
EDITOR: Irena Bojanova, irena.bojanova@computer.org

DEPARTMENT: CYBERSECURITY

Comprehensively Labeled Weakness and
Vulnerability Datasets via Unambiguous
Formal Bugs Framework (BF) Specifications
Irena Bojanova, https://orcid.org/0000-0002-3198-7026, NIST, Gaithersburg, MD, 20899, USA

Abstract—The current state of the art in software security – describing
weaknesses as Common Weakness Enumeration (CWE) entries and
vulnerabilities as Common Vulnerabilities and Exposures (CVE) entries, and
labeling CVEs with CWEs—is not keeping up with the modern cybersecurity
research and application requirements for comprehensively labeled datasets. As a
formal classification system of software security bugs and related software faults
enabling unambiguous specification of software security weaknesses and
vulnerabilities, the NIST Bugs Framework (BF) offers a prominent new approach
toward systematic creation of weakness and venerability datasets labeled with the
BF taxonomy. This work presents methodologies based on the BF formal
language and developed BF tools for comprehensive labeling of common
weaknesses – including CWEs – and publicly disclosed vulnerabilities – including
CVEs. The developed taxonomic datasets, transformation algorithms, databases,
and queries can support a new range of research and implementation efforts for
weakness and vulnerability specification generation, bug detection, vulnerability
identification and remediation, and test-case generation.

C ybersecurity of critical infrastructure and soft-
ware supply chains is an increasingly pressing
societal challenge. Attacks on cyberspace are

not only growing, they are also more sophisticated and
more dangerous. Modern cybersecurity research and
application must overcome them and assure software
security vulnerability prevention, remediation, or miti-
gation. However, the current state of art for specify-
ing and labeling software security weaknesses and
vulnerabilities is not keeping up with their require-
ments. There is a critical need for formal approaches
in classifying software security bugs and systematic
comprehensive labeling of common weaknesses and
disclosed vulnerabilities. The NIST Bugs Framework
(BF) [1] is a formal classification system of software
security bugs and related software faults enabling
unambiguous formal specification of software security

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000
Date of current version xx July 2023.

weakness types and vulnerabilities, which aims to
address these necessities.

Widely used sources of weakness and vulnerability
descriptions are the Common Weakness Enumeration
(CWE) [2] and the Common Vulnerabilities and Ex-
posures (CVE) [3] repositories. The National Vulner-
abilities Database (NVD) [4] also labels the CVEs with
CWEs. However, the CWE and CVE descriptions are
in natural language and, thus, far from formal. The
CWE to CVE assignments could be challenging and
ambiguous, as CWEs may be overly specific, unclear,
or overlapping [5].

As of January 2024, there are 934 CWE weakness

Disclaimer: Certain equipment, instruments, software, or mate-
rials, commercial or non-commercial, are identified in this pa-
per in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation
or endorsement of any product or service by NIST, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

January/February Published by the IEEE Computer Society IT Professional 1



DEPARTMENT

types and 235 625 CVEs, including 169 819 CVEs la-
beled with CWEs by NVD. Thirty percent of the CWEs
and most of the CVEs (63%) map to the BF Data Type
(_DAT) [6], BF Input/Output Check (_INP) [7], and BF
Memory Corruption/Disclosure (_MEM) [8] bugs class
types, providing the base for comprehensively labeled
BFCWE and BFCVE datasets.

This work presents BF-based methodologies and
tools (see Tools at [1]) for systematic comprehensive
labeling of common weakness types and disclosed vul-
nerabilities. The BFCWE tool facilitates the creation of
CWE-to-BF (CWE2BF) mappings by weakness opera-
tion, error, and final exploitable error, and possibly by
entire main (cause, operation, consequence)

BF weakness triple and generates BFCWE formal
specifications as entries for the BFCWE dataset and
graphical representations of the mappings and the
specifications. The BFCVE tool generates possible
chains of weaknesses for a vulnerability by identified
failure and final exploitable error or possibly entire final
exploitable weakness, generates possible BFCVE for-
mal specifications and their graphical representations,
and identifies and recommends a CWE(s) for NVD
assignment. Code analysis and the BF GUI (Graphical
User Interface) tool are used to identify and complete
the unique unambiguous BF vulnerability specifica-
tions.

