
An Admission Control Algorithm for Isochronous
and Asynchronous Traffic in IEEE 802.11ad MAC

Anirudha Sahoo
Communications Technology Laboratory,

National Institute of Standards and Technology, Gaithersburg, Maryland, USA
Email: anirud@nist.gov

Abstract—Due to availability of large amount of bandwidth in
the 60 GHz band and support of contention-free channel access
called Service Period (SP), the IEEE 802.11ad/ay Wi-Fi standard
is well suited for low latency and high data rate applications.
IEEE 802.11ad supports two types of SP user traffic: isochronous
and asynchronous. These user traffic need guaranteed SP duration
before their respective deadlines. Hence, admission control plays
an important role in an IEEE 802.11ad system. In an earlier
work, we studied admission control and scheduling of isochronous
and asynchronous traffic in an IEEE 802.11ad system, but we
assumed the asynchronous requests to be periodic to keep the
algorithm simple. That assumption resulted in overallocation
of resource and potential degradation of performance. In this
paper, we present an admission control algorithm which does not
make such assumption and yet still maintains a linear run time
complexity and allocates resources to the requests in a proportional
fair manner. We provide arguments to establish correctness of the
algorithm in terms of guaranteeing SP allocation to the requests
before their respective deadlines.

Index Terms—admission control, scheduling, IEEE 802.11ad,
MAC, isochronous, asynchronous.

I. INTRODUCTION

A large amount of unlicensed bandwidth is available in the
millimeter wave (mmWave) 60 GHz band. In recent times,
the use of high data rate and low latency applications such
as 8K TV, Virtual Reality (VR) and Augmented Reality (AR)
are on the rise. These factors have led to development of
standards for the next generation Wi-Fi such as IEEE 802.11ad
and its successor IEEE 802.11ay. In terms of providing high
data rate and low latency, the IEEE 802.11ad Medium Access
Control (MAC) plays an important role. The IEEE 802.11ad
MAC supports contention-free channel access between a pair of
stations, called service period (SP). It handles two types of SP
traffic: isochronous and asynchronous. Isochronous traffic needs
guaranteed allocation of certain minimum service period (SP)
duration in every period. Asynchronous traffic, on the other
hand, requires one time guaranteed allocation of SP before its
deadline. So, every admitted isochronous and asynchronous
request must be guaranteed its requested SP duration before
its deadline. These two types of traffic are requested using
Add Traffic Stream (ADDTS) request1, which carries the traffic
parameters [1]. Due to the stringent allocation and deadline
requirements, admission control and scheduling of requests
is an important component of an IEEE 802.11ad system. We
have studied admission control and scheduling algorithms for
only isochronous requests in an IEEE 802.11ad system [2], [3].
Further, in [4], we presented admission control and scheduling

1Although asynchronous traffic can be requested by other means, in this
paper, we only consider ADDTS based method.

of both isochronous and asynchronous traffic. However, in
that work, we treat asynchronous traffic as periodic traffic,
which allows us to use the simple admissibility criteria used in
Earliest Deadline First (EDF) scheduling for periodic Central
Processing Unit (CPU) tasks in a realtime system [5]. However,
this assumption results in overallocation of resources to
asynchronous requests, leading to potential performance loss in
terms of admitting fewer requests. In this paper, we present an
admission control algorithm called, Efficient Admission Control
for Isochronous and Asynchronous Requests (EACIAR), which
does not make such assumption and yet still maintains a
linear run time complexity as well as allocates resources
in a proportional fair manner. Periodic and aperiodic CPU
tasks are quite similar to isochronous and asynchronous traffic
respectively. Admission control and scheduling of periodic and
aperiodic CPU tasks have been studied in the literature [5]–
[8]. But some of them have severe limitations, whereas some
others cannot be directly applied to IEEE 802.11ad MAC due
to difference in traffic description (please refer to Section IV for
more detailed discussion). We present the detailed admission
control algorithm along with the associated scheduling. We
provide arguments to establish correctness of the algorithm in
the sense that allocation requirement of every admitted request
is met before its deadline. To the best of our knowledge, this
is the first comprehensive admission control and scheduling
algorithm for IEEE 802.11ad MAC without any restrictions
on the request type or on the traffic parameter values of the
requests.

