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Abstract
Although the convergence of high-performance computing, automation, and machine learning has significantly altered 
the materials design timeline, transformative advances in functional materials and acceleration of their design will require 
addressing the deficiencies that currently exist in materials informatics, particularly a lack of standardized experimental data 
management. The challenges associated with experimental data management are especially true for combinatorial materials 
science, where advancements in automation of experimental workflows have produced datasets that are often too large and 
too complex for human reasoning. The data management challenge is further compounded by the multimodal and multi-
institutional nature of these datasets, as they tend to be distributed across multiple institutions and can vary substantially in 
format, size, and content. Furthermore, modern materials engineering requires the tuning of not only composition but also 
of phase and microstructure to elucidate processing–structure–property–performance relationships. To adequately map a 
materials design space from such datasets, an ideal materials data infrastructure would contain data and metadata describ-
ing (i) synthesis and processing conditions, (ii) characterization results, and (iii) property and performance measurements. 
Here, we present a case study for the low-barrier development of such a dashboard that enables standardized organization, 
analysis, and visualization of a large data lake consisting of combinatorial datasets of synthesis and processing conditions, 
X-ray diffraction patterns, and materials property measurements generated at several different institutions. While this dash-
board was developed specifically for data-driven thermoelectric materials discovery, we envision the adaptation of this 
prototype to other materials applications, and, more ambitiously, future integration into an all-encompassing materials data 
management infrastructure.

Keywords  Data management · Data infrastructure · Materials data · Materials informatics · Combinatorial materials 
science

Introduction

Responding to the global energy crisis heightened by the 
COVID-19 pandemic [1], as well as facing long-standing 
global challenges such as climate change, will require the 
development of new, transformative materials on an acceler-
ated timescale. While typical materials discovery and design 
occur on timelines measured in decades [2], today’s need for 
renewable energy is urgent, as fuel prices, poverty, and geo-
political turmoil increase in response to fuel shortages [1]. 
While the design (compositional and processing parameter) 
space of all possible materials is practically unlimited, most 

of this space is unexplored and the discovery rate of trans-
formative materials is relatively slow. Although the conver-
gence of high-performance computing (HPC), automation, 
and machine learning (ML) has significantly altered this 
timeline [3–6], transformative advances in functional mate-
rials and acceleration of their design will require addressing 
the deficiencies that currently exist in materials informat-
ics [7], particularly a lack of centralized, standardized data 
management.

The Open Science movement [8–11] has driven several 
significant efforts in data management generally (e.g., FAIR 
(Findable, Accessible, Interoperable, Reusable) data prin-
ciples [12]), particularly through its influence on the devel-
opment of data-related scientific policy now enforced by 
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journals [13, 14] and funding agencies, such as the U.S. 
Department of Energy’s Public Access Plan [15]. For mate-
rials datasets like the Materials Project [16] and the Open 
Quantum Materials Database (OQMD) [17, 18], where 
all of the data are produced computationally according to 
a standardized methodology and format, the creation of a 
data infrastructure that follows FAIR principles is more 
straightforward than for the case of experimental data, which 
can vary significantly based on how, where, and when they 
were produced [2]. These challenges associated with experi-
mental data management are particularly true in the case 
of combinatorial materials science, where advancements 
in automation of experimental workflows have produced 
datasets that are often too large and too complex for human 
reasoning, necessitating the use of data science techniques 
for knowledge extraction and interpretation. This challenge 
is further compounded by the multimodal and multi-insti-
tutional nature of these datasets, as they tend to be distrib-
uted across multiple institutions and can vary substantially 
in format, size, and content. Furthermore, many institutions 
host a breadth of legacy data that is essentially untouched by 
modern materials informatics techniques, sitting in storage 
and yet to be explored.