The tools utilize machine-readable representations
of the current BF taxonomy in XML or JSON formats,
generated from the BF relational database. The tools
also utilize the created BFVul mashup database with
weakness and vulnerability data from the CWE, CVE,
NVD, and GitHub [9] vulnerability repositories. Further
vulnerability analysis can be performed utilizing the
extension of BFVul with data from Known Exploited
Vulnerabilities Catalog (KEV) [10], Exploit Prediction
Scoring System (EPSS) [11], Software Assurance Ref-
erence Dataset (SARD) [12],

The developed taxonomic datasets and transfor-
mation algorithms, and databases and queries can
support a new range of research and implementa-
tion efforts for weakness and vulnerability specification
generation, bug detection (triaging), vulnerability reme-
diation or mitigation, and test-case generation.

Current State of the Art
The current state of the art in describing and mapping
software security weaknesses and vulnerabilities in-
volves the use of the Common Weakness Enumeration
(CWE) [2], the Common Vulnerabilities and Exposures
(CVE) [3], and the National Vulnerabilities Database
(NVD) [4]. CWE is a community-developed list of

software and hardware weakness types with descrip-
tions, examples, and references – each CWE entry is
assigned a CWE-x ID (identifier), where x is of one
to four digits. CVE is a catalog of publicly disclosed
cybersecurity vulnerabilities with descriptions and ref-
erences – each CVE entry is assigned a CVE-yyyy-X

ID, where yyyy is the year of disclosure and x is of
four or five digits. NVD maps CVEs to CWEs while
also assigning Common Vulnerability Scoring System
(CVSS) [13] severity scores.

Although widely used, CWE, CVE, and NVD face
certain issues. Many CWEs and CVEs have imprecise
descriptions and unclear causality, and CWE exhibits
gaps and overlaps in coverage. Additionally, there are
no strict methodologies for chaining the weaknesses
underlying a vulnerability and for backwards bug iden-
tification from a failure, and there are no tools to assist
users in creating and graphically visualizing weakness
and vulnerability descriptions.

The NIST Bugs Framework (BF) offers a new
prominent approach for addressing these challenges.
It possesses the expressive power to formally describe
any software bug or weakness underlying any vulner-
ability. Thus, it could be utilized to augment CWE,
CVE, and NVD with unambiguous weaknesses and
vulnerabilities BF specifications.

The Bugs Framework (BF)
The Bugs Framework (BF) [1] is a formal classification
system of software security bugs and related software
faults enabling unambiguous specification of software
security weaknesses and underlined by them vulner-
abilities. It comprises software security concepts defi-
nitions, Bugs Models with possible flow of operations,
a structured orthogonal (not overlapping) by operation
taxonomy, a Vulnerability State Model – as a chain of
a bug and faults states leading to a failure(s), and a
Vulnerability Specification Model – as a chain of weak-
ness triples adhering to causation and propagation
rules. BF addresses the CWE and CVE challenges
via its classification, causation, propagation (chain-
ing), and failure-to-bug identification features. The BF
taxonomy, and causation and propagation rules form
the BF LL(1) (Left-to-right Leftmost-derivation One-
symbol-lookahead) Formal Language, which is the
backbone of the BF Tools.

In contrast to CWE’s exhaustive enumeration ap-
proach, BF adopts a structured classification. Each
BF class is a taxonomic category defined by a set of
operations, valid cause-operation→consequence

within-weakness transitions, and attributes. It relates
to a specific software execution phase, the possible

2 IT Professional January/February 2024



DEPARTMENT

operations’ bugs and operands’ faults defining the
causes, and consequences resulting from the op-
erations over the operands. BF describes a weak-
ness as an instance of a taxonomic BF class with
one operation, one cause, one consequence, and
their attributes. BF describes a vulnerability as a
chain of BF class instances (weaknesses) and their
consequence→cause between-weaknesses transi-
tions. A software security bug causes the first weak-
ness, leading to an error. This error becomes the fault
causing another weakness and propagates through
subsequent errors until a final exploitable error is
reached, causing a security failure. Causation and
propagation between weaknesses are by valid oper-
ation flow and error→fault transitions. Causation
and propagation between vulnerabilities are by valid
exploit result→fault transitions. The BF spec-
ification of a vulnerability adheres to the BF causation
and propagation rules to form a chain of underlying
weaknesses leading to a failure. This allows nuanced
understanding of the vulnerability and unambiguous
failure to bug identification – going backwards through
all the consequence→cause transitions at execution,
i.e., by improper (faulty) operand until an operation
is improper (has a bug). Fixing the bug within that
operation remediates the vulnerability.