II. A PRIMER ON IEEE 802.11AD MAC
A. IEEE 802.11ad Medium Access

The medium access duration in IEEE 802.11ad is divided into
an infinite sequence of time intervals, called Beacon Interval
(BI). The length of a BI duration is specified in Time Units
(TU), where 1TU = 1024µs. In this paper, we represent a
BI duration as a sequence of 1µs time slots. A BI has two
parts: a Beacon Header Interval (BHI) followed by a Data
Transmission Interval (DTI). The DTI is primarily used for
data transmission among IEEE 802.11ad Stations (STAs) and
Personal Basic Service Set (PBSS) Control Point/Access Point
(PCP/AP). An IEEE 802.11ad station can access the channel
in a DTI using Contention Based Access Period (CBAP) or
Service Period (SP) mechanism. When using CBAP, a station
uses a contention based scheme called Enhanced Distributed
Channel Access (EDCA) [1]. An SP, on the other hand, is used

U.S. Government work, not subject to U.S. Copyright.



between two stations or between a station and its PCP/AP to
have a contention free channel access. Before a DTI period
starts, the schedules of CBAP and SP in a DTI are broadcast by
the PCP/AP to its stations in a Directional Multi Gigabit (DMG)
Beacon frame in the Beacon Transmission Interval (BTI) or
in the Announce frame in the Announcement Transmission
Interval (ATI) of the BHI [1].

B. IEEE802.11ad Traffic Parameters
The Traffic Specification (TSpec) element in the ADDTS

request carries the traffic parameters for which resources need to
be allocated. For isochronous requests, channel time allocation
duration is repeated in every period, whereas for asynchronous
traffic, allocation is one time. The main traffic parameters (used
in the DMG TSpec frame) of isochronous traffic are [1], [2]:

• Allocation Period (P ): Period over which allocation
repeats. It can be an integer multiple or integer fraction
of a BI.

• Minimum Allocation (Cmin): Minimum acceptable allo-
cation in microseconds in each allocation period. If the
request is accepted, the PCP/AP must guarantee at least
this duration to the STA in every allocation period.

• Maximum Allocation (Cmax): Requested allocation in
microseconds in each allocation period. This is the
maximum duration that can be allocated to the user in
each allocation period.

Asynchronous requests also use the same DMG TSpec param-
eters. However, the minimum allocation is one time allocation
that must be done before the allocation period (or deadline).
Maximum allocation field is reserved.

III. ADMISSION CONTROL

A. Isochronous and Asynchronous Traffic Model
A request Ti is an isochronous (resp. asynchronous) request

when Ti.reqType is ISO (resp. ASYNC). For the ease of
notation, we will use those two terms throughout this paper
to refer to the respective requests. In addition, we will use
ISOM and ISOF for ISO requests whose periods are integer
multiple of a BI and integer fraction of a BI, respectively.
The period, minimum allocation, and maximum allocation of
an isochronous request Ti are denoted by Ti.P , Ti.Cmin and
Ti.Cmax, respectively. The actual (or operational) channel time
allocation to isochronous request Ti is denoted as Ti.Cop and
should satisfy Ti.Cmin ≤ Ti.Cop ≤ Ti.Cmax. When there
are no ASYNC requests in the system, an ISO request Ti

would be allocated Ti.Cop. However, when there is at least one
ASYNC request in the system, the operational channel time
of an ISO request is decided based on the schedule carried in
long schedule[] (see Algorithm 1 for its computation). The
period (or deadline) and minimum allocation of asynchronous
request Ti are denoted by Ti.P and Ti.Cmin, respectively. The
operational allocation Ti.Cop, in this case, is equal to Ti.Cmin.
An isochronous request has allocation request in every period.
Such allocation requests are referred to as jobs of the request.
Since an ISOF request has multiple periods in a BI, it will
have multiple jobs in a BI. An ISOM request, on the other
hand, will have one job in multiple BIs. Since an asynchronous
request does not repeat beyond its deadline, it has exactly one
job in its lifetime. A job of a request becomes ready to be

