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This study addresses the challenge of modeling relaxation dynamics in quantum many-body sys-
tems, specifically focusing on electrons in graphene nanoflakes. While quantum many-body tech-
niques effectively describe dynamics up to a few particles, these approaches become computationally
intractable for large systems. Larger systems may be tackled with a single-particle approach that,
however, struggles to incorporate relaxation effects. Existing relaxation models encounter issues
such as an inability to capture system complexity and violation of the Pauli principle. In this
work, we propose a novel single-particle model that accounts for various relaxation effects at the
crossroads of quantum optics and solid-state photonics, that overcomes the limitations of previous
models. Our approach is rooted in the quantum-optical Lindblad model, where relaxation rates are
deactivated once the target levels saturate due to the Pauli principle. This approach is referred
to as the saturated-Lindblad model. To validate the predictions of the saturated-Lindblad model,
we confront them against phenomenological and many-body physics models in low-dimensional sys-
tems, including atomic chains and graphene nanoflakes. Remarkably, the saturated-Lindblad model
exhibits excellent agreement with few-body calculations, distinguishing itself from other existing ap-
proaches. Moreover, by assigning different relaxation rates to different transitions, we successfully
reproduce cascade de-excitation dynamics and predict emission spectra. The saturated-Lindblad
model offers the ability to describe dynamics in systems of practical sizes, encompassing a wide
range of structures that can be effectively captured within the single-particle description.

I. INTRODUCTION

When solving many-body problems in quantum me-
chanics, one struggles with the unfavorable scaling of the
size of the many-body Hilbert space, being a tensor prod-
uct of spaces of individual systems. In the exact diagonal-
ization approach, a system of Ne fermions, each living in
an NH -dimensional Hilbert space, requires a description

in the space of dimension of

(
NH

Ne

)
. This approach has

been applied to various solid-state systems [1], includ-
ing single- and multi-layered graphene [2–4] and atom
chains[5]. However, as the size of the system grows be-
yond a few dozen particles, calculations become demand-
ing and eventually impossible with state-of-the-art com-
puters.

Graphene nanoflakes [6–11] are interesting for their
tunable optical properties and hold promise for ap-
plications in modern optoelectronics. Practical, accu-
rate modeling of the relaxation dynamics of graphene
nanoflakes, involving thousands of electrons, motivates
this work. In the tight-binding approximation, each of
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the carbon atoms forming the flake introduces three or-
bitals that hybridize in the sp2 form, bonding in a hon-
eycomb network, and an additional pz orbital, with an
electron that is to a good approximation free to move
across the graphene lattice [12]. The tight-binding de-
scription of graphene is thus usually limited to the pz
electrons decisive for the optoelectronic properties of the
material. Including the spin degree of freedom, a flake of
N carbon atoms has N pz electrons on 2N orbitals, N
being of the order of a few dozens to thousands for 1 to
10-nm-sized flakes. Rigorously modeling the many-body
dynamics of such large structures requires substantial nu-
merical effort and heavily limits the size of systems that
can be treated.

Various approximation schemes to overcome the scal-
ing problem have been devised. Classical approaches
[13, 14] can be applied to systems with negligible co-
herence. Nonadiabatic corrections can be incorporated
in different molecular dynamics methods of increasing
complexity, from the Ehrenfest [15], via surface hop-
ping methods [16, 17], to the quantum-classical Liouville
equation [18]. Quantum-corrected techniques account for
electronic spill-out effects influence on optical properties
of mesoscopic systems [19, 20]. Quantum-mechanical ap-
proaches include single-particle methods [21] such as den-
sity functional theory [22] or Hartree-Fock [23], as well
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as many-body perturbation theory [24] and cluster ex-
pansion of the Bloch equations [25]. We propose an in-
termediate method between the time-dependent Hartree-
Fock and the Markovian master equations, typically used
in quantum optics. It is based on a single-particle ap-
proach. The actual many-body character of the system
is accounted for via a nonlinear Coulomb Hamiltonian, in
which the interactions between electrons are introduced
through its density matrix dependence. Although the
problem becomes nonlinear, the method allows tackling
large flakes due to the linear scaling of the Hilbert space
dimension with the system size [8, 9, 26, 27]. These sys-
tems naturally suffer from the dissipation of energy and
coherence, which we will together refer to as relaxation.
In the literature, relaxation in large systems is usually
handled with a phenomenological approach, wherein the
dissipation term forces the system towards a steady state
which needs to be known in advance [8, 26, 28, 29].