BF Vulnerability Specification Model
The Bugs Framework (BF) models a vulnerability
specification (see Figure 1) as a chain of (cause,
operation, consequence) weakness triples with
operation and operand attributes, and transitions ad-
hering to the BF weakness and vulnerability causation
and propagation rules. It reflects the BF Taxonomy
structure and the BF vulnerability state model at Bo-
janova [1].

Causation within weaknesses is by meaningful
(cause, operation, consequence) weakness
triples defined for each BF class taxonomy –
the bug or faulty input operand of an operation
results in an error or a final exploitable error.
More specifically, as matrices of meaningful (bug,
operation, error), (bug, operation, final

exploitable error), (fault, operation,

error), or (fault, operation, final

exploitable error) weakness triple. Causation
between weaknesses is by valid operation flow
and valid consequence→cause transitions
adhering to the BF Bugs Models and the
appropriate BF LL(1) semantics. More specifically,
as graphs of meaningful (operation1, ...,

operationn) bug or fault state paths and

matrices of meaningful consequence→cause

transitions. Causation between vulnerabilities is by
an exploit→fault-operation transitions – the
result from an exploit becomes the fault for a new
faults-only vulnerability.

Propagation between weaknesses is by valid
error→fault transitions – the error resulting from
the operation of a weakness becomes the fault of
another weakness. The matching is by fault value or
only by fault type and valid consequence→cause

transitions – typical for for weaknesses of BF class
types on different levels of abstraction. Propagation be-
tween vulnerabilities is by exploit result matching
the fault type of the chained vulnerability.

For simplicity, Figure 1 does not show vulnerabil-
ity convergence and chaining, as they directly reflect
the corresponding transitions from the BF Vulnerability
States Model at [1].

BFCWE Dataset
There are 934 CWE weakness types as of January
2024 [2]. NVD uses the 130 "most commonly seen
weaknesses" [14] for labeling CVEs, but it might also
list other CWEs as assigned by third-party contributors.

Of the 934 CWEs, 72 map to BF Data Type (_DAT)
[6], 157 – to BF Input/Output Check (_INP) [7], and
60 – to BF Memory Corruption/Disclosure (_MEM)
[8] bugs class types. These 289 unique CWEs form
30% of the CWE repository and provide the base
for systematic creation of a comprehensively labeled
software weaknesses BFCWE dataset via utilizing BF.

The methodology is as follows: (1) Basic soft-
ware security weaknesses research and meticulous
analysis of the natural language descriptions of all
data type, input/output check, and memory related
CWEs (as well as of relevant code examples and
CVEs) is conducted to create CWE2BF mappings by
weakness operation, error, final error and then by
detailed BF (bug, operation, error), (fault,
operation, error), or (fault, operation,

exploitable error) weakness triples (see Bo-
janova and Guerrerio for _MEM [15]). (2) The BFCWE
tool generates BFCWE formal specifications as en-
tries of the BFCWE software security weakness types
dataset. (3) The BFCWE tool generates graphical
representations for enhanced understanding of the
CWE2BF mappings (by operation, error, final error,
and complete weakness triples) with parent-child CWE
relations, and of the BFCWE formal specifications.

For example, the possible main-weakness triples
for CWE-125 are (Over Bounds Pointer,