Fig. 1: Flowchart of Admission Control at a High Level

allocated at the beginning of its period, which we refer to as the
release time of the job. A job of a request may be allocated one
contiguous block or it may be broken into multiple fragments
to fit smaller idle durations in a BI.

B. CPU Scheduling of Periodic Tasks
ISO requests are periodic and hence, have similarity with

periodic tasks in CPU scheduling which has been studied in
the literature [5]–[8]. So, we design scheduling of ISO request
based on theories developed for CPU scheduling of periodic
tasks. A periodic task in CPU scheduling has two parameters
(Ci, Pi), where Ci is the duration of the task and Pi is the
period as well as the deadline of the task [4]. The feasibility
or admissibility of a set of n preemptive periodic tasks for an
EDF scheduler is given by [5]

n∑
i=1

Ci

Pi
≤ 1. (1)

C. Admission Control at a High Level
The overall admission control flowchart is shown in Fig. 1.

The basic idea is to check whether each request (both existing
and the new request) is schedulable before its deadline, when
a new request arrives. It first checks if all the ISO requests
are schedulable or not based on their respective Cmin demand
(Decision Box A). Notice that the Decision Box A utilizes
admissibility criteria of periodic CPU tasks presented in Eq. (1)
based on Ti.Cmin. If all the ISO requests are not schedulable,
then the new request is rejected (Box I). Otherwise, it checks
if there is any ASYNC request in the system (Decision Box B).
If not, then it allocates the remaining empty slots to the ISO
requests in a proportional fair manner (Box G) and accepts the
new request (Box H). Otherwise, it computes Dmax, which
is the maximum over all the current deadlines of ASYNC
requests (Box C). Then it computes EDF schedule of all the
ISO requests from current BI to Dmax (Box D). ASYNC
requests are then scheduled from the remaining empty slots
using EDF (Box E). If all the ASYNC requests meet their
respective deadlines (decision Box F), then any remaining
empty slots are allocated to ISO requests in a proportional
fair manner (Box G) and the new request is accepted (Box H).
Otherwise the new request is rejected (Box I).



TABLE I: Request Table Entry
Parameter Unit Description
reqType ’ISO’

or
’ASYNC’

set to ’ISO’ for isochronous request or
’ASYNC for asynchronous requests

Cmin, Cmax µs Cmin and Cmax of the request. Cmax is
not relevant for ASYNC requests

P BI period of Request, if reqType is ISO. Orig-
inal deadline of the request if reqType is
ASYNC.

Cop µs operational channel time allocation. Only
relevant for ISO requests.

Cremain µs remaining channel time allocation still
needed before its current deadline to satisfy
Cmin. Only relevant for ASYNC requests
and ISOM requests.

tremain life BI time remaining for this request to leave the
system

Dcurr BI current deadline of the request. Only rel-
evant for ASYNC requests and ISOM re-
quests.

D. Maintenance of Information and Operation in every BI
For admission control and scheduling purposes, a table for

each admitted request is maintained. The content of the table
is shown in Table I. In addition, two global variables, Siso

and Sasync which carries the set of existing ISO and ASYNC
requests respectively, are maintained. Once the schedule for
the current BI is computed and executed, the parameters of
the table are updated as follows:

• For each ISOM request and each ASYNC request, Cremain

is decremented by the duration (in µs) allocated to the
request in the current BI. Note that, for an ISOM request,
its Cremain can become less than zero (which means the
request has been allocated more than its Cmin), since
it may be allocated more than Cmin in a given period.
ISOF requests are fully allocated within a BI and hence,
Cremain is not relevant for them.