A single-particle framework was introduced to model
the electro-optical properties of graphene nanoflakes with
adatoms in a recent work [30]. The adatoms are rep-
resented as two-level systems, the conventional model
of quantum optics, while the graphene flake is a solid-
state system acting as a scatterer. This framework al-
lows studying optical phenomena in such hybrid struc-
tures, merging quantum optical and solid state perspec-
tives. The coherent dynamics of the two systems can
be combined within a tight-binding model of the flake
augmented with the adatom orbitals. The dissipation
of quantum-optical systems is typically described in the
literature using the Lindblad model, while a phenomeno-
logical approach is applied in solid-state problems. Un-
fortunately, these models are hard to merge, and while
each describes its part of the physics properly, they may
inappropriately account for the other part of the hybrid
system. Particular problems involve striking issues such
as the Pauli principle violation and the inability to in-
clude different decay rates for various processes.

In this work, we propose a model that allows one to
account for dissipation dynamics in many-body systems
described within the single-particle framework. In this
case, the traditional Lindblad approach misses the infor-
mation on the number of particles that are described.
Then, it may enforce population transfer to levels which
are already fully occupied. Our model corrects this tra-
ditional approach with saturation effects which prevent
violation of the Pauli principle. The model allows grasp-
ing the versatile relaxation effects at the intersection of
quantum optics and solid-state photonics. The proposed
model will be demonstrated for small atomic chains and
graphene flakes, exploited currently in forefront research
in the field of quantum plasmonics. The model’s ap-
plicability extends to complicated systems tackled in the
single-particle framework due to their complexity. Exam-
ples thereof are time-dependent atomistic descriptions of
quantum dots, plasmonic nanoparticles, nanoscaled field-
effect transistors, capacitors or nanocomposites. The
atomistic structure has been shown to play an essential

role in shaping the optical response of such systems [31–
33] and to determine the character of optical resonances
[34].

II. THEORY

The dynamics of a model atomic chain or graphene
flake require following the evolution of an ensemble of Ne

electrons. The electrons are identical in that the proba-
bility of occupying a given eigenstate of the flake is the
same for each. The state of a given electron is thus a
mixture of eigenstates, described with a single-particle
time-dependent density matrix ρ(t). Omitting the spin
degree of freedom, the density matrix size N × N cor-
responds to N carbon atoms on the flake. An adatom
attached to the flake may introduce additional orbitals,
augmenting the Hilbert space size by the orbital num-
ber: for an adatom modeled as an Na-level system, the
Hilbert space dimension becomes NH = N + Na.

The dynamics of the density matrix is described by the
single-particle master equation

∂

∂t
ρ(t) = − i

ℏ
[H, ρ(t)] −D [ρ(t)] . (1)

The Hamiltonian H in Eq. (1) describes the coherent
part of the electronic evolution. Appendix A 1 describes
its tight-binding form in the single-particle framework.
Diagonalization of the tight-binding Hamiltonian yields

a natural Hilbert space basis {|φj⟩}NH

j=1 consisting of NH

energy eigenstates.
The relaxation term D [ρ(t)] considers effects related

to energy dissipation or decoherence. The literature de-
scribes two distinct forms of this term, which we here
refer to as phenomenological and Lindblad approaches.
In the following, we discuss their forms and underlying
approximations and compare their advantages and draw-
backs. We view them in the context of a combination of
the solid-state and quantum-optical perspectives to ad-
equately model the hybrid system of flake and adatom,
which are individually characterized by distinct relax-
ation mechanisms and rates.