Read, Buffer Over-Read) and (Under Bounds

January/February 2024 IT Professional 3



DEPARTMENT

BF Vulnerability Specifica�on Model

Bug Type Error Type1

Bug
Opera�on1

Operand11 , ... Operand1i , ...
Error1

Fault Type1

Weakness Type 2

Weakness2

Error Type2

Fault1
Opera�on2

Operand21 , …, Operand2j , ...
Error2

Operand21 Kind
Value21s

Operand21 State
Value21k

…
Mechanism
Value2m

Source Code
Value2c

Execu�on Space
Value2e

Fault TypeN-1

Weakness TypeN

WeaknessN

Final Exploitable Error Type

FaultN-1
Opera�onN

OperandN1 , …, OperandNP , ...
Final Exploitable Error

EnablerF

ExploitF

Bug Opera�on

Fault / Error Exploitable Error Failure

Operand25 Kind
Value25s

Operand25 State
Value25k

Enabler1

Exploit1

Operand11 Kind
Value11s

Operand11 State
Value11k

…
Mechanism
Value1m

Source Code
Value1c

Execu�on Space
Value1e

Operand15 Kind
Value15s

Operand15 State
Value15k

OperandN1 Kind
ValueN1s

OperandN1 State
ValueN1k

…

Mechanism
ValueNm

Source Code
ValueNc

Execu�on Space
ValueNe

OperandN5 Kind
ValueN5s

OperandN5 State
ValueN5k

…

…

Bug Type – Code or Specifica�on

Fault/Error Type – Data, Name, Type, Address, or Size

→ Causa�on within weaknesses– by valid (cause, operation, consequence) triples

↪ Causa�on betweenweaknesses – by flow of opera�ons

Propaga�on between weaknesses – by flow of opera�ons and same error/fault value or type

BF, I. Bojanova, 2014-2024

Weakness Type 1

Weakness1

Failure Type1

Failure1

Failure TypeF

FailureF

Buggy Opera�on

Opera�on with Faulty Operand

Opera�on with Faulty Operand

(Bug, Opera�on1, Error1) ← lookup_weakness_triple()

(Opera�on1, Opera�on2)← lookup_opera�on_flow()

Fault1.Type ← Error1.Type

(Fault1, Opera�on2, Error2) ← lookup_weakness_triple()

(Opera�on2, Opera�on3)← lookup_opera�on_flow()

Fault2.Type ← Error2.Type

(Faultn-1, Opera�onn, Exploitable Error)← lookup_weakness_triple()

(Exploitable Error, Exploit1) ← flow_lookup()
…

(Exploitable Error,ExploitF) ← flow_lookup()

FIGURE 1: BF Vulnerability Specification Model. Reflects the BF Taxonomy (cause, operation,

consequence) structure, and the BF Formal Language syntax and semantics. Possible types of triples are
(bug, operation, error), (bug, operation, final exploitable error), (fault, operation,

error), or (fault, operation, final exploitable error).

Pointer, Read, Buffer Over-Read). Figure 2
illustrates the graphical representations of their BF
specifications, with all the possible combinations to
consider as the main weakness for CVEs mapped to
CWE-125. Although, a CWE should be about a single
weakness, the descriptions of some CWEs also reveal
possible causing chains of weakness triples (see [15]
for _MEM).

All identified weakness triples are checked to-
wards the BF Causation Matrix of meaningful (cause,
operation, consequence) triples, which defines
part of the BF LL(1) Formal Language semantics. All
developed BFCWE specifications are added to the

comprehensively labeled BFCWE dataset at Bojanova
[1].

This same methodology helps reveal CWEs over-
laps, as many CWEs have the same BF specifications.
Although, a CWE should be about a single weakness,
the descriptions of some CWEs also reveal possible
causing chains of weakness triples (see Bojanova and
Guerrerio for _MEM [15]). As the BFCWE specifica-
tions are in essence partial BFCVE specifications, the
matrix and the dataset are also continuously enriched
from newly developed BF specifications of CVEs and
other reported software security vulnerabilities.

The BFCWE dataset could augment the CWE

4 IT Professional January/February 2024



DEPARTMENT

Address Fault Opera�on with Faulty Operand
Memory Corrup�on/Disclosure
Final Exploitable Error

Over Bounds Pointer
Read,

Data, Type, Address, Size
Buffer Over-Read

Address Fault Opera�on with Faulty Operand
Memory Corrup�on/Disclosure
Final Exploitable Error

Under Bounds Pointer
Read,

Data, Type, Address, Size
Buffer Under-Read

BF CWE-125

_MEM Weakness
Memory Use
(MUS)

_MEM Weakness
Memory Use
(MUS)

FIGURE 2: BF Memory Use (MUS) weakness specifications of CWE-125.

repository and the NVD database by adding the formal
BF specifications of possible BF weakness triples for
each CWE entry.

BFCVE Dataset
There are 169 819 CVEs labeled with CWEs by NVD
as of January 2024. Most of them map by final ex-
ploitable weakness to the BF Data Type (_DAT) [6],
Input/Output (_INP) [7], and Memory Corruption/Dis-
closure (_MEM) [8] bug/weakness types: 3 329 map
to _DAT, 63 172 – to _INP, and 40 454 – to _MEM.
These 106 955 unique CVEs represent 63% of the
CVEs labeled with CWEs by NVD, providing the base
for systematic creation of a comprehensively labeled
BFCVE software security vulnerability dataset via uti-
lizing BF.