Another additional dimension of complexity is the need 
to record the entire materials life cycle in order to eluci-
date processing–structure–property–performance (PSPP) 
relationships, a feat that computational databases currently 
do not achieve. Modern materials engineering requires 
the tuning of not only composition, but also of phase and 
microstructure, all of which influence PSPP relationships. 
By design, combinatorial thin-film libraries provide com-
plete determination of compositional, structural, and materi-
als properties, offering a wealth of information if combined 
and organized in a meaningful way [19–21]. To adequately 
map a materials design space (MDS) from such datasets, 
an ideal materials data infrastructure would contain data 
and metadata describing (i) synthesis and processing con-
ditions, (ii) characterization results, and (iii) property and 
performance measurements. As all of these data types are 
usually stored in different files and possibly hosted in differ-
ent locations, the barrier to organizing vast amounts of such 
fractured data is high for individual research groups. A tool 
for the automated organization, analysis, and visualization of 
multimodal data has the potential to rapidly generate PSPP 
relationships, as well as uncover new insights by combining 
datasets across institutions, projects, and time into larger, 
more comprehensive databases. This could be especially 
transformative for high-throughput experimentation (HTE), 
where data analysis is often the rate-limiting process [22].

Here, we present a case study for the development of a 
web-based dashboard that enables standardized organiza-
tion, analysis, and visualization of a large data lake consist-
ing of combinatorial datasets of synthesis and processing 

conditions, X-ray diffraction (XRD) patterns, and materi-
als property measurements produced at several different 
institutions. At the core of this work is data standardiza-
tion, persistence, and accessibility across institutions. 
While desktop packages [23, 24] exist for the analysis and 
visualization of combinatorial materials data and there are 
web-based platforms for displaying publication-ready HTE 
data [25], we require a tool which combines the ability for 
scientists to interact with data while also providing a secure 
route for sharing data before larger release. Furthermore, 
the dashboard directly integrates with Globus1 [26, 27], a 
tool already widely used by the research community, for 
file storage and user authentication. A web-based dashboard 
removes any need for the user to store or download data 
locally, reduces the learning curve for usage, and provides 
data security by default. Throughout the following sections, 
we document the challenges faced and solutions developed 
during the evolution of the dashboard, as well as recom-
mendations for the low-barrier development and incentivi-
zation of multimodal, multi-institutional data management 
within the materials science community at large. While this 
dashboard was developed specifically for a project on data-
driven thermoelectric materials discovery, we envision the 
adaptation of this prototype to other materials applications, 
and, more ambitiously, future integration into an all-encom-
passing materials data management infrastructure.

Methods

Project Description

The data portal described here was developed during a 
≈4.5-year multi-institutional project on thermoelectric 
materials discovery, ThermoElectric Compositionally 
Complex Alloys (TECCA). The aim of this project was 
to accelerate the discovery of sustainable and inexpensive 
high-performing thermoelectric (TE) materials by combin-
ing artificial intelligence and high-throughput computations 
and experiments. High TE performance requires a delicate 
balance among competing properties, requiring a fine tun-
ing of the composition (through solid solution and doping) 
and of processing to achieve an optimal hierarchically tai-
lored microstructure [28]. The needed additional optimiza-
tion greatly enlarges the composition–microstructure–phase 
combinatorial search space, and without accurate guidance, 

1  Certain commercial equipment, instruments, software, or materi-
als are identified in this document. Such identification does not imply 
recommendation or endorsement by the National Institute of Stand-
ards and Technology, nor does it imply that the materials or equip-
ment identified are necessarily the best available for the purpose.



Integrating Materials and Manufacturing Innovation	

device-quality materials are very difficult to find, as well 
as to synthesize. On the experimental side of this project, 
multiple institutions were involved in manufacturing sam-
ples, with SLAC and NIST performing the diffraction and 
thermoelectric measurements, respectively, as displayed 
in Table 1. The data produced at each institution, most of 
which was produced during the first two to three years, were 
aggregated into the multimodal, multi-institutional dataset 
managed by the dashboard. During the third year of the pro-
ject, the limitations of Globus for collaborative and persis-
tent data analysis and visualization initiated development 
of a project-specific data dashboard, which was developed 
and used during the last two years of the project. While the 
exact number of personnel fluctuated throughout the pro-
ject, the team generally consisted of about ten experimental 
researchers and five theoretical researchers. Visualizations 
and resulting insights gained from the dashboard have been 
used in one PhD thesis to date.