A. Solid state perspective: phenomenological
dissipation model

The phenomenological relaxation term has a relatively
simple form and interpretation. It is commonly used to
model a variety of ensemble systems with strong relax-
ation [8, 26, 28, 29]

D [ρ(t)] = γ (ρ(t) − ρs) . (2)

The model characterizes all the relaxation processes with
one parameter γ, which has the advantage of simplic-
ity for the price of several approximations. The lifetime
γ−1 sets the timescale at which the system evolves to-
wards the stationary state ρs. For bulk graphene, the



3

value of ℏγ ∼ 1 − 10 meV has been experimentally
determined[28, 29, 35–37]. The model might be a good
approximation for large graphene flakes. However, when
applied to the hybrid system of flake and adatom, it pro-
hibits including different dissipation rates for the adatom
and the graphene flake, therefore being a rather coarse
description from the atomic perspective and for a weak
degree of hybridization between the atom and the flake.

Relaxation in bulk graphene and large flakes is domi-
nated by electron-scattering- and phonon-induced deco-
herence [36]. However, other dissipation channels, partic-
ularly those related to the spontaneous emission of pho-
tons, become relevant for small systems and may lead
to physically distinct behavior with an important role of
population transfer in contrast to pure decoherence. This
distinction is described in more detail below in the dis-
cussion of Lindblad operators. The simple phenomeno-
logical treatment ascribes the same timescales to these
effects. Moreover, the treatment breaks the optical se-
lection rules as it assigns the same transition rates to
optically allowed and forbidden transitions.

The important property of the phenomenological
model is that it forces the system back into its equilib-
rium state ρs. It is constructed according to the Aufbau
principle:

ρs =
1

Ne

Ne∑
j=1

|φj⟩⟨φj |, (3)

where Ne is the number of electrons on the flake and the
orbitals are ordered by energy. By construction, the state
includes the information on the many-electron character
of the system and the Pauli blocking mechanism: Only
one electron is allowed in one energy level as the spin
degree of freedom is not included here. Note that we
choose to normalize density matrices such that their trace
is equal to 1 so that the diagonal elements represent the
probabilities for an electron to occupy the basis states.

However, in quantum optics, the stationary state is
usually unknown a priori. It results from a trade-off be-
tween the relaxation rates and the excitation strength,
e.g., due to an electric field. For strong perturbations,
saturation effects occur. The field influence on the equi-
librium state is beyond the scope of the phenomenologi-
cal approach, which is a good approximation for strongly
dissipative systems, particularly for large flakes, as well
as in the case of moderately strong illumination in the
form of pulses shorter than the relaxation time γ−1.

B. Quantum-optical perspective: Lindblad
approach

A rigorous quantum-mechanical treatment of relax-
ation processes is based on the Lindblad equation [38, 39]:

D [ρ(t)] =

N2−1∑
k=1

γk

(
Lkρ(t)Lk

† − 1

2

{
Lk

†Lk, ρ(t)
})

,

(4)
where γk are relaxation rates for processes described by
Lindblad single-particle jump operators Lk. The index
k = {i, j} labels N2 − 1 pairs of eigenstate indices.
Two possible types of Lindblad operators can be distin-
guished:

• for j ̸= i, the N(N−1) jump operators Lk → σij =
|φi⟩⟨φj | describe population transfer from the hy-
brid system’s eigenstate |φj⟩ to the eigenstate |φi⟩
with the corresponding decay of coherence; spon-
taneous emission is related to transfer from higher
to lower energy states, while optical pumping to
transfer from lower to higher ones;

• for j = i, the N − 1 independent dephasing oper-
ators Lk → σii = |φi⟩⟨φi| which may arise, e.g.,
through inelastic electron scattering, and lead to
decay of coherence without influencing the eigen-
state populations. Note that for N eigenstates,
there are N operators of this form. Any of these
operators can be expressed in the form |φi⟩⟨φi| =

1̂1 − Σn ̸=i|φn⟩⟨φn|. Here, 1̂1 stands for the identity
operator. Hence, the identity operator and N − 1
dephasing operators σii are independent. Note that
for the identity operator, Lk = 1̂1, the right-hand
side of Eq. (4) is trivial.

For multilevel systems, relaxation rates corresponding
to different operators must fulfill certain relations [40].
Each of the dissipation mechanisms above can be de-
scribed with an independent rate γk, which allows as-
signing different rates to different processes. In particu-
lar, the adatom can be treated individually, e.g., selected
dipole-forbidden transitions can be excluded. Further-
more, the rates of different allowed transitions can be
specifically chosen, for example, evaluated according to
the Weisskopf-Wigner theory.