The methodology is as follows: (1) The BFCVE tool
identifies CVEs with assigned CWEs for which Code
with Fix is available. (2) The BFCVE tool generates
possible chains of weaknesses for a vulnerability –
by identified failure and some or all the elements of
the final weakness – (fault, operation, final

exploitable error) or (bug, operation, final ex-
ploitable error) in the case of one weakness vulner-
ability – utilizing the BF taxonomy, and syntax and
semantic rules. (3) Code analysis and the BF GUI tool
are used to filter the generated chains and complete
the unambiguous BF vulnerability specifications. (4)
The BFCVE tool generates graphical representations
for enhanced understanding of the BF vulnerability
specifications as entries for the BFCVE software secu-
rity vulnerability dataset. (5) The BFCVE tool identifies,
refines, and recommends a CWE(s) for NVD assign-
ment.

On step (1), the BF relational database, the NVD
Representational State Transfer Application Program-
ming Interface (REST API), and the GitHub REST API
are utilized to extract CVEs with assigned CWEs for
which Code with Fix is available (see the SQL query
in Figure 3). For example, there are 269 CVEs in

DiverseVul [16] for which final weaknesses map to BF
Memory Corruption/Disclosure weakness triples, and
the Code with fix can be extracted from the fix commits
via the GitHub REST API.

On step (2), information on the failure(s) and the
final exploitable weakness is gained from the CVE re-
port(s), the CVE description, and the CWE2BF weak-
ness triple mappings if a CWE(s) is assigned by NVD.
The BFCVE tool utilizes the BF relational database
and the NVD REST API to extract the CWE2BF triples
for that CVE. Then, the BFCVE tool applies the BF
causation and propagation rules (i.e., the BF formal
language syntax and semantics) to go backwards from
the failure(s) through the final exploitable weakness to
generate all possible BF chains of weaknesses for that
specific CVE, independently of whether the CVE Code
with Fix is available.

Going backwards from the failure, the BFCVE
tool builds a connected acyclic undirected graph (a
tree, which root is the failure) of all possible weak-
ness chains with type-based fault-to-error back-
ward propagation, plus for weaknesses of same BF
class type – with name-based backward propagation.
Then the chains undergo scrutiny to ensure further
alignment with the BF Formal Language semantics
– the Causation Matrix of all meaningful (cause,
operation, consequence) weakness triples and
the Propagation Graphs of meaningful (operation1,

..., operationn) bug or fault state paths and
Matrix of all valid consequence→cause transitions
between weaknesses.

Identified beforehand failure(s) and final exploitable
weakness triple(s) reduce dramatically the number of
generated possible paths in the acyclic graph. Step (2)
is also a good starting point for specifying vulnerabili-
ties not recorded in CVE, as far as failure(s) and final
exploitable weakness information are identifiable.

On step (3), the CVE Code with Fix is examined
towards the generated chains of weakness triples
to pinpoint the unique unambiguous BF vulnerability
specification. For that both the BF tool functionality

January/February 2024 IT Professional 5



DEPARTMENT

and static/dynamic analysis or Large Language Models
(LLMs) can be utilized.

FIGURE 3: GitHub-NVD-BF SQL Query producing the
set of CVEs related to the Memory Corruption/Disclo-
sure BF class type and for which the "Code with Fix"
is available.

For example, CVE-2014-0160 Heartbleed – a
vulnerability in the OpenSSL cryptographic software
library – is mapped in NVD to CWE-125 [17]. The
CWE2BF mappings for CWE-125 restricts to two the
final exploitable weakness options for Heartbleed:
(Over Bounds Pointer, Read, Buffer

Over-Read) or (Under Bounds Pointer,

Read, Buffer Under-Read). However, the CVE-
2014-0160 description reveals the word over, which
points CWE-125 is too abstract for it and eliminates
the second BF final exploitable error option. In
addition, as Heartbleed leads to information exposure,
the last part of the BF weaknesses chain specification
is: (Over Bounds Pointer, Read, Buffer

Over-Read)→Information Exposure (IEX).
Note that the Read operation uniquely identifies the
BF MUS class, as BF classes do not overlap by
operation [8].