Data Portal

The development of a data portal was sparked by the desire 
to increase collaboration among a multi-institutional experi-
mental team. The primary goal was to create the ability to 
upload data to a location accessible to the entire team and 
to organize (i.e., index) the data for easy accessibility and 
usability. In addition, it was desirable that the data be avail-
able for processing, analysis, and visualization directly in 
the dashboard, without needing to download the data locally. 
To best meet these needs, it was decided that the dashboard 
would need a graphical user interface (GUI) accessible via a 
web browser, with a Representational State Transfer (REST) 
API [29] for programmatic access to the database and a 
backend server for data processing (e.g., processing, index-
ing, searching, and aggregating uploaded data). The GUI 
is written in the scalable JavaScript framework via Svelte 
[30], a free and open-source frontend framework, and the 
backend utilizes Flask, a micro web framework written in 
Python [31]. The accompanying RESTful API is written in 
Python. All data are stored in the Globus cloud file storage 
system [26, 27] on a single endpoint located at the Argonne 
Leadership Computing Facility (ALCF), although future 
developments could use multiple endpoints for federated 
database management. Lastly, the data portal design follows 

the established Globus Modern Research Data Portal Design 
Pattern [32] and is hosted on a Heroku [33] server.

A schematic of data flow into and within the data portal 
is shown in Fig. 1. Flow into the platform begins when a 
team member uploads data files to Globus, which are then 
automatically processed, organized, and aggregated into 
the database via custom processing routines that utilize the 
Globus Python SDK in the backend. Due to the multimodal 
nature of the data in this project, as well as the lack of stand-
ardization in file formatting and content, several ingestion 
scripts were written for the different file types in order to 
standardize formatting and naming conventions. Custom 
indexing scripts then organize and aggregate the standard-
ized data across different experiments performed throughout 
the project. (Details regarding this standardization are given 
in “Results” section.) Finally, data flows into the frontend, 
which is accessed by the user via a web browser. On the 
webpage, the user can view the aggregated data in a tabular 
format, search and filter the data, and visualize the data in 
several different plot types. Each of these features is dis-
cussed in more depth in the following sections.

Results

Here, we provide the reasoning behind our design choices, 
as well as further details regarding each dashboard feature. 
We also identified several barriers to the development of 
complex data infrastructure within the materials science 
research community and how our design choices overcome 
these barriers.

Data Storage and User Authentication

Apart from data standardization, the primary barriers to 
developing infrastructure for multi-institutional materials 
data sharing and management are (i) data security and (ii) 
large storage capabilities. Some of the concerns around data 
security are cultural, particularly those regarding pre-pub-
lication data sharing within a project, but another aspect is 
simply that material scientists are not aware of the best prac-
tices for enabling robust security and user authentication. 
Even if these issues are resolved, password fatigue alone 
may be a deterrent to incentivization for the wide adoption 
of a new tool. With respect to file storage, most research 

Table 1   Types of measurements 
performed by each institution 
in the TECCA collaboration. 
“Sample” refers to 
manufacturing of samples

Institution Sample Composition Diffraction Thermoelectric

Northwestern University x
University of Maryland x x
SLAC x x x
NIST x x x
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groups have access to a limited amount of storage in up 
to a few distinct locations, but may not have the storage or 
transfer capabilities to move and host all data across a pro-
ject, not to mention legacy data or relevant data from other 
sources (e.g., open-source databases). In our case, the size 
of the XRD dataset alone was nearly 0.5 TB. These data 
needed to be accessed by multiple institutions and combined 
with other datasets in order to elucidate PSPP relationships; 
storing and transferring such large amounts of data among 
institutions would have been costly in term of both time and 
money. Lastly, another associated barrier is that cloud-based 
large file storage, security, and website hosting are expen-
sive and require expertise to develop, necessitating either the 
hiring of experts or the development of such skills within 
the group. Consequently, the incentives for building data 
infrastructure for multi-institutional, multimodal data often 
do not outweigh the perceived learning curve and cost.

In addition to these challenges, multi-institutional data 
are hard to aggregate because they have been generated at 
geographically distributed locations, and there tends to be 
technical and cultural overhead associated with such data 
transfers. We addressed this and the aforementioned chal-
lenges by utilizing Globus as the data storage layer for the 
dashboard. Globus was chosen because (i) it is already 
widely used by the scientific research community and (ii) it 
offers several data management capabilities, including effi-
cient high-speed data transfer, interoperability with existing 
infrastructure via the Globus Python SDK, and native sup-
port for automated workflows via Globus Flows. Globus also 
provides native data security features, including encryption, 

fine-grained user access controls, and OAuth2 [34] and Ope-
nID Connect standards [35–37] for user authentication.