However, there is a substantial drawback to the rig-
orous approach: Eq. (4) accounts for the relaxation of
a many-body system under the condition that it is de-
scribed in a corresponding Hilbert space. In the single-
particle framework, ρ(t) carries no information on the
many-body character of the system. The price to pay
is that the Pauli blocking mechanism is ignored in the
master equation. The extreme manifestation of this fact
is that spontaneous emission in the dissipation term (4)
pushes the entire electronic population into the lowest-
energy eigenstate of the system, severely violating the
Pauli principle.
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FIG. 1. (a) Tight-binding energy level scheme of a 6-atom ring. Black dots schematically depict the initial state population
distribution [see Eq. (7)]. (b,c) Relaxation dynamics in a singly-excited benzene ring: (b) Identical, overlapping curves for the
phenomenological and saturated-Lindblad models with γij ≡ γ for all i, j. (c) Lindblad model. The line colors in panels (b,c)
correspond to the colors marking the states in the level scheme in panel (a). Note that the unsaturated-Lindblad model violates
the Pauli principle.

C. Saturated-Lindblad model

In addition to the previously introduced Lindblad for-
malism, we propose a saturated-Lindblad model. It aims
to enable differentiating relaxation mechanisms and rates
for processes involving different eigenstates of the hy-
brid system, as in the Lindblad approach, but at the
same time, adhere to the Pauli principle. These goals
are achieved by suppressing the energy dissipation rates
from |φi⟩ to |φj⟩ as the population ρjj of the target state
becomes fully occupied

γij → γijθ [1 −Neρjj(t)] , (5)

where

θ(x) =

{
0, for x < 0,
1, for x ≥ 0.

(6)

is the Heaviside function. For selected systems, we have
compared the dynamics obtained by employing such a
cutoff with dynamics in a model with a smooth satura-
tion functional, avoiding the discontinuity of the Heavi-
side function. We find that the results obtained using the
sharp Heaviside function best prevent the Pauli principle
violation (see Appendix B). In the following section, we
compare the relaxation dynamics obtained with different
models with rigorous many-body simulations that can be
made for small systems. Our results confirm the proper
behavior of the proposed saturated model. Note that
the spontaneous emission process is related to the pop-
ulation transfer from ρii to ρjj with a rate γij and the
corresponding dephasing of the off-diagonal density ma-
trix elements ρij and ρji with the rate 1

2γij . The process
of pure dephasing related to the |φi⟩⟨φi| operators does
not affect the population distribution, so the pure de-
phasing rate γii is not constrained by the Pauli principle
and it remains unsaturated in our model.

III. BENCHMARKING RESULTS

In this section, we discuss predictions of the relaxation
models described above for five example cases. We start
by examining electron dynamics in small systems with
and without degeneracy. The example case of the 6-
atom ring is used to demonstrate the unphysical dynam-
ics predicted by the traditional unsaturated-Lindblad ap-
proach, already in the single-excitation case. The 6-atom
chain example demonstrates different predictions of the
phenomenological and saturated-Lindblad models for the
case of a double excitation. The dynamics are directly
compared to results obtained in the rigorous quantum-
mechanical many-body approach. The latter is intro-
duced in the Appendix A 2 and used as a benchmark.
The following examples demonstrate the performance of
the two models applied to larger systems and multiple
excitations, which again lead to qualitatively different
predictions of the dynamics and emission spectra. Fi-
nally, the difference in predicted dynamics is shown to
be quantitatively increased in the presence of an adatom
defect.

