Software
Supply Chain Security in DevSecOps CI/CD Pipelines. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204D.
https://doi.org/10.6028/NIST.SP.800-204D

[6] Chandramouli R, Butcher Z (2023) A Zero Trust Architecture Model for Access Control in
Cloud-Native Applications in Multi-Cloud Environments. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-207A.
https://doi.org/10.6028/NIST.SP.800-207A

[7] OWASP (2023) OWASP Top 10 API Security Risks. Available at https://owasp.org/API-
Security/editions/2023/en/0x11-t10/

[8] OWASP (2023) API2:2023 Broken Authentication. Available at https://owasp.org/API-
Security/editions/2023/en/0xa2-broken-authentication/

[9] Wikipedia (2025) Fatigue Attack. Available at https://en.wikipedia.org/wiki/Multi-
factor_authentication_fatigue_attack

[10] Wikipedia (2024) Billion laughs attack. Available at
https://en.wikipedia.org/wiki/Billion_laughs_attack

[11] Wikipedia (2025) Zip bomb. Available at https://en.wikipedia.org/wiki/Zip_bomb
[12] National Institute of Standards and Technology (2024) The NIST Cybersecurity

Framework (CSF) 2.0. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 29.
https://doi.org/10.6028/NIST.CSWP.29

[13] Wikipedia (2025) Principle of least astonishment. Available at
https://en.wikipedia.org/wiki/Principle_of_least_astonishment

[14] F# for fun and profit (2013) Designing with types: Making illegal types unrepresentable.
Available at https://fsharpforfunandprofit.com/posts/designing-with-types-making-
illegal-states-unrepresentable/

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Fundamentals%20v2.5.pdf
https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Fundamentals%20v2.5.pdf
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.6028/NIST.SP.800-204C
https://doi.org/10.6028/NIST.SP.800-204D
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://doi.org/10.6028/NIST.SP.800-207A
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://en.wikipedia.org/wiki/Multi-factor_authentication_fatigue_attack
https://en.wikipedia.org/wiki/Multi-factor_authentication_fatigue_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Zip_bomb
https://doi.org/10.6028/NIST.CSWP.29
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/
https://fsharpforfunandprofit.com/posts/designing-with-types-making-illegal-states-unrepresentable/

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

44

[15] Joint Task Force (2020) Security and Privacy Controls for Information Systems and
Organizations. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) NIST SP 800-53r5. Includes updates as of December 10, 2020.
https://doi.org/10.6028/NIST.SP.800-53r5

[16] Barker E (2020) Recommendation for Key Management: Part 1 – General. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
NIST SP 800-57pt1r5. https://doi.org/10.6028/NIST.SP.800-57pt1r5

[17] National Institute of Standards and Technology (2019) Security Requirements for
Cryptographic Modules. (Department of Commerce, Washington, D.C.), Federal
Information Processing Standards Publications (FIPS) NIST FIPS 140-3.
https://doi.org/10.6028/NIST.FIPS.140-3

[18] Jones M, Bradley J, Sakimura N (2015) JSON Web Token (JWT). (Internet Engineering
Task Force (IETF)), IETF Request for Comments (RFC) 7519. Available at
https://datatracker.ietf.org/doc/html/rfc7519

[19] Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
(Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 5280.
Available at https://datatracker.ietf.org/doc/html/rfc5280

[20] Wikipedia (2023) Common Log Format. Available at
https://en.wikipedia.org/wiki/Common_Log_Format

[21] Github (2016) grpc. Available at
https://github.com/grpc/grpc/blob/master/src/proto/grpc/status/status.proto

[22] Wikipedia (2025) Prompt injection. Available at
https://en.wikipedia.org/wiki/Prompt_injection

[23] Wikipedia (2024) Cascading failure. Available at
https://en.wikipedia.org/wiki/Cascading_failure

[24] Infoq.com (2020) How to Avoid Cascading Failures in Distributed Systems. Available at
https://www.infoq.com/articles/anatomy-cascading-failure/