Going backwards from Over Bounds Pointer

using the BF causation ad propagation rules, the
BFCVE tool generates the tree of suggested weakness
chains for Heartbleed. As shown on Figure 4, the
failure is the root, the final exploitable error is the first
node, and a bug is the last node in each path. The only
options for the weakness causing the final exploitable
weakness are: (Wrong Index, Reposition,

Over Bounds Pointer) and (Wrong Size,

Reposition, Over Bounds Pointer). Both of
them have the same options for causing chains, only
two of which do not start with a bug, but even for
them the preceding weakness options start with a
bug. Exhausting these few options via source code
analysis or use of LLMs, it is straight forward to
confirm the unique unambiguous chain for Heartbleed
is: (Missing Code, Verify, Inconsistent

Value)→(Wrong Size, Reposition, Over

Bounds Pointer)→(Over Bounds Pointer,

Read, Buffer Over-Read)→Information
Exposure (IEX).

This approach would also guide vulnerability
specifications for which code is not available
— information from the existing BF vulnerability
specifications would fuel their analyses. Analogously,
going backwards from each one of these would reveal
options for previous weaknesses until a weakness
with a bug as a cause is reached. For example, going
backwards from (Wrong Size, Reposition,

Over Bounds Pointer), reveals the previous
causing weakness is a BF Data Validation (DVL)
initial weakness among: (Missing/Erroneous

Code/Under-Restrictive

Policy/Over-Restrictive Policy,

Verify/Correct, Wrong Value/Inconsistent

Value).
For step (4), the BFCVE tool generates graphical

representation(s) for enhanced understanding of the
BFCVE formal specifications.

Although step (5) seems illogical, as a BF specifi-
cation already provides comprehensive information, it
may be useful, for example, when comparing CWE-
based testing tool reports or if a more appropriate
CWE is identified.

Developed BFCVE specifications are added to the
comprehensively labeled BFCVE dataset at Bojanova
[1]. The BF semantic graphs and matrices and the
datasets are also continuously enriched from newly
developed formal BF specifications of CVEs and other
reported software security vulnerabilities.

The BFCVE dataset could augment the CVE repos-
itory and the NVD database by supplying the formal BF
specifications of CVE entries.

BF GUI Tool
Currently, the BF tool is a desktop application (see
Figure 5), which works both with the BF relational
database and the BF in XML or JSON format (useful
especially when connectivity to the databases is not
available). It has a rich Graphical User Interface (GUI),

6 IT Professional January/February 2024



DEPARTMENT

FIGURE 4: BFCVE tool generated tree of possible chains for CVE-2014-0160 (Heartbleed) using the BF
methodology for backwards Bug identification from a Failure.

allowing the user to create a new BF CVE specification,
save it as machine-readable .bfcve file (see Figure
6), and open and browse previously created .bfcve
specifications.

The BF tool guides the specification of a soft-
ware security vulnerability as a chain of underlying
weaknesses. A software security bug causes the first
weakness, leading to an error. This error becomes
the cause (i.e., the fault) for a next weakness and
propagates through subsequent weaknesses until a
final exploitable error is reached, causing a security
failure. The causation within a weakness is by a mean-
ingful (cause, operation, consequence) triple.
The causation and propagation between weaknesses
are by a meaningful consequence->cause transi-
tion, and by flow of operations and by same error/fault
type, correspondingly.

If an existing CVE is being specified, the user can
select CVE Year and CVE ID in the CVE Details

GroupBox to see its description, vendor, and product
from the CVE repository, and its CVSS score from
NVD. To create a BFCVE specification of that CVE,
the user is guided to define an initial weakness, pos-
sible propagation weaknesses, and a final weakness
leading to a failure. In the case of a vulnerability with
only one underlying weakness, that would be both an
initial and final weakness.

To start defining a weakness, the user has to
select a BF Class from the BF Class TreeView
in the Weakness GroupBox container, where the
classes are grouped by BF class types as parent
nodes. The selection of a class, populates the
five TreeView controls in the Weakness GroupBox
container: Bug/Fault, Operation, Error/Final

Exploitable Error, Operation Attributes,
and Operand Attributes. To specify the weakness
the user has to select child nodes from the five
TreeView controls and enter comments in the text-
boxes beneath them.