Data Organization and Aggregation

The various datasets incorporated into the dashboard con-
tained a variety of file types, including csv files, Microsoft 
Excel files, image files, and text files. These different file 
types contain different types of data, such as composition, 
XRD patterns, and material properties, as well as differ-
ent shapes and sizes of data—encompassing a truly mul-
timodal dataset. In addition, there were inconsistencies in 
naming conventions and file formatting, which required 
tedious handling when merging the data in these files. This 
lack of standardization makes data aggregation particularly 
fragile, as any discrepancy in format or naming can lead 
to data corruption. Another dimension of complexity arises 
from the combinatorial aspect of these datasets, where each 
wafer contains multiple samples (i.e., spots), creating a gra-
dient in composition and properties. For example, among 
all file types, there were several different column names for 
designating the wafer spot for each data point (see Table 2, 
column 1) and different keys in the XRD files (Table 2, 
column 2). For standardizing wafer spot names and XRD 
keys, as well as typos, standard names were selected and 
corresponding columns were renamed (e.g., columns with 
any of the possible wafer spot names in Table 2, column 1 
were renamed as “Spot”). All aggregation was done with the 
merging methods of the Python pandas package.

Because of these factors, we wrote custom file inges-
tion scripts for standardizing file formatting and naming 

Fig. 1   Schematic of data flow into and within the web-based data 
portal: First, data from the experimental team is uploaded to the 
Globus endpoint located at ALCF, which is then processed via the 

backend and accessible by the users via the frontend, all of which is 
hosted on a Heroku server



Integrating Materials and Manufacturing Innovation	

conventions and custom indexing scripts for generating 
large indexes of all the files and their associated data. These 
enabled aggregation of different types of data for the same 
material, as well as project-wide searching, sorting, and fil-
tering of experimental data, which would be impossible in 
a traditional data lake consisting of different file and data 
types. A screenshot of the aggregated data for a selected 
wafer is shown in Fig. 2. As a result of this aggregation, all 
of a wafer’s data can be viewed by simply clicking on its 
name in the left-hand menu, resulting in the tabular display 
of all aggregated data for that wafer. Each row contains all 
of the measured property and compositional data for each 
spot on the wafer. Furthermore, each column can be sorted 
by simply clicking on the column name (e.g., “Pt Corrected 
Seebeck Coefficient (uV/K)”) as well as filtered by search-
ing for different values in the search box under the column 
name. We emphasize that the columns in this table origi-
nated from different files produced at different institutions 

and are stored in different folders on Globus. Furthermore, 
not all samples contained all data types—some only contain 
compositional data while others contain electrical properties 
and XRD spectra.

Data Visualization

While data aggregation and organization of this complex 
multimodal, multi-institutional data lake is a feat in and of 
itself, arguably the most impactful and scientifically useful 

features of the dashboard are its visualization capabilities, 
coupled with its capabilities for data persistence. There are 
four types of plots available in the dashboard: (i) ternary 
plots (ternary plots colored by a property or elemental frac-
tion, Fig. 3), (ii) wafer plots (visualization of a property or 
elemental fraction over all spots on a wafer, Fig. 4), (iii) 
scatter plots (visual comparison of properties and/or elemen-
tal fractions of selected wafers, Fig. 4), and (iv) XRD plots 
(XRD spectra visualizations over different spots on a single 
or multiple wafers, Fig. 5). All of these plots can be gener-
ated simply by selecting the plot type from the “New plot” 
button at the top of the plotting page (cf. Figs. 3, 4, and 5). 
Lastly, plot configurations can be saved via the “Save plot 
configuration” button to be shared and reused via the “Open 
plot configuration” button, enabling data persistence. The 
plots currently available on the dashboard are those that are 
relevant to the data available and this particular project’s 

Table 2   Variation in column names for multimodal dataset, necessi-
tating standardization across multiple file types and origins

Possible wafer spot names Possible XRD keys

Spot # _x_
# _x2_
No _xrd_
Pad No resolution
Pad# _1d

Fig. 2   Screenshot of the aggregated dataset in tabular form, with wafer DJK014 selected. For each wafer, all available XRD, electrical, and com-
positional data is aggregated into a single table, where each row represents a different spot on the wafer
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goals; however, additional plot types can be added easily 
due to the modularity of the source code. We see this as 
a “plug-and-play” feature that can be utilized by materials 
scientists across diverse fields, as long as a script is available 
for generating the desired plots.