• For all requests, tremain life is decremented by one. If it
becomes zero, it signifies that the request is finished.
Hence, that request is removed from the set Siso or
Sasync depending on its reqType and the corresponding
table entry is removed. At this point, if there are no
ASYNC requests, then an EDF schedule is followed.
Otherwise, admission control algorithm is executed again
to recalculate long schedule[] which is followed from the
next BI.

• For each ISOM request and ASYNC request, its Dcurr is
decremented by one. For an ISOM request, if its Dcurr

becomes zero and tremain life is greater than zero, then
Cremain is reset to Cmin and Dcurr is reset to P . Note
that for AYSNC requests when Dcurr becomes zero,
tremain life should also become zero.

E. Detailed Algorithm
When a new request arrives to the system, the admis-

sion control algorithm called Efficient Admission Control for
Isochronous and Asynchronous Requests (EACIAR), presented
in Algorithm 1, is executed. If the total utilization of all the
ISO requests based on their Ti.Cmin is more than one (based
on Eq. (1), then the new request is rejected (Line 5). If there is

no ASYN request in the system, then it allocates any surplus
duration to the ISO requests in a proportional fair manner
(Line 6 to 11) and accepts the new request. Otherwise, it
starts scheduling from current BI till Dmax, which is the
maximum of current deadline of all the ASYNC requests. First,
it takes up scheduling of ISOF requests in the order of non-
decreasing deadlines. For each ISOF request Ti, it allocates
Ti.Cmin (see Line 21). Then, it takes up scheduling of each
ISOM request Ti in the order of non-decreasing deadlines and
allocates Ti.Cremain (see Line 34). Then finally, it schedules
ASYNC requests, in the non-decreasing order of their current
deadlines and allocates Ti.Cremain for each ASYNC request
Ti (see Line 59). Then it checks for any surplus duration (over
Cmin) available (Line 67 to Line 72). If so, it distributes the
surplus duration among the jobs of ISO requests, whose release
time falls within the long schedule[] interval, in a proportional
fair manner (Line 77). It then goes back in long schedule[] and
allocates as much of the surplus duration as possible, to each
job of a given ISO request before their respective deadlines
(Line 75 to Line 78). Note that for some ISO requests, it may
not be possible to allocate all of its share of surplus duration
to all of their jobs before their deadlines. This is because the
ASYNC requests in the system may have taken up some slots
where these surplus slots could have been allocated. Also note
that the order of handling of the type of requests is important,
i.e., first the ISOF requests should be handled followed by ISOM
requests and finally, ASYNC requests. This is to honor priority
of ISO requests over ASYNC requests2 and to handle ISO
requests in non-decreasing order of their respective deadlines.

When an existing request leaves the system, the same
Algorithm 1 is used, but instead of executing it from the
beginning, it starts executing from Line 6 and continues till
the end3.

When there is at least one ASYNC request in the system,
the schedule in long schedule[] is followed. But when there is
no ASYNC request in the system, EDF schedule is followed.
In this case, the allocation amount is decided as follows. When
the system transitions from having at least one ASYNC request
to having no ASYNC request, for each ISOM request whose
Cremain is greater than zero, it would be allocated Cremain by
following EDF schedule. Once, its Cremain becomes zero, then
it becomes eligible to get allocation of Cop in its next period.
If Cremain of an ISOM is less than or equal to zero, then the
request becomes eligible for allocation of Cop from its next
period. Each ISOF request also becomes eligible for allocation
of its Cop immediately. Note that the schedule changes only
when a new request arrives or an existing request leaves the
system.

Time complexity of our EACIAR algorithm can be deter-
mined as follows. Every request goes through BI number
of time slots to compute its schedule (e.g., see the while
loop at Line 21). Due to the for loop at Line 14, there are
Dmax number of BI’s over which each request computes its

2Typically ISO requests represent applications which are more critical than
those represented by ASYNC requests.

