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ABSTRACT  

3D stereo depth sensors have a variety of applications, including sensing for autonomous vehicles, reverse engineering, 

and manufacturing automation. The performance of these sensors can be affected by various factors, such as sensor* 

construction, sensor technology, sensor settings, environment, etc. Understanding parameters that affect sensor output is 

needed to characterize them and to develop standards.  

As machine learning (ML) with 3D point clouds and depth data becomes increasingly prevalent, understanding the data 

used with these models becomes crucial for improving the adoption rates of such depth sensors. In certain domains, sensor 

noise and transient effects can become dominant. Reducing noise before using sensor data with ML algorithms is necessary 

for increased algorithm accuracy.  

To characterize depth sensors, we conducted experiments using targets with varying gloss, color, and texture/pattern. 

Additionally, we studied sensor data quality and noise by exploring sensor parameters such as exposure, gain, and laser 

power. We found transient effects in both 2D images and depth data captured by sensors. These experiments help inform 

the operating conditions that could be advised for specific applications and future standards addressing these sensors. 
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INTRODUCTION  

2D and 3D sensors have been employed in various applications, such as autonomous vehicles, autonomous navigation, 

robotic bin picking, and industrial automation (Yang, et al. 2021[1]), and they are increasingly being aided by image-based 

machine learning (ML) algorithms. As these application areas and algorithms mature, it is crucial to determine the 

conditions and parameters that affect the quality of sensor outputs. This work will describe the investigations related to 

the transient changes and spatial effects of the 3D stereo sensor output that are influenced by sensor settings and target 

characteristics. This work will enable end-users to make informed decisions on investing in technology that meets the 

needs of their application. 

 

State of the art and review of literature 

Many research groups have investigated stereo-depth noise, often from the perspective of software/processing-based 

techniques for noise reduction. Mallick et al. (2014)[2] reviewed noise for a commercial 3D sensor and determined that 

the broad types of noise often studied are spatial, temporal, and interference. Chatterjee et al. (2015)[3] built a noise model 

that was compared to experimental data and tested bilateral filtering. Multiple groups have used Markov Random Field 

models to improve depth data characteristics (Zhang et al., 2015[4]; Zhu et al., 2008[5]).  Houshmand et al. (2024)[6] used 

a neural network based system to reduce active stereo noise.  

 

Some other research groups have studied noise caused by sensors and the environment, more closely resembling this work. 

Halmetschlager-Funek et al. (2018)[7] compared active stereo technology against other sensors whose performance varies 

with factors such as different materials and lighting. Pomerleau et al. (2012)[8] discussed the effect of internal temperature 

(in the context of being affected by the sun) and the reflectance of the target material on characterizing sensor noise. Wang 

and Shih (2021)[9] used a step method to measure the fluctuations in active stereo measurements at different distances to 

a flat, planar target. Kamberova and Bajcsy (1998)[10] first modeled the stereo disparity, which was validated 

experimentally, and conducted target-based tests to determine the scene attributes (such as weak textures) that led to errors 

 
* In this work, a sensor refers to a 3D stereo depth sensor 



 

 
 

 

in depth. Carfagni et al. (2019)[11] analyzed the performance of one 3D sensor and found higher errors associated with 

laser power set to 0 mW (i.e., with the laser turned off).  

 

Background and motivation 

There are two primary motivations for performing this work: a) Understanding the effects of sensor noise on 3D data 

quality (accuracy, precision, and resolution); b) Understanding the sources of sensor noise can help identify ways to 

improve sensor performance and thereby improve the accuracy of ML algorithms.  

 

This work focuses on stereoscopic depth sensors, which use two cameras and a pattern projector. The work used three 

commercial active stereo sensors that use different wavelengths of light for illumination, which are listed in Table 1, and 

their names are intentionally anonymized. The work here informs the possible noise sources to consider when deploying 

these commercial sensors in real-world applications. These applications could benefit from better noise reduction to obtain 

more accurate and interpretable data. By understanding the sources of noise in these sensors, users can be informed of 

situations that cause them and, therefore, devise ways to minimize them. This will also help manufacturers in improving 

sensor design and development.  

This work is also relevant to improving ML applications, as data quality is crucial for desired ML outputs. For instance, 

many autonomous vehicles rely on global navigation satellite systems (GNSS) for navigation. In GNSS-denied 

environments, these vehicles rely on perception sensors such as 3D cameras, depth sensors, and lidars. The output of these 

sensors is fused and processed using ML algorithms. When an unexpected navigational error occurs, the consequences can 

be catastrophic. Thus, noise and undesired signals in the sensor output must be mitigated to enable safer operation of such 

vehicles. By understanding the various noise sources for stereo sensors, as discussed in this study, noise can be reduced 

before input into an ML model, thus likely improving the model accuracy. 