[25] Coreruleset.org (2025) OWASP CRS PROJECT. Available at https://coreruleset.org
[26] Wikipedia (2025) Confused deputy problem. Available at

https://en.wikipedia.org/wiki/Confused_deputy_problem
[27] Gartner.com (2025) Cloud Web Application and API Protection. Available at

https://www.gartner.com/reviews/market/cloud-web-application-and-api-protection

https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.FIPS.140-3
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc5280
https://en.wikipedia.org/wiki/Common_Log_Format
https://github.com/grpc/grpc/blob/master/src/proto/grpc/status/status.proto
https://en.wikipedia.org/wiki/Prompt_injection
https://en.wikipedia.org/wiki/Cascading_failure
https://www.infoq.com/articles/anatomy-cascading-failure/
https://coreruleset.org/
https://en.wikipedia.org/wiki/Confused_deputy_problem
https://www.gartner.com/reviews/market/cloud-web-application-and-api-protection

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

45

Appendix A. API Classification Taxonomy

A.1. API Classification Based on Degree of Exposure

Since APIs are interfaces that are exposed to relevant stakeholders, they should be classified
based on their degree of exposure. Three kinds of APIs are prevalent:

1. Open/public APIs are exposed to a broader and wider audience (i.e., customers) and
used with external partnerships or services. These are also called “facade APIs,” as they
may provide limited access to certain functionalities.

2. Private APIs are used to link various systems within an enterprise and are closely
guarded, such as a contract between microservices that are internal to an organization.
Variations of private APIs are:

a. Internal APIs (service APIs): Used by enterprises to streamline their internal
workflows and create flexible systems that can adapt to changing business needs

b. Composite APIs: Allow multiple data and service calls to be combined to realize
efficiency in system design

3. Partner APIs are used in the context of collaborative ventures between enterprises, as
both rely on shared services or data to deliver value to their end users. In terms of
exposure, they represent a middle ground between public and private APIs since access
is restricted based on collaborative agreements.

A.2. API Classification Based on Communication Patterns

There are two fundamental API communication patterns that govern how information flows
between the components involved in system interactions:

1. Request-response APIs: A communication pattern in which a client sends a request to a
server and awaits a corresponding response. It operates synchronously with stateless,
independent requests. This pattern is widely employed in diverse API architectures (e.g.,
RESTful APIs, GraphQL, various web services) and is appropriate for immediate data
retrieval or any instant action (e.g., downloading a user’s profile in a social media app).
Requests are made with verbs that are appropriate for the API architecture (e.g., HTTP
method GET in RESTful architecture, a structured query that specifies the exact data
needed in GraphQL architecture).

2. Event-driven APIs: A better choice for receiving real-time updates (e.g., user’s activities
in the same app).

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

46

A.3. API Classification Based on Architectural Style or Pattern (API Types)

Table 1. API classification based on architectural patterns

API Name Network Protocols Supported Data/Message Formats Supported
REST HTTP, HTTPS,FTP JSON, XML, HTML, Plaintext
gRPC HTTP/2 Binary — Protocol Buffers

(Protobuf)
GraphQL HTTP – POST only JSON
WebSocket WebSocket JSON
SOAP HTTP, HTTPS, SMTP XML

A.4 API Classification Based on Data Sensitivity

There are environments where APIs must be classified based on sensitivity levels (e.g., public,
internal, confidential, restricted) with targeted controls for each classification.

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

47

Appendix B. DevSecOps Phases and Associated Classes of API Controls

The detailed controls in Sec. 3 fit into several broad classes, and Table 2 shows their
associations with the DevSecOps phases (see Sec. 1.2).