The most valuable benefit of these visualization capa-
bilities is the ability to compare multiple data types across 
multiple samples simultaneously. The nature of the col-
laboration (being both multi-institutional and multimodal) 
meant that data aggregation and analysis was often compart-
mentalized: one group focused on thermoelectric property 
measurement, another on sample synthesis, another on X-ray 
diffraction, etc. Originally, the dashboard reflected this: All 
plots were generated on each individual sample’s page when 
you clicked on the sample name. However, this prevented 
the comparison of different wafers, leading to the develop-
ment of a separate plotting page where different wafers and 

spots on wafers could be selected and compared. Prior to 
this development, comparing trends across both multiple 
samples and multiple data types was difficult without con-
sistent coordination between teams. In a multimodal charac-
terization study, researchers often ask questions like “How 
do the trends in systems X, Y and Z compare to the trends 
in systems A, B, and C?” Each individual system alone can 
contain hundreds of data points for a single data modality, 
and concatenating hundreds of data points across systems 
becomes burdensome. Instead, the dashboard enabled a 
workflow where plots of data points across dozens of sam-
ples and multiple modalities could be generated quickly, effi-
ciently, and consistently—researchers were able to make and 
share plots on the fly during meetings. This greatly increased 
collaboration, as ideas or questions about the aggregated 
data could be plotted and interrogated immediately.

Fig. 3   Sample ternary plots for two wafers (DJK014 on the left, RP069 on the right) with each point in the ternary colored by Seebeck 
coefficient
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Discussion

Since the inception of the Materials Genome Initiative 
(MGI) [38], the utilization of data-driven methods within 
materials research has grown significantly and has per-
manently changed the nature of materials discovery and 
design. At the heart of the MGI is knowledge sharing, 
which is realized through the Materials Innovation Infra-
structure (MII)—a framework of integrated advanced 
modeling, computational and experimental tools, and 
quantitative data. In light of the advances made in ML and 
automation for materials science during its first decade, 
in 2021 the MGI updated its strategic plan [39], with two 
goals particularly relevant to this work: (i) the unifica-
tion of the MII and (ii) harnessing the power of materials 

data. While FAIR databases and associated infrastructures 
exist for computational materials data, there are far fewer 
instances of these for experimental materials data. Often, 
these tools are siloed within individual research groups or 
are not in widespread use due to a lack of awareness and/
or incentives within the materials research community. In 
order to meet the new goals of the MGI, experimental data 
and associated tools need to be shared efficiently and effec-
tively. Furthermore, unification of the MII requires some 
level of standardization of the individual tools to ensure 
that they are valuable, accessible, and easy to use. Toward 
this end, in the following sections, we describe the lessons 
we learned throughout the evolution of the portal, as well 
as future possibilities for materials data infrastructure.

Fig. 4   Sample (left) wafer plot with each spot on the wafer colored by power factor and (right) scatter plot of power factor vs. Fe content for two 
wafers (DJK014 and DJK020)
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Lessons Learned and Recommendations

Here, we discuss the lessons we learned through the devel-
opment and evolution of the data portal, as well as rec-
ommendations to the community in an effort to ease and 
quicken the development of similar tools and to provide 
some standardization across individual tools.

Data Standardization

The major challenges faced during the building of the dash-
board were related to a lack of data standardization. Some 
standardization conflicts were controllable, while others 
were due to the utilization of different experimental instru-
ments, which varied in file format and naming conven-
tions. In FAIR language, these individual datasets were not 
interoperable, and we imagine this to be the case for most 
multi-institutional datasets and legacy datasets, and is argu-
ably the most challenging barrier to aggregating data across 
institutions and time. Our solution was to write many cus-
tom file ingestor scripts, with the standardization of naming 

conventions hard-coded. This solution works for a single 
project or for legacy data, and is easy to implement in Python 
with the pandas package, but is not general to the broader 
community, as the developer would need to communicate 
with all contributors in order to understand the various file 
formats and naming conventions used in each experimental 
setup. It also requires significant maintenance overhead, as 
a developer would need to write a new ingestor script any 
time a new file format or naming conflict is encountered. 
However, hard-coding in Python is a low-barrier method for 
establishing standards for a single project or legacy data and 
can get the ball rolling in terms of creating an initial general 
infrastructure for different types of experiments and materi-
als, as discussed in “Future Work” section.