The BF tool enforces the initial weakness to start

with a Bug, the rest of the weaknesses to start with a
Fault. The Bug/Fault Label changes to Bug when
the initial weakness is viewed and to Fault when
propagation or final weakness is viewed. In the case
of a Bug, the child nodes are allowed only under the
Code and the Specification nodes. In the case
of a Fault, the child nodes are allowed only under
the Data, Type, Address, and Size nodes. Tooltips
with term definitions are displayed over all TreeView
nodes. The BF tool also enforces that the weakness
with the Final Exploitable Error consequence
is the final weakness, leading to a failure.

Once a weakness is specified, the user can use
the » Button to proceed and create the next weakness
from the vulnerability chain. The weakness chaining is
restricted by the error/fault type propagation rule, which
to a large extent also restricts to meaningful operation
flow, as the BF classes are developed to adhere to the
BF Bugs Models specific for their BF class types.

The Generate BF Description button displays
a draft BF description based on the selected val-
ues from the five TreeView controls and Comment

TextBoxes.
The BF tool demonstrates how the BF taxonomy,

causation rules, and propagation rules tie together into
the strict BF Formal Language.

Conclusion
The presented systematic approach for creating com-
prehensively labeled BFCWE and BFCVE datasets,
involving the BFCWE, BFCVE, and the BF API and
GUI tools contributes to a refined understanding and
deeper analysis of software security weaknesses and
vulnerabilities and would aid in the development of
effective security countermeasures. The BFCWE tool
facilitates generation of unambiguous formal BF weak-
ness specifications as entries of a comprehensively
labeled BFCWE dataset. The BFCVE tool generates
pre-labeled vulnerability datasets to be further refined

January/February 2024 IT Professional 7



DEPARTMENT

FIGURE 5: BF GUI tool – utilizes the BF taxonomy and enforces the BF LL(1) formal language syntax and
semantics. Screenshots show the comprehensive BF labels for CVE-2014-0160 Heartbleed.

8 IT Professional January/February 2024



DEPARTMENT

FIGURE 6: BFCVE specification of CVE-2014-0160 Heartbleed in XML format.

via code analysis. The BF GUI tool guides the creation
of unambiguous formal BF specifications as entries of
a comprehensively labeled BFCVE dataset.

The BFCWE dataset could augment the CWE
repository and the NVD database by supplying formal
BF specifications of possible BF weakness triples for
each CWE entry. The BFCVE dataset could augment
the CVE repository and the NVD database by sup-
plying unambiguous comprehensive formal BF spec-
ifications of CVE entries. The developed taxonomic
datasets, transformation algorithms, databases, and

queries would benefit the implementation of a new
range of bug detection (triaging), test-case generation,
and weakness and vulnerability specification genera-
tion tools. A BFVul API[1] will be made available for
retrieving information from the BFVul mashup database
with weakness and vulnerability data from the CWE,
CVE, NVD, KEV [10], EPSS [11], SARD [12], and
GitHub [9] vulnerability repositories.

Please feel free to join the BFCWE, BFCVE, and
BFAI Challenges at [1] and to contact BF’s Principal
Investigator (PI), Irena Bojanova, to discuss ideas for

January/February 2024 IT Professional 9



DEPARTMENT

collaboration.

Irena Bojanova, is a computer scientist at NIST,
Geitherburg, MD 20899, USA. Contact her at
irena.bojanova@nist.gov.

References
[1] Irena Bojanova, NIST, Bugs Framework (BF),

2014-2024. [Online]. Available: https://www.nist.
gov/itl/ssd/software-quality-group/samate/bugs-
framework.

[2] MITRE, Common Weakness Enumeration
(CWE), 2006-2024. [Online]. Available: https :
//cwe.mitre.org.

[3] MITRE, Common Vulnerabilities and Exposures
(CVE), 1999-2024. [Online]. Available: https : / /
cve.mitre.org.

[4] NIST, National Vulnerability Database (NVD),
1999-2024. [Online]. Available: https://nvd.nist.
gov.

[5] I. Bojanova and C. E. Galhardo, “Bug, Fault, Er-
ror, or Weakness: Demystifying Software Secu-
rity Vulnerabilities,” IEEE IT Professional, vol. 25,
no. 1, pp. 7–12, 2023. DOI: 10.1109/MITP.2023.
3238631.