3This variation in execution between arrival of a new request and departure
of an existing request could have been handled by distinguishing between
them at the beginning of the algorithm and bypassing relevant code for the
departure case. But we chose not to clutter the algorithm with such minor
details.



Algorithm 1: Efficient Admission Control for Isochronous and Asynchronous Requests (EACIAR)
Input: the new request Tn, the set of existing isochronous requests Siso and the set of existing asynchronous requests Sasync

Output: ACCEPT or REJECT; if no ASYNC request present and the new request is accepted, Cop of every ISO request; if ASYNC
request present and the new request is accepted, long schedule[]

1 Begin
2 if (Tn.reqType == ISO) then Siso = Siso ∪ {Tn} ;
3 else Sasync = Sasync ∪ {Tn} ;
4 Un

min = ΣTi∈Siso(
Ti·Cmin

Ti·P
) ;

5 if (Un
min > 1) then go to RJ ;

6 if (Sasync == ∅) then // no ASYNC requests and all ISO requests are schedulable
7 Usurplus = 1− Un

min ;
8 ∆utot = ΣTi∈Siso(

Ti.Cmax−Ti.Cmin
Ti.P

) ;
9 for each Ti ∈ Siso do

10 Ti.Cop = Ti.Cmin +min (1,
Usurplus

∆utot
) · (Ti.Cmax − Ti.Cmin); // proportional fair allocation of

surplus

11 return ACCEPT, (for each Ti ∈ Siso (Ti.Cop)) ;

12 Stemp
iso = Siso ; Dmax = maxTi∈Sasync(Ti.Dcurr) ;

13 long sched[Dmax * BI] = 0 ;
14 for i = 1 to Dmax do
15 Schedule[1 . . . BI] = 0 ;

// process ISO requests whose periods are integer fraction of a BI
16 J iso

frac = {array of jobs of ISO requests in Stemp
iso in the current BI whose periods are integer fraction of a BI} ;

17 J iso
sort frac = {sorted array of jobs in J iso

frac in a non-decreasing order of their current deadlines} ;
18 k = 0 ;
19 while (k < len(J iso

sort frac) do
20 R = J iso

sort frac[k].release; D = J iso
sort frac[k].P ; Cmin = J iso

sort frac[k].Cmin ;
21 while (Cmin > 0) do
22 avail = number of contiguous slots available from position ’R’ in Schedule[] ;
23 avail = min(avail, Cmin) ;
24 Schedule[R . . . (R+ avail] = 1 ;
25 Cmin− = avail ;
26 R = next empty slot position in Schedule[] ;
27 if (R > D) then print error and exit; // this should not happen, since we have done the

utilization test for ISO requests ;

28 k++ ;
// process ISO requests whose periods are integer multiple of a BI

29 J iso
mult = {array of jobs of ISO requests in Stemp

iso in the current BI whose periods are integer multiple of a BI} ;
30 J iso

sort mult = {sorted array of jobs in J iso
mult in a non-decreasing order of their current deadlines} ;

31 k = 0 ;
32 while (k < len(J iso

sort mult) do
33 R = 1 ; D = J iso

sort mult[k].Dcurr ; Cremain = J iso
sort mult[k].Cremain ;

34 while (Cremain > 0) do
35 avail = number of contiguous slots available from position ’R’ in Schedule[] ;
36 avail = min(avail, Cremain) ;
37 Schedule[R . . . (R+ avail] = 1 ;
38 Cremain− = avail ;
39 R = next empty slot position in Schedule[] or (-1) if Schedule[] is full (all 1);
40 if (R == −1) then print error and exit; // this should not happen, since we have done the

utilization test for ISO requests ;

41 k++ ;
42 long schedule[i] = schedule[] ;
43 for each Ti ∈ Stemp

iso do
44 if (Ti.tremaining life == i) then Stemp

iso = Stemp
iso \ {Ti} ; // Request Ti leaves the system

45 update current BI to the next BI ;
46 tot async dur = 0 ;
47 for each Ti ∈ Sasync do
48 tot async dur += Ti.Cremain ;
49 num empty slots = number of empty slots in long schedule[] ;
50 if (tot async dur > num empty slots) then // not enough empty slots to schedule all the ASYNC

requests
51 Goto RJ ;