 

Parameters that influence sensor data quality 

Several parameters influence the sensor’s data quality. In this work, the effects of varying different settings on the sensors 

were studied. Among several available settings, a subset of common settings across multiple sensors was identified and 

categorized (see Table 2). The parameters in each row in the table are closely related, though the underlying technology 

and implementation may differ.  

 

 

 

Table 1: 3D stereo depth sensors used in this work and their specifications 

Sensor 

name 
Technology 

Separate 2D 
Imager 

Frames per 

second 

Light source 

Wavelength 

Depth Image 

Pixel 

Resolution* 

Depth 

Working 

Range 

K1 Active Stereo** No 28 to 54 ≈ 465 nm 1024 × 768 0.23m to 100m 

R1 Active Stereo** Yes (RGB ‡) 30 to 90 ≈ 850 nm 848 × 480 0.3m to 3m 

R2 Active Stereo** Yes (RGB) 30 to 90 ≈ 850 nm 848 × 480 0.6m to 6m 

* Pixel resolution can be changed, but these were the settings used for experimentation 
** Mode can be switched to passive when the emitter/projector is off 
‡ Red-Green-Blue 

Table 2: List of parameters corresponding to each type of 3D depth sensor. 

Parameter # Sensor R1 and R2 Sensor K1 Description 

1 emitter_enabled trigger_1_enabled Turn the emitter on 

2 exposure manual_exposure_time Adjusts the exposure time 

3 gain † manual_gain Adjusts the gain 

4 enable_auto_exposure †. auto_exposure_mode Toggles the exposure settings from 

automatic to manual. 

5 laser_power trigger_1_pulse_width Adjusts the power of emitter/laser output. 

† These settings cannot be changed through the software development kit (SDK) during data acquisition 



 

 
 

 

• Parameter 1 controls the modes of the sensor’s operation – active and passive modes.   

▪ When the parameter is set to 1, the sensors are said to be in “active” mode, and a light pattern is emitted 

onto the target.  

▪ When the parameter is set to 0, the sensors are in passive mode, where no light patterns are generated.  

• Parameter 2 controls the exposure time of the sensors in microseconds. The longer the exposure, the slower the 

capture and the more light enters.  

• Parameter 3 controls the amount of gain, which increases the sensor imager’s sensitivity.  

• Parameter 4 controls whether gain and exposure are determined automatically or manually.  

▪ In the case of sensor K1, there are 4 settings:  

o 0 corresponds to automatic gain and automatic exposure,  

o 1 corresponds to manual gain and automatic exposure,  

o 2 corresponds to automatic gain and manual exposure, and  

o 3 corresponds to manual gain and manual exposure.  

▪ In the case of sensors R1 and R2, gain and auto exposure modes were not found to be changeable using 

the SDK provided by the sensor’s original equipment manufacturer (OEM), but these modes can be 

changed manually using the OEM’s own software interface. 

• Parameter 5 on all three sensors controls the strength of the emitted signal but is implemented differently.  

 

Parameter 5 for sensors R1 and R2 is in units of power, and it controls the power of the emitter. In contrast, Parameter 5 

for sensor K1 is in units of time and controls the duration of each light pulse. The relationship between optical power and 

pulse width is commonly found using 𝑃𝑎𝑣𝑔 =  𝑃𝑝
𝜏𝑝

𝑇
 where 𝑃𝑎𝑣𝑔 is the average output power, 𝑃𝑝 is the peak power, 𝜏𝑝 is 

the pulse period, and T is the total period (Burkhart, 2009[12]). The signal becomes visually brighter (in the visible 

spectrum) as the pulse width increases for sensor K1. For sensors R1 and R2, the infrared (IR) output becomes brighter in 

the IR spectrum. The increased brightness (in both visible and IR spectra) makes it easier for the sensor to minimize errors 

in identifying the points on the target.  

 

After studying these parameters, it was observed that the number of unique parameters affecting sensor performance 

narrows to three: Parameters 2, 3, and 5. Parameters 2 and 3 control the amount of light captured by the sensor, and 

Parameter 5 controls the amount of light projected onto the target.   

 

Experimental setup, results, and discussion 

The experimental setup consisted of a sensor with its optical axis oriented approximately normal to the surface of the target 

(Figure 1). The sensors can obtain data in active and passive modes, i.e., with and without pattern projection. Sensor K1’s 

emitter is a pseudorandom projector in the visible light spectrum, whereas both sensors R1 and R2 emit dots in the IR 

spectrum (see Figure 2). These patterns assist the sensor in minimizing errors in the correspondence between common 

points obtained from the two cameras and, therefore, generally, obtains more accurate depth measurements than in passive 

mode (see Batlle et al., 1998[13]). By varying the strength of each sensor’s illumination, correlations to depth noise and 

measurement accuracy can be studied. These sensors also capture typical 2D images (RGB or grayscale), and thus, the 

intensity of the images could be investigated as well but were not part of the experiments described here.  