[6] I. Bojanova, C. E. Galhardo, and S. Moshtari,
“Data Type Bugs Taxonomy: Integer Overflow,
Juggling, and Pointer Arithmetics in Spotlight,”
in 2022 IEEE 29th Annual Software Technology
Conference (STC)), 2022, pp. 192–205. DOI: 10.
1109/STC55697.2022.00035.

[7] I. Bojanova and C. E. Galhardo, “Input/Output
Check Bugs Taxonomy: Injection Errors in Spot-
light,” in 2021 IEEE International Symposium
on Software Reliability Engineering Workshops
(ISSREW), 2021, pp. 111–120. DOI: 10 . 1109 /
ISSREW53611.2021.00052.

[8] I. Bojanova and C. E. Galhardo, “Classify-
ing Memory Bugs Using Bugs Framework Ap-
proach,” in 2021 IEEE 45nd Annual Computer,
Software, and Applications Conference (COMP-
SAC), 2021, pp. 1157–1164. DOI: 10 . 1109 /
COMPSAC51774.2021.00159.

[9] GitHub, GitHub, 2008-2024. [Online]. Available:
https://github.com/.

[10] CISA, Known Exploited Vulnerabilities Catalog
(KEV), 2021-2024. [Online]. Available: https : / /
www.cisa.gov/known- exploited- vulnerabilities-
catalog.

[11] FIRST, Exploit Prediction Scoring System
(EPSS), 2021-2024. [Online]. Available: https :
//www.first.org/epss/.

[12] NIST, Software Assurance Reference Dataset
(SARD), 2024. [Online]. Available: https : / /
samate.nist.gov/SARD/.

[13] FIRST, Common Vulnerability Scoring System,
2015-2024. [Online]. Available: https://www.first.
org/cvss.

[14] MITRE, Weaknesses for Simplified Mapping of
Published Vulnerabilities, 2023. [Online]. Avail-
able: https://cwe.mitre.org/data/definitions/1003.
html.

[15] I. Bojanova and J. J. Guerrerio, “Labeling Soft-
ware Security Vulnerabilities,” IEEE IT Profes-
sional, vol. 25, no. 5, pp. 64–70, 2023. DOI: 10.
1109/MITP.2023.3314368.

[16] Y. Chen and at all, DiverseVul: A New Vulnerable
Source Code Dataset for Deep Learning Based
Vulnerability Detection, 2023. [Online]. Available:
https://github.com/wagner-group/diversevul.

[17] I. Bojanova and C. E. Galhardo, “Heartbleed
Revisited: Is it just a Buffer Over-Read?” IEEE
IT Professional, vol. 25, no. 2, pp. 83–89, 2023.
DOI: 10.1109/MITP.2023.3259119.

10 IT Professional January/February 2024

https://www.nist.gov/itl/ssd/software-quality-group/samate/bugs-framework
https://www.nist.gov/itl/ssd/software-quality-group/samate/bugs-framework
https://www.nist.gov/itl/ssd/software-quality-group/samate/bugs-framework
https://cwe.mitre.org
https://cwe.mitre.org
https://cve.mitre.org
https://cve.mitre.org
https://nvd.nist.gov
https://nvd.nist.gov
https://doi.org/10.1109/MITP.2023.3238631
https://doi.org/10.1109/MITP.2023.3238631
https://doi.org/10.1109/STC55697.2022.00035
https://doi.org/10.1109/STC55697.2022.00035
https://doi.org/10.1109/ISSREW53611.2021.00052
https://doi.org/10.1109/ISSREW53611.2021.00052
https://doi.org/10.1109/COMPSAC51774.2021.00159
https://doi.org/10.1109/COMPSAC51774.2021.00159
https://github.com/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.first.org/epss/
https://www.first.org/epss/
https://samate.nist.gov/SARD/
https://samate.nist.gov/SARD/
https://www.first.org/cvss
https://www.first.org/cvss
https://cwe.mitre.org/data/definitions/1003.html
https://cwe.mitre.org/data/definitions/1003.html
https://doi.org/10.1109/MITP.2023.3314368
https://doi.org/10.1109/MITP.2023.3314368
https://github.com/wagner-group/diversevul
https://doi.org/10.1109/MITP.2023.3259119

	Current State of the Art
	The Bugs Framework (BF)
	BF Vulnerability Specification Model
	BFCWE Dataset
	BFCVE Dataset
	BF GUI Tool

	Conclusion
	Biographies
	Irena Bojanova,