With respect to standardization issues that are controlla-
ble (i.e., are chosen by researchers, not machines), these dif-
ficulties can be greatly alleviated by simply identifying and 
communicating standardized file formats and naming con-
ventions at the beginning of a project. For handling stand-
ardization issues due to different experimental instruments, 
one potential solution would be to use natural language 

Fig. 5   Sample XRD plots comparing the XRD patterns of (left) different spots on a single wafer (DJK012) and (right) specific spots on different 
wafers (DJK012 and DJK015)
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processing (NLP) to infer the structure of the data from dif-
ferent file formats and to learn what material property is 
associated with a given column name. Such an approach 
would both eliminate the need for multiple ingestor scripts 
and reduce maintenance overhead. While the training of 
such models still requires large amounts of data, we believe 
that the return on investment for these kinds of models will 
be high and that they are worth the initial effort of data cura-
tion and model training. Another potential solution is the 
designation and use of globally unique, persistent identifiers 
(PIDs) for scientific instruments, which would enable linking 
of data to the instrument that produced it and the storing of 
metadata regarding the instrument, as recommended by the 
Research Data Alliance Persistent Identification of Instru-
ments Working Group. [40] Granted sufficient FAIR meta-
data is publicly available, a database of instruments widely 
used for a given type of experiment containing metadata 
regarding naming conventions and file formats could allevi-
ate most data standardization issues. As this information can 
be proprietary, another solution could be a requirement by 
journals that researchers ensure that their data formatting 
adheres to standard formatting and naming conventions.

Software Development

From the development side, our biggest takeaway was to 
not reinvent the wheel. Because this dashboard was built by 
and for materials scientists, it was important to use simple, 
commonly used technologies that could be maintained by 
the team, as they did not have significant software develop-
ment experience. As mentioned in previous sections, Globus 
provides established, trusted solutions for file storage, data 
security, and user authentication. Furthermore, Globus has 
developed a design pattern specifically for research portals, 
based on identified best practices for ensuring convenient, 
high-speed, secure access to large amounts of data via web-
based portals. They also provide sample code skeletons that 
researchers can adapt to their needs, as was done in this 
work. Many scientific researchers are familiar with Globus 
and already use it in their own work, thus reducing the bar-
riers to using a new tool, such as creating a new account 
(i.e., password fatigue), the learning curve associated with 
using a new tool, and implementing it in existing research 
workflows.

Because of this, a Python backend was chosen because 
most materials scientists are now familiar with Python for 
data analytics and plotting. Within Python, we selected Flask 
[31]—a lightweight, bare bones approach to backend. On the 
frontend, we followed a similar strategy: we used Sveltekit 
[30], which is simple and easy to run for non-developers. 
Furthermore, we stuck with the most common open-source 
library, Bootstrap [41], for styling the interface, and we used 
the most common set of icons for the interface, Bootstrap 

icons [42]. Using this set of standard, simple, and mature 
technologies was important for ensuring maintainability and 
feature development speed.

Communication

Key to the success of this work was extensive communica-
tion between the developer and the experimental team, not 
only regarding the technical development of the dashboard, 
but also to incentivize its usage: Weekly meetings were held 
to coordinate who was contributing which data and how 
they expected it to be displayed, visualized, and searched. 
Because of this frequent communication and feedback, the 
dashboard evolved continuously according to the needs of 
the experimental researchers. This not only informed feature 
development, but also ensured the accuracy and scientific 
relevancy of how the data is displayed in the dashboard 
and of the plotting features. These meetings also helped 
establish appropriate standardization for file formatting and 
naming conventions. Altogether, frequent communication 
between the developer and experimental team ensured that 
the domain experts in the field dictated the decisions made 
regarding feature development and data standardization.

Competition with Personal Workflows

A major motivation for the creation of the dashboard, as 
previously mentioned, was that collaborators were having 
difficulty comparing data cross modalities and samples due 
to the size, nature, and location of the datasets (i.e., data 
were spread across many institutions). The dashboard was 
introduced about three years into a 4.5-year collaboration. 
By the time the dashboard was introduced, each collabora-
tor and institution had already developed their own internal 
methods for accessing and plotting data. Some users were 
using Python to create custom plots of the data, while others 
used commercial software like Origin or Microsoft Excel. 
When the dashboard was introduced some users were hesi-
tant to move away from their own personal workflows for 
comparing data. Introducing the dashboard from the begin-
ning of the collaboration would have mitigated some of these 
issues. Scientists do not always want to leave the methods 
they already know due to the inconvenience of changing 
workflows part way through a project.