A. Benchmarking models: 3 electrons on a 6-atom
ring

We first consider the relaxation dynamics for three
electrons in a 6-atom ring using the tight-binding model
with onsite energies set to zero (see the Hamiltonian in
Appendix A 1). The ring has 6 single-particle eigenstates
with energies −2t, −t, −t, t, t, 2t, where t is the nearest-
neighbor hopping rate. The Fermi energy of this system
is zero due to electron-hole symmetry. The normalized
ground state of the undoped system is constructed ac-
cording to Eq. 3 that corresponds to the distribution of
1/3 of the electron population in each eigenstate below
the Fermi energy. Figure 1 shows the relaxation dynam-



5

ics for the single-excitation case with the initial state

ρ(t = 0) =
1

3

|φ1⟩⟨φ1| +
1

2

5∑
j=2

|φj⟩⟨φj |

 , (7)

schematically depicted in Fig. 1(a). With respect to the
equilibrium state, half of the electronic population dis-
tributed at the degenerate energy level of −t is now pro-
moted to the energy level of t, with equal probabilities
to occupy states |φ4⟩ and |φ5⟩. We have set all relax-
ation rates to the same value in the phenomenological
case, and the original and saturated-Lindblad ones. This
aspect is further discussed in Appendix C. The choice of
equal relaxation rates means that spontaneous emission
among all pairs of states is possible. In contrast, decoher-
ence may occur for all states except for the ground state.
The phenomenological formalism generates an intuitive
result, with the probabilities of states at the energy level
t exponentially decaying and the occupation being trans-
ferred to the states at the energy level −t [Fig. 1(b)].
Contrary, modeling the dynamics with the original Lind-
blad approach leads to a decay of the entire population of
three electrons to the single-electron ground state |φ1⟩,
clearly violating the Pauli principle [Fig. 1(c)]. This
demonstrates the unphysical predictions of the Lindblad
approach in the single-particle formalism applied to de-
scribe a many-body problem so that we can discard this
model. Instead, the saturated-Lindblad model prevents
the population drain to the single-particle ground state,
reproducing exactly the results of the phenomenological
model in panel (b). A many-body calculation with the
model described in Appendix A 2 also fully confirms this
behavior, exactly reproducing the curves in [Fig. 1(b)].
This exact agreement is achieved for a mono-exponential
decay involving a single pair of energy eigenstates be-
tween which the relaxation occurs. Appendix C explains
the mathematical origin of this accordance and discusses
the scaling of rates in larger systems. The agreement
of the phenomenological and saturated-Lindblad results
may not hold if a greater number of transitions is in-
volved, as we demonstrate in the following example.

B. Benchmarking models: 3 electrons on a 6-atom
chain

As a second example, we discuss the toy-model case
of a 6-atom chain, for which ring degeneracies are lifted,
and the three-electron ground state is given by Eq. 3 with
Ne = 3. In the ground state, the highest-occupied orbital
(HOMO) corresponds to the state |φ3⟩, while the lowest-
unoccupied orbital (LUMO) – to state |φ4⟩ [Fig. 2(a)].
We consider three kinds of chains characterized by dif-
ferent sets of transition rates, shown in Fig. 2(b-d). The
case with all relaxation rates being equal is considered to
enable a direct comparison of the phenomenological and
the saturated approaches: The phenomenological model

assumes uniform transition rates regardless of the spa-
tial structure of the system, transition frequencies, and
dipole moments.

Two other important cases of linear atom chains are
defined by the Su-Schrieffer-Heeger (SSH) model[41–44],
whose tight-binding Hamiltonian is described in Ap-
pendix A 1. For SSH chains, the relaxation rates can
be evaluated based on the Hamiltonian eigenstates ac-
cording to the Weisskopf-Wigner formula[45]

γij =
ω3
ij |dij |2

3πϵ0ℏc3
. (8)

Here, ℏωij is the transition energy between levels i and j,
dij is the corresponding transition dipole moment, ϵ0 is
the vacuum permittivity, ℏ stands for the reduced Planck
constant, and c is the vacuum speed of light. Dipole mo-
ment elements are calculated as dij = −⟨φi|er̂|φj⟩ =
−e
∑

l a
⋆
ilajlrl, where e is the elementary charge, ajl are

probability amplitudes for an electron described by the
eigenstate |φj⟩ to be localized at the carbon site l, and rl
is the site position. The values depicted in Fig. 2(c,d)
for linear and dimer chains, have been normalized to
the largest transition rate. This has no influence on the
dynamics in Fig. 2(e-j) shown for accordingly normal-
ized time. Note that the calculated rates result from
the Hamiltonian and include the properties of atomic or-
bitals and spatial positions of atoms. As the SSH chains
are inversion symmetric, the eigenstates are either even
or odd functions of electron positions. Selection rules for-
bid transitions between states of the same parity, which
is reflected in the chess-like patterns of the evaluated
Weisskopf-Wigner emission rates in Fig. 2(c,d). We can
account for selection rules in the saturated-Lindblad ap-
proach, where we can introduce different transition rates
and set those of dipole-forbidden transitions to 0.