 

 

   

      a) Sensors R2                     b) Sensor K1 

 
Figure 1. Picture of the experimental setup with sensor K1 on the left 

and a Lambertian target on the right 

Figure 2. Illumination pattern of the depth sensors (R1 

has a similar pattern as that of R2) 



 

 
 

 

Data from sensors R1 and R2 were read using the MATLAB† SDK from the original equipment manufacturer (OEM). 

Another method explored to acquire data was to 

use the OEM’s own capture software to record 

sensor data and to then process the data using 

MATLAB. However, such data was found to be 

filtered, which would be undesirable for this 

study.  

Similarly, data from sensor K1 was captured 

using Python and was analyzed using MATLAB. 

The Python scripts were called from MATLAB, 

and once data collection ended, the data was sent 

directly to the MATLAB script. This method was 

found to be optimal for this sensor due to 

repeated, unexpected terminations of MATLAB 

when reading the sensor’s data directly into 

MATLAB.  

Initial experiments involved studying the output 

of the depth sensors in varying environments. 

The targets used in these experiments included a 

glossy white surface, a near-Lambertian white surface, a patterned reflective surface, a white-to-black gradient, a black 

non-glossy surface, and a spilled-coin pattern (Figure 3). These initial experiments tested the sensor responses to the 

extremes of glossiness and reflectivity. They also tested for apparent data anomalies in the sensors, e.g., if part of the 

sensor’s field of view did not capture data. However, no significant issues of this nature were found in these experiments.  

 The subsequent experiments were conducted in a laboratory with a controlled environment. The laboratory had an ambient 

light level that varied between 330 lx to 370 lx and a temperature that varied between 19 °C to 21 °C. The average light 

intensity values measured normal to the target varied between 133 lx and 157 lx. A desk fan was used to maintain a 

consistent temperature in the sensors by treating the large room as a thermal reservoir and cycling in the air at a consistent 

temperature from the room. Typical temperature readings for sensor K1 and its emitter ranged between 24 °C and 26 °C 

externally (as measured using a thermometer) and 28 °C to 32 °C internally (as measured using the OEM software). In 

contrast, sensors R1 and R2 were not found to deviate from the room temperature during these experiments. The laboratory 

experiments were conducted using a target with a Lambertian gray flat surface with 50% reflectivity (see Figure 1) placed 

approximately 0.851 m to 0.863 m from the lens of the measuring sensors, which was within the operating range of the 

sensors. The region of interest was square with a width of 0.260 m to 0.285 m, acquired at the center of the sensors’ fields 

of view to avoid the impact of edge effects.  

 

Transient changes in sensor RGB and depth output 

We conducted a study to understand if there is any time 

dependency on the sensor’s RGB output. For R1 and R2, using 

default settings, a time dependency was observed in the RGB 

intensities upon initializing their pipeline for data collection. 

The image intensities often settle within 65 to 70 frames or 

2.167 seconds to 2.333 seconds. After this stage, the RGB 

intensities tended to be very stable, with minor variations due 

to noise. The frame at which stability is reached is indicated by 

a vertical line near the center of  Figure 4 and which denotes 

the time when all three intensities had reached a steady state. 

Steady state is determined when the slope of the moving 

average reaches a threshold value ≈0. This behavior is 

attributed to the auto-exposure being enabled, as the sensor’s exposure needs to adjust to ambient lighting to acquire 

 
† Commercial equipment and materials may be identified to specify certain procedures. In no case does such identification 

imply recommendation or endorsement by the NIST, nor does it imply that the materials or equipment identified are 

necessarily the best available for the purpose. 

 

 
Figure 3. Pictures (200 by 202 pixels) of different targets used in 

the study. a) white, glossy. b) white, non-glossy. c) glossy and 

patterned. d) white-to-black gradient non-glossy. e) black, non-

glossy, f) spilled coin pattern 

 
Figure 4. Plots of the RGB intensity values vs the 

frame number for sensor R1.  



 

 
 

 

images. While these findings are expected, the timing and conditions were not known ahead of time. This behavior can be 

minimized for applications requiring quick restarts by setting the exposure levels manually based on the previous exposure 

values.  