52
// process ASYNC requests

53 Sasync
sort = {sorted array of ASYNC requests in a non-decreasing order of their current deadlines} ;

54 k = 0; tot c async = 0 ;
55 while (k < len(Saysnc

sort ) do
56 R = 1 ;
57 D = Sasync

sort [k].Dcurr ;
58 Cremain = Sasync

sort [k].Cremain ;
59 while (Cremain > 0) do
60 avail = number of contiguous slots available from position ’R’ in Schedule[] ;
61 avail = min(avail, Cremain) ;
62 long schedule[R . . . (R+ avail] = 1 ;
63 Cremain− = avail ;
64 R = next empty slot position in long schedule[];
65 if (R > D) then goto RJ ;

66 k++ ;
67 tot c iso = 0; ∆ctot = 0 ;
68 for each Ti ∈ Siso do
69 end BI = min(Ti.tremain life, Dmax) ;
70 tot c iso += (Ti · Cmin) · ⌈ end BI

Ti.P
⌉ ;

71 ∆ctot += (Ti.Cmax − Ti.Cmin) · ⌈ end BI
Ti.P

⌉
72 surplus c = Dmax - (tot c iso + tot async dur) ;
73 if (surplus c ≤ 0) then return ACCEPT, long schedule[] ;

// allocate surplus duration to ISO requests in a proportionally fair manner
74 Ssort

iso = {sorted array of all ISO requests in a non-decreasing order of their periods} ;
75 for each Ti ∈ Ssort

iso do
76 c extra per job = min (1, surplus c

∆ctot
) · (Ti.Cmax − Ti.Cmin); // this is extra duration, over Cmin,

available for each job of request Ti

77 for each job J of Ti, whose release time falls within long sched[] do
78 allocate as much of c extra per job to J before its deadline in long schedule[]; // it may not always be

possible to allocate all of c_extra_per_job before the job’s deadline

79 return ACCEPT, long schedule[] ;
80 RJ:
81 if (Tn.reqType == ISO) then Siso = Siso − {Tn} ;
82 else Sasync = Sasync − {Tn} ;
83 return REJECT

schedule. Hence, the time complexity of our EACIAR algorithm
is O(BI · Dmax · N iso

req), where N iso
req is the number of ISO

requests in the system. Thus, it is a linear time algorithm.

F. Correctness of the Admission Control and Scheduling
In this section, we discuss the correctness of our EACIAR

algorithm and its associated scheduling in terms of guaranteeing
that no request misses its deadline. When there is no ASYNC
request in the system, the system follows an EDF schedule.
EDF schedule guarantees that every periodic (or ISO) request
meets its deadline since they were admitted based on Eq. (1) [5].
When there is at least one ASYNC request, the system follows
the schedule computed in long schedule[] using Algorithm 1.
In this algorithm, while admitting a new request, it is made sure
that the total utilization4 of the ISO requests, based on their
respective Cmin, is less than or equal to 1, which, as per [5],
guarantees that the ISO requests meet their respective deadlines
when EDF schedule is followed. The algorithm gives priority
to ISO requests over ASYNC request while allocating empty
slots. Between ISOM and ISOF, ISOF requests are picked up
first (since they have shorter deadline than ISOM) and allocated
empty slots equal to their respective Cmin, based on EDF. Then

4utilization of a request Ti based, on its Cmin, is Ti.Cmin
Ti.P

the ISOM requests are scheduled in a similar manner. Since, the
utilization was calculated based on Cmin and allocation amount
was also Cmin, the ISO requests would meet their respective
deadlines since they follow an EDF schedule. After scheduling
all ISO requests, ASYNC requests are scheduled based on EDF.
It is made sure that each ASYNC request meets its deadline
when allocating slots to it. Finally, any surplus empty slots are
proportionally distributed to all the ISO requests before their
respective deadlines. Obviously, this operation does not change
the ability of ISO requests to meet their deadlines. Thus, all
the requests meet their respective deadline.