We choose the initial state

ρ(t = 0) =
1

3
(|φ1⟩⟨φ1| + |φ2⟩⟨φ2| (9)

+
1

2
|φ3⟩⟨φ3| +

1

2
|φ4⟩⟨φ4|

)
,

which corresponds to the excitation of 50% of the HOMO
population to the LUMO state. We again find excellent
agreement between the phenomenological and saturated-
Lindblad models, as we did for the ring and as is ex-
plained in Appendix C. We have an excellent agreement
between models regardless of the chain relaxation rates
because one LUMO – HOMO transition is active, which
leads to exponential dynamics similar to the one shown
in Fig.1(b).

We next consider cases where there are significant dif-
ferences between the phenomenological and saturated-
Lindblad modes, both in the time scale of the predicted
relaxation dynamics and in which transitions are in-
volved. More interesting is the case in which part of
the initial HOMO population is transferred to the state
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FIG. 2. Relaxation dynamics of doubly-excited six-atom chains. (a) Energy scheme in the single-electron approach. The
single-electron eigenstates are not degenerate. The energy differences may vary for the linear chain, dimer chain, and chain
with all transition rates equal.
(b,c,d) Colored arrays representing normalized transition rates γij : the ij element of the array corresponds to a transition
from |φi⟩ to |φj⟩ in a chain with all transition rates equal (b), a linear chain (c) and a dimer chain (d). The rates have been
evaluated in the two latter cases according to the Weisskopf-Wigner formula (8).
(e,f) Relaxation dynamics for a chain with all transition rates equal: Expected level occupation Neρjj in chain eigenstates
modeled with the saturated-Lindblad (e) and phenomenological (f) approaches. (g,h) Relaxation dynamics for a linear chain:
Expected level occupation Neρjj in chain eigenstates modeled with the saturated-Lindblad (g) and many-body (h) approaches.
(i,j) Same as (g,h) but for the dimer chain. Line colors and markers correspond to the eigenstates as depicted in panel (a).
Note that the saturated-Lindblad model reproduces the many-body results very well.

|φ5⟩ (LUMO+1):

ρ(t = 0) =
1

3
(|φ1⟩⟨φ1| + |φ2⟩⟨φ2| (10)

+
1

2
|φ3⟩⟨φ3| +

1

2
|φ5⟩⟨φ5|

)
,

which is schematically depicted in Fig. 2(a). Interme-
diate transitions are now possible. For the chain with
all relaxation rates equal γij = γii = γ [Fig. 2(b)], we
compare the results of the saturated-Lindblad and the

phenomenological approaches in panels (e) and (f). The
figure shows the population dynamics of the six eigen-
states. According to the phenomenological model [panel
(f)], the population is directly transferred from state |φ5⟩
to state |φ3⟩. Contrary, the saturated-Lindblad approach
[panel (e)] leads to more physical behavior, with the pop-
ulation being transferred through the cascade from |φ5⟩
to |φ4⟩ to |φ3⟩, as expected. Note that the population
of the decaying state |φ5⟩ is identical for both descrip-
tions, as we have intentionally fitted the relaxation rate
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in the phenomenological model. However, certain states
remain unoccupied in the phenomenological model. This
is a relevant difference: The cascade character of the
saturated-Lindblad dynamics may imply longer evolution
timescales, especially in larger systems involving more
levels. In further examples, we will show how it leads to
qualitatively different predictions of the emission spectra.