Data Longevity and Accessibility

The last lessons learned during this work center on data lon-
gevity and accessibility. Data infrastructures require dedi-
cated community efforts and sustained investment to remain 
operational; otherwise, such tools are at risk of becoming 
digital ruins [43]. In order to be responsible materials data 
scientists, application hosting costs and future long-term 
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hosting plans should be discussed early on. To this end, 
funding and personnel should be allocated to the develop-
ment and long-term maintenance of a dashboard. While the 
current initial developments of materials data infrastructures 
may be purely for the short-term purposes of basic science, 
funding agencies should prioritize long-term financial sup-
port for sustained operation. To move closer to an all-encom-
passing materials data infrastructure, funding opportunities 
that bring together materials scientists, computer scientists, 
and software developers in long-term collaborations is nec-
essary. In the case of a prototype (e.g., this one) where dedi-
cated funding is not present, long-term hosting may not be 
an option, thus limiting data longevity and accessibility. In 
our case, we decided to host and maintain the dashboard 
for the duration of the project and subsequently publish its 
development as a prototype as opposed to a general-purpose 
tool. Regardless of whether or not long-term hosting is a 
possibility, making the core application infrastructure open 
source is crucial for enabling knowledge sharing for the next 
generation of data sharing apps.

Future Work

In addition to data storage and visualization, we envision 
two powerful capabilities of future materials dashboards—
namely automated data engineering and integration with 
ML models to drive autonomous experimental loops. While 
these have been demonstrated in individual research groups 
for particular problems [20, 44–47], the generalization of 
this ability to multimodal, multi-institutional experimental 
data in a dashboard is lacking. For example, several data 
management tools have been developed for either automation 
of workflows (e.g., HELAO [48], ARES OS [49], MDML 
[50], ChemOS [51]) or for broad database development (e.g., 
HTEM [25], MPS [52], MEAD [53]) within a single institu-
tion, but not for multi-institutional data management. In our 
case, the multimodal, multi-institutional nature of the data 
required tedious standardization of diverse datasets coming 
from multiple sources and communication with personnel 
from each institution, which could not be achieved with any 
publicly available applications. These difficulties highlight 
the need for standardized guidelines for data management 
beyond FAIR [12], as the data management requirements for 
establishing multi-institutional autonomous loops include 
more complex data tasks, namely (i) automated data inges-
tion, engineering, and analysis, (ii) seamless communication 
between institutions and experimental tasks, and (iii) the 
incorporation of domain knowledge. While there has been 
significant progress in the automation of simple workflows, 
to fully automate materials discovery for complex work-
flows, standards for the automation of these steps need to be 
developed (cf. Figure 4 of [54]).

One of the major hindrances to this is the specificity of 
data engineering for different types of data, again highlight-
ing the difficulty of automating the handling of multimodal 
data. Data engineering, which encompasses aggregation, 
homogenization, featurization, and feature selection, is typi-
cally the most time-consuming and critical step for ensuring 
trustworthy data analysis and ML model training. Due to 
these challenges, data engineering is often the least auto-
mated aspect of data science workflows. However, many of 
these difficulties can be alleviated through communication 
with domain experts and the establishment of standards 
for different types of experiments and materials, as dem-
onstrated in this work for the problem of organizing and 
aggregating multimodal, multi-institutional thermoelectric 
materials data. A schematic of the flow of data into and out 
of the dashboard for an autonomous loop is shown in Fig. 6.