IV. RELATED WORK

A few analytical channel access models for IEEE 802.11ad
exist in the literature. A 3D Markov chain based model for SP
and CBAP mode of channel access has been proposed in [9].
[10] introduces a model based on Markov chain for CBAP
channel access, in the presence of SP channel access as well as
deafness and hidden node problems due to directional antennas.
An analytical model of SP channel access is presented in [11]
which is used to compute worst case delay of packets. It also
studies optimal channel sharing between SP and CBAP. An
analytical model for SP channel access with channel errors for
multimedia traffic is presented in [12].



However, experimental study of admission control and
scheduling of SP and CBAP channel access is quite limited in
the literature. Authors in [13] design a max-min fair admission
control and scheduling algorithm which can only handle
isochronous traffic (no asynchronous traffic). They consider two
very simple application scenarios; one in which all applications
have the same traffic parameter values and the other in which
applications choose one set of parameter values out of two pre-
configured values. It only handles isochronous requests having
periods which are integer fraction of a BI. It has a cubic run
time complexity in terms of number of requests. [14] presents
scheduling SP channel access using reinforcement learning
(RL). It interacts with the network deployment scenario and
uses Q-learning to find the optimal SP duration. The number of
error free packets received is used as reward and the number
of packets in the MAC layer queue is used as states. [2]
proposes three admission control algorithms for isochronous
traffic that are fair and compliant with the IEEE 802.11ad.
It also proposes an EDF based scheduler which guarantees
appropriate SP durations to the admitted isochronous requests
before their respective deadlines. These algorithms have a
linear run time complexity even when the requests choose any
arbitrary values for their parameters and thus, is more efficient
and free of restrictions on parameters compared to [13]. Guard
time overhead for isochronous traffic in IEEE 802.11ad MAC is
accounted for in the admission control and scheduling algorithm
presented in [3]. An admission control and scheduling algorithm
which can handle both isochronous and asynchronous traffic is
presented in [4]. It treats asynchronous traffic as though they
are periodic. This keeps the algorithm simple, but results in
overallocation of resources to asynchronous traffic and hence,
leads to performance loss. In contrast, the admission control
and scheduling algorithm presented in this paper allocates only
required resources to asynchronous traffic and hence, is more
efficient.

Periodic and aperiodic CPU tasks are quite similar to
isochronous and asynchronous traffic respectively. Admission
control and scheduling of periodic and aperiodic CPU tasks
have been studied in the literature [5]–[8]. [5] presents
admissibility of a set of preemptive periodic task in an EDF
scheduler, but it does not handle aperiodic tasks. Schedulability
conditions for non-preemptive periodic tasks are studied in [6],
but it also does not consider aperiodic tasks. Joint scheduling
of periodic and aperiodic tasks with hard deadline is studied
in [7] using a concept called slack stealing. Basically, aperiodic
tasks use the idle time or slack time left by the periodic
task. However, the periodic task have a single parameter
for execution time, whereas in IEEE 802.11ad system, the
isochronous requests have a range of channel time (Cmin and
Cmax), so the their algorithm cannot be applied directly. Also,
in their system, the priorities of requests are static, whereas
in an IEEE 802.11ad system, the priorities of requests can
change as new requests arrive. [8] also handles scheduling of
both periodic and aperiodic requests, but using EDF which is a
dynamic priority algorithm. However, their algorithm assumes
that when a new aperiodic request arrives, all previously
accepted aperiodic requests have finished, which is a severe
limitation. In addition, their algorithm requires computing exact
schedule of the periodic requests in every hyper period of the

existing periodic requests5. The hyper period can potentially
become very large, when the periods are relatively prime. In
contrast, our algorithm needs to compute the exact schedule
until Dmax, which is the maximum deadline among all the
asynchronous requests.