In panels (g-j) of Fig. 2, we display the results ob-
tained for a linear chain and a dimer chain (for de-
tails, see Appendix A 1). Panels (g) and (i) have been
obtained with the saturated-Lindblad approach, which
yields clearly different relaxation dynamics in the two
systems. Note that the dominant relaxation pathway in
the linear chain occurs through a cascade of transitions
between subsequent pairs of states [Fig. 2(c)]. In con-
trast, the transitions in the dimer chains occur between
pairs of states that are symmetric with respect to the
Fermi level [Fig. 2(d)]. This fact results in different evo-
lution time scales on the horizontal axes of the plots. In
the linear chain, the transition from |φ5⟩ to |φ4⟩ is rel-
atively quick and followed by the even faster transition
from |φ4⟩ to |φ3⟩. In the dimer chain, the first transi-
tion occurs at a lower rate, and a longer time is needed
for a considerable population transfer. Note that the se-
lection rules in the linear and dimer chains reflect the
metallic and semiconducting character of corresponding
periodic chains. They can be used as toy models to un-
derstand the basic optical properties of larger systems,
like graphene with its inter- and intraband transitions.
Furthermore, note that the phenomenological model can-
not capture the structural differences between the linear
and dimer chains in real- or energy space: for a system
of three electrons on six sites, the prediction of the phe-
nomenological model is always the one shown in Fig. 2(f).

Panels (h) and (j) of Fig. 2 show the corresponding
results obtained in the rigorous many-body approach for
the case of three spinless electrons on six sites (see Ap-
pendix A 2 for details). We consider the agreement in the
shape of the curves between the saturated-Lindblad and
the many-body approach to be excellent because of the
same time scales, the slopes of the curves, and the order
in which the transitions occur. Note the results of the
phenomenological model in panel (f) also fails to repro-
duce the features obtained with the rigorous approach.

For the 6-atom chain with 3 electrons, we have already
found an order of magnitude speed-up in the computa-
tional time using the saturated-Lindblad approach com-
pared to the many-body model. The computational cost
scales quadratically with the system size, which scales
linearly with the number of atoms in the single-particle
approach and binomially with the number of electrons
and atoms in the many-body case. For a system of 20
atoms with 10 electrons, the Hilbert space size becomes

20 in the single-particle approach, and

(
20
10

)
∼ 105

in the many-body approach, with the estimated speed-
up in the calculation time by the factor of 107 of the
single-particle vs. many-body approaches. For a system

of 100 atoms with 50 electrons, the Hilbert space sizes

become 100 in the single-particle- or

(
100
50

)
∼ 1029 in

the many-body approach, making the many-body calcu-
lations unreachable for state-of-the-art machines.

The excellent agreement between the proposed
saturated-Lindblad model and the many-body calcula-
tions suggests that relaxation dynamics in many-body
systems can be properly modeled with a single-particle
approach, while still consuming reasonable computa-
tional time. This promises accurate calculations of many-
body relaxation dynamics of complex, larger systems, rel-
evant to novel optoelectronic applications of interest for
quantum technologies, that would not be possible with
traditional many-body approaches.

C. Scaling with the system size and emission
spectra

We now investigate the mismatch between the predic-
tions of the phenomenological model and the saturated-
Lindblad model for the relaxation dynamics in larger sys-
tems. To do so, we study armchair-edged graphene flakes
with 6, 18, and 36 carbon atoms (Fig. 3). The initial state
population corresponds to one electron initially excited
from the degenerate HOMO level (states |φH⟩, |φH−1⟩)
to the LUMO+2 eigenstate |φL+2⟩, as represented by the
size of the black dots in Fig. 3(a)

ρ(t = 0) =
1

Ne

H−2∑
j=1

|φj⟩⟨φj |

+
1

2
|φH−1⟩⟨φH−1|

+
1

2
|φH⟩⟨φH| + |φL+2⟩⟨φL+2|

]
. (11)