Table 2. DevSecOps phases and associated classes of API controls

DevSecOps Phase Class of API Controls

Coding Well-defined API schema definition that calls to
routines for annotating schema definitions

Build Generate routines that validate on-field values in the
request and response payloads of API calls and
responses, respectively

Test Ensure that validation routines perform as intended in
various runs of API requests and responses

Deployment Ensure that the deployment package contains all of
the runtime policy enforcement routines, API schema
definitions, and APIs and is signed off by appropriate
authorities

Observe and Monitor Ensure that certain security incidents (e.g., data
leakage) do not occur due to (a) inherent flaws in API
design, (b) the lack of input data validation, or (c)
engineered attacks realized through a sequence of
requests that each pass all validation tests

NIST SP 800-228 Guidelines for API Protection
June 2025 for Cloud-Native Systems

48

Appendix C. Limit Types Configured During Runtime

Limit Type Description Examples
1. Rate Limits Controls the number of requests that a client can

make within a specific time frame
• 100 requests per minute
• 1,000 per hour
• 10,000/day

2. Quotas Restricts total usage over a longer period, often
per user or API key

• 1 GB data/month
• 500,000 API calls/month

3. Concurrent Connection
Limits

Limits the number of simultaneous requests or
sessions per client

• 5 concurrent connections
• 10 sessions per API key

4. Payload/Request Size
Limits

Restricts the maximum size of incoming data to
prevent abuse

• Max request body: 2 MB
• Max file upload: 10 MB

5. Response Size/Time
Limits

Prevents the excessive use of resources by limiting
response time or size

• Max response time: 5 sec
• Max 1,000

records/request
6. IP-Based or Geographical

Limits
Restricts access based on IP addresses or
geographical location

• Block high-volume Ips
• Restrict access by country

7. User Role-Based Limits Applies different usage limits based on user roles
or subscription levels

• Free tier: 100
requests/day

• Pro: 10,000 requests/day

	Executive Summary
	1. Introduction
	1.1. Zero Trust and APIs: The Vanishing Perimeter
	1.2. API Life Cycle
	1.3. Document Goals
	1.4. Relationship to Other NIST Documents
	1.5. Document Structure

	2. API Risks: Vulnerabilities and Exploits
	2.1. Lack of Visibility of APIs in the Enterprise Inventory
	2.2. Missing, Incorrect, or Insufficient Authorization
	2.3. Broken Authentication
	2.4. Unrestricted Resource Consumption
	2.4.1. Unrestricted Compute Resource Consumption
	2.4.2. Unrestricted Physical Resource Consumption

	2.5. Leaking Sensitive Information to Unauthorized Callers
	2.6. Insufficient Verification of Input Data
	2.6.1. Input Validation
	2.6.2. Malicious Input Protection

	2.7. Credential Canonicalization: Preparatory Step for Controls
	2.7.1. Gateways Straddle Boundaries
	2.7.2. Requests With a Service Identity But No User Identity
	2.7.3. Requests With a User Identity But No Service Identity
	2.7.4. Requests With Both User and Service Identities
	2.7.5. Reaching Out to Other Systems
	2.7.6. Mitigating the Confused Deputy
	2.7.7. Identity Canonicalization

	3. Recommended Controls for APIs
	3.1. Pre-Runtime Protections
	3.1.1. Basic Pre-Runtime Protections
	3.1.2. Advanced Pre-Runtime Protections

	3.2. Runtime Protections
	3.2.1. Basic Runtime Protections
	3.2.2. Advanced Runtime Protections

	4. Implementation Patterns and Trade-Offs for API Protections
	4.1. Centralized API Gateway
	4.2. Hybrid Deployments
	4.3. Distributed Gateway Pattern
	4.4. Related Technologies
	4.4.1. Web Application Firewalls
	4.4.2. Bot Detection
	4.4.3. Distributed Denial of Service (DDoS) Mitigation
	4.4.4. API Endpoint Protection
	4.4.5. Web Application and API Protection (WAAP)

	4.5. Summary of Implementation Patterns

	5. Conclusions and Summary
	References
	Appendix A. API Classification Taxonomy
	A.1. API Classification Based on Degree of Exposure
	A.2. API Classification Based on Communication Patterns
	A.3. API Classification Based on Architectural Style or Pattern (API Types)
	A.4 API Classification Based on Data Sensitivity

	Appendix B. DevSecOps Phases and Associated Classes of API Controls
	Appendix C. Limit Types Configured During Runtime