For depth measurements of R1 and R2, the transient effects are more sudden and binary. In some cases, for highly glossy 

surfaces, the sensor takes about 0.1 s (≈three frames) to start receiving data matching the known target distance (see Figure 

5a). Essentially, the depth data has a delay, but the duration of this delay is lower than that of RGB images. For matte 

surfaces, the variation in the depth data is often higher in the first three frames (Figure 5b). After this transient stage, the 

depth data settles to a steady state with consistent depth measurements. For sensor K1, such transient effects of the same 

magnitude are not apparent when looking at the corresponding plots.  

 

Data quality on various regions of the target 

During this study, some systematic variations in data quality (spatial effects) were observed with sensor K1 when acquiring 

data on a Lambertian target, but not when sensors R1 and R2 were used. Data from sensor K1 had zero depth values on 

the left side of the target shown in Figure 6.  

To investigate this, the OEM of sensor K1 was contacted, and they 

recommended that the sensor be calibrated. This calibration was performed 

according to instructions from the OEM, and it resulted in a reprojection 

error of 0.087 pixels, which is extremely low. Reprojection error is a 

geometric error corresponding to the image distance between a projected 

point and a measured one and can be used to ensure correct sensor 

calibration (Peng et al. 2024, [14]). Despite this calibration, sensor K1 

failed to obtain values on the left side of the target, even when cropped to 

a smaller region of 200 by 202 pixels. This issue is thus far unresolved and 

needs further investigation. 

For sensor K1, it was also observed that a higher pulse width (analogous 

to a higher brightness or strength of the active mode) resulted in lower 

noise and a higher data density (percentage of points acquired on the target; 

see Figure 7a and Figure 7b). Although the data density increased with 

higher pulse width, the sensor still missed a significant region on the left 

side of the target.  

 

 
Figure 5. Median depth vs frame number of Sensor R1 aimed at white targets with a) glossy surface, and b) matte surface 

 
Figure 6. Spatial map of median depth 

measured with sensor K1. Regions of dark blue 

correspond to a depth of 0 m, indicating that the 

sensor is not getting accurate data. 



 

 
 

 

Effect of gain on sensor noise and data acquired 

The effect of gain on sensor noise and data density was studied by observing data from sensor K1 on the Lambertian 

target‡. This was studied at various exposure levels (including automatic exposure) and pulse widths. However, only the 

results for automatic exposure using sensor K1 are presented in Figure 8.  

Overall, we observed decreased noise and increased data density when the gain was increased manually. However, this 

trend reversed when the gain was set to the automatic mode while exposure was also in the automatic mode. For example, 

in the trials shown in Figure 8, the automatic gain setting indicated a gain value of .00001 dB, resulting in a standard 

deviation of 1.806 mm and a data density of 90.94% (not plotted in Figure 8). Thus, in some cases, implementing custom 

optimization algorithms could be the desired approach rather than relying on the sensor’s in-built algorithms. While sensor 

K1 provides settings that might improve these results, not all sensors have these options, or they might optimize different 

parameters that could be most beneficial for a given application. 

 
‡ Similar experimentation on R1 and R2 were not conducted since the SDK did not have an option to programmatically 

vary gain and toggle auto exposure.  

 
Figure 7. a) standard deviation of depth at different pulse widths for sensor K1. b) percentage of data captured for sensor 

K1. (Note: A pulse width of 0 ms corresponds to the sensor being in passive mode) 

 
Figure 8. Data parameters of Sensor K1 with auto exposure of 16.136 ms and pulse width set to 5 ms. a) standard 

deviation of depth vs gain settings. b) percentage of data acquired vs gain settings. 



 

 
 

 

CONCLUSION AND FUTURE WORK 

The studies conducted as a part of this work explore sensor noise and data density from commercial 3D depth sensors and 

offer approaches to improve the data quality. The study on transient effects in these sensors informs the end-user of the 

duration to wait before a sensor is operational if using an auto-exposure setting. If auto-exposure is not used, the exposure 

value can be saved and set before sensor initialization to minimize the transient effects (if such an option exists). If the 

errors in the initial depth frames affect its intended operation, then those frames can be discarded until frame data passes 

and meets an application-specific threshold.  

 

Turning up the strength of the projector/emitter illumination in the active mode is often beneficial for minimizing 

measurement variation. Further, target color, gloss, and reflectance can impact sensor noise and data density. Manual 

implementation of sensor settings might be ideal in specific applications where ambient lighting and targets do not change. 

Further, the settings to increase the data density on a planar target could be drastically different from those to minimize 

the standard deviation of the data over the planar surface. 

 

Future work aims to apply optimization techniques to determine the parameters required by an application. This can be 

compared to the onboard algorithms provided by the sensors and could yield promising results in efficiency and 

customization. Additionally, studying the effect of sensor data quality on machine learning models can yield insights into 

methods to improve the accuracy of these models. 
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