From a broader perspective, the long-term vision for 
materials data infrastructure is an all-encompassing materi-
als dashboard similar to the Materials Data Facility (MDF) 
[55], where various types of materials data can be auto-
matically uploaded, organized, engineered, and analyzed 
by different individuals and institutions. This can increase 
the efficiency of multi-institutional collaborations, where 
data produced from experiments across the globe can be 
automatically uploaded to the dashboard from the experi-
mental equipment, eliminating the human middleperson. If 
data security is required, various levels of permissions can 
be built into the dashboard. Thus, instead of relying on the 
collaborators on a single project to produce and transfer data, 
researchers can search for and use the public data in a web-
based dashboard with minimal effort. Not only would this 
reduce redundancy of experimentation, but it would also 
enable and encourage replication as well as reduce errors, 
as “many eyes make any bug shallow.” Currently, the MDF 

Fig. 6   Schematic of an autonomous experimental loop with data 
flowing into and out of a materials dashboard. For a truly autonomous 
loop, each step would be entirely automated
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allows users to upload individual datasets, but there are no 
automated tools for combining datasets, running the full data 
science pipeline, or visualization/analysis. One possible path 
for achieving this is for a journal or funding agency to col-
lect plotting and analysis scripts for various types of data 
(e.g., characterization, property measurements) produced 
by different equipment, each of which is incorporated into 
the dashboard by publisher or agency developers. For future 
publications, this can be incentivized or enforced by the 
publisher or agency, while past publications can be mined 
by large language models (LLMs) and appropriate prompt 
engineering (e.g., “Write Python code to reproduce Fig. 1”). 
To maximize the data and code extracted from the litera-
ture, full automation of this process would be ideal, which 
would require an LLM to identify the appropriate prompts 
from a given paper, another LLM to answer the prompts, 
and perhaps another model (does not need to be an LLM) to 
categorize the data and code into material and experiment 
types. We believe this level of automation is feasible with 
the recent rate of advancements in LLMs, as long as there 
are resources dedicated to corpus curation.

However, all of this requires the standardization of 
domain-specific ontologies and of metadata formatting, 
for materials and instruments, within the materials science 
community, which serve to increase the interoperability 
and reusability of data, respectively. These two topics have 
been increasingly acknowledged as critical to addressing the 
most pressing materials science problems with data [40, 56]. 
An ontology defines the formal representation of domain 
knowledge and thus defines what types of data and meta-
data fully describe a material in a given domain. For exam-
ple, an ontology for catalyst materials would define what 
synthesis and processing parameters, instrument metadata, 
materials properties, device properties/materials, and cata-
lyst performance metrics should be recorded and published 
as “catalyst materials data.” Defining such an ontology, as 
well as standards regarding data and metadata formatting, 
could completely alleviate the data standardization issues, 
and thus the interoperability and reusability issues, in multi-
institutional materials data management. These ontologies 
and metadata format standards then could be published on 
and enforced by a website like the MDF.

Conclusion

While computational materials databases such as the Materi-
als Project [16] are extensive, they are limited in the mate-
rial types and properties that can be robustly modeled, as 
well as their ability to inform the processing and perfor-
mance components of PSPP relationships. In order to dis-
cover and design transformative materials relevant to energy 

and climate change, more novel, thoughtful approaches to 
materials informatics need to be developed, particularly with 
respect to the management and sharing of experimental data. 
While there are vast amounts of experimental materials data 
produced daily, there currently is a lack of centralized, stand-
ardized experimental data management. As an initial step 
toward better data management, here we presented a pro-
totype of a web-based dashboard for exploiting the wealth 
of information available in a particularly difficult dataset—
namely a multimodal, multi-institutional combinatorial 
materials dataset.

In contrast to previous applications for the analysis and 
visualization of combinatorial data [23, 24], our dashboard 
(i) can be accessed via a web browser (i.e., is not a desk-
top application), (ii) integrates directly with Globus [26, 
27], a tool already widely used by the scientific research 
community, and (iii) can aggregate and visualize different 
data modalities across different wafers and samples. From 
a broader perspective, our dashboard sets itself from other 
similar tools [25, 48–53] that have been developed in the 
high-throughput and autonomous materials science com-
munities in its handling of multi-institutional data, as all of 
these tools were designed for data streams within a single 
institution. Key to the dashboard’s development was frequent 
communication between the developer and the experimental 
team, which enabled the evolution of the dashboard to better 
meet the needs of the researchers. Throughout this learn-
ing, we developed several recommendations for the devel-
opment of future materials dashboards, as well as outlined 
possibilities outside the scope of this work (e.g., integration 
with ML models). Lastly, in line with the MGI’s goals of 
infrastructure unification and harnessing the power of data, 
we envision the future development of an all-encompassing 
materials data management infrastructure based on the pro-
totype developed here, and present strategies to achieve this, 
particularly through the utilization of LLM models.
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