V. CONCLUSION

We presented a comprehensive admission control algorithm,
EACIAR, which handles both isochronous and asynchronous
requests in an IEEE 802.11ad MAC. The algorithm is efficient
in the sense that it allocates resources exactly as per the
traffic requirements of the requests and that it has a linear
run time complexity. In addition, the isochronous requests get
proportionally fair allocation of SP channel time. We discussed
the correctness of the algorithm in terms of guaranteeing
required SP duration allocation to every admitted request
before their respective deadlines. We believe, this is the first
comprehensive algorithm for IEEE 802.11ad MAC which
handles both the traffic types and any IEEE 802.11ad compliant
traffic parameters.

REFERENCES

[1] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” 802.11 Working Group of the LAN/MAN
Standards Committee of the IEEE Computer Society, Dec. 2016.

[2] A. Sahoo, W. Gao, T. Ropitault, and N. Golmie, “Admission control and
scheduling of isochronous traffic in ieee 802.11 ad mac,” in Proceedings
of the 24th International ACM Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2021, pp. 125–134.

[3] A. Sahoo, W. Gao, T. Ropitault and N. Golmie, “Admission control and
scheduling of isochronous traffic with guard time in IEEE 802.11ad
MAC,” IEEE Transactions on Mobile Computing, pp. 1–10, 2022,
doi:10.1109/TMC.2022.3207969.

[4] A. Sahoo, P. Tian, T. Ropitault, S. Blandino, and N. Golmie, “Admission
control and scheduling of isochronous and asynchronous traffic in ieee
802.11 ad mac,” in 2023 IEEE 97th Vehicular Technology Conference
(VTC2023-Spring). IEEE, 2023, pp. 1–7.

[5] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[6] K. Jeffay, D. F. Stanat and C. U. Martel, “On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks,” in IEEE Real-Time Systems Symposium
(RTSS), December 1991, pp. 129–139.

[7] S. R. Thuel and J. P. Lehoczky, “Algorithms for Scheduling Hard
Aperiodic Tasks in Fixed-Priority Systems Using Slack Stealing,” in
RTSS, 1994, pp. 22–33.

[8] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Transactions on software engineering,
vol. 15, no. 10, pp. 1261–1269, 1989.

[9] Q. Chen, J. Tang, D. T. C. Wong, X. Peng, and Y. Zhang, “Directional
Cooperative MAC Protocol Design and Performance Analysis for IEEE
802.11ad WLANs,” IEEE Transactions on Vehicular Technology, vol. 62,
no. 6, pp. 2667–2677, 2013.

[10] C. Pielli, T. Ropitault, N. Golmie, and M. Zorzi, “An Analytical
Model for CBAP Allocations in IEEE 802.11ad,” IEEE Transactions on
Communications, 2020.

[11] C. Hemanth and T. Venkatesh, “Performance Analysis of Service Periods
(SP) of the IEEE 802.11ad Hybrid MAC Protocol,” IEEE Transactions
on Mobile Computing, vol. 15, no. 5, pp. 1224–1236, 2015.

[12] E. Khorov, A. Ivanov, A. Lyakhov, and V. Zankin, “Mathematical Model
for Scheduling in IEEE 802.11ad Networks,” in 2016 9th IFIP Wireless
and Mobile Networking Conference (WMNC). IEEE, 2016, pp. 153–160.

[13] M. Lecci, M. Drago, A. Zanella, and M. Zorzi, “Exploiting scheduled
access features of mmwave wlans for periodic traffic sources,” in
2021 19th Mediterranean Communication and Computer Networking
Conference (MedComNet). IEEE, 2021, pp. 1–8.

[14] T. Azzino, T. Ropitault, and M. Zorzi, “Scheduling the Data Transmission
Interval in IEEE 802.11ad: A Reinforcement Learning Approach,”
in 2020 International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2020, pp. 602–607.

5Hyper period of a set of periodic tasks is the Lowest Common Multiple
of their individual periods.