All states below the HOMO-1 level are fully occupied.
The transition rates for the saturated-Lindblad model
are calculated using the Weisskopf-Wigner expression in
Eq. (8). Their values are normalized to the largest among
them and presented in arrays in Fig. 3(b-d) for increasing
flake sizes. These graphs show symmetry with respect to
the diagonal because of the electron-hole symmetry in
graphene. Note the similarities of the structure of the re-
laxation rate arrays with those of the dimer chains shown
above, which is related to the presence of two atomic sub-
lattices. The phenomenological relaxation rate is fitted
to exactly reproduce the decay of the initially excited
state LUMO+2, which is why the yellow lines coincide
in Fig. 3(e-g). As the size of the flake increases, the dy-
namics of electrons on the flakes seems to become similar
between the two models [Fig. 3(e-g)]. This is because the
main relaxation rate between the LUMO+2 and HOMO
(HOMO -1) states are set equal in the two models. How-
ever, even for large flakes, the cascade character of the
dynamics is reflected by the saturated-Lindblad model.
This fact has important implications for light emission
properties, as demonstrated by the emission spectra in
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FIG. 3. (a) Energy scheme around the HOMO-LUMO gap of armchair-edged flakes with active levels marked in color, while
other levels are shown in gray. The scheme of the 6-atom ring is limited to the states in color. (b-d) Weisskopf-Wigner relaxation
rates from the states in different rows to the states in different columns for a 6-atom ring (b) and small graphene flakes (c,d).
The rates have been normalized to the maximal value on each flake. (e-g) Relaxation dynamics on doubly-excited flakes for the
phenomenological (solid lines) and saturated-Lindblad (dashed lines) models. Lines show populations of different color-encoded
levels, according to the energy diagram given in panel (a). In the initial state, half of the HOMO/HOMO-1 level population
(green) is excited to the LUMO+2 level shown in yellow. For the Lindblad model, relaxation rates are taken from the arrays in
(b-d). For the phenomenological model, the rates are fit for the population of the decaying LUMO+2 (yellow) level to match
the prediction of the saturated-Lindblad model. The solid and dashed yellow curves for the initially-populated LUMO+2 state
overlap. (h-j) Emission spectra for the three systems within the phenomenological (red solid lines) and saturated-Lindblad
model (blue solid line). Blue dashed lines represent individual-transition contributions to the saturated-Lindblad spectrum.
The three peaks correspond to the |φL+2⟩ → |φL/L+1⟩, |φL/L+1⟩ → |φH/H−1⟩ and |φL+2⟩ → |φH/H−1⟩ transitions, as indicated
in panel (i). Note that despite the phenomenological model seems to reproduce well the dynamics as the size of the system is
increased, it fails to reproduce the emission spectra.

Fig. 3(h-j), predicted by the two models. In spontaneous
emission, the system relaxes from a higher-energy state
|φi⟩ to a lower-energy state |φj⟩ with a time-dependent
rate γijρii(t), emitting light with a Lorentzian spec-
tral distribution[46]. We therefore construct the time-
integrated spectra as sums of Lorentzian contributions

S(ω) =
∑
ij

γijRii
γij

(ω − ωij)2 + γ2
ij

, (12)

centered at the energies ωij of transitions allowed in the
given model and broadened by the corresponding relax-
ation rates γ for the phenomenological model, and γij
from [Fig. 3(b-d)] for the saturated model. Each reso-

nance is rescaled by the population [Rii =
∫ tss
0

dt ρii(t)]
of the state from which the emission occurs, integrated
up to the point tss when the stationary (ground) state

is approximately reached, i.e. the total population of
states above HOMO is below 10−5. Figure 3(h-j) com-
pares the spectra evaluated using the phenomenologi-
cal (red solid line) and saturated-Lindblad approaches
(blue solid line). Additionally, we plot the individ-
ual resonances contributing to the saturated-model spec-
tra with the blue dotted lines. For each investigated
case, the phenomenological model predicts spectra with
two equally broad peaks, representing the |φL+2⟩ →
|φL/L+1⟩ and |φL+2⟩ → |φH/H−1⟩ transitions. This is be-
cause the LUMO/LUMO+1 level is unoccupied accord-
ing to the phenomenological model. Hence, there can
be no LUMO/LUMO+1 to HOMO/HOMO-1 transition.
Contrary, three peaks are predicted by the saturated-
Lindblad model, between the pairs |φL+2⟩ → |φL/L+1⟩,
|φL/L+1⟩ → |φH/H−1⟩ and |φL+2⟩ → |φH/H−1⟩. The
exception is the case of the 6-atom ring, for which the
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|φL+2⟩ → |φH/H−1⟩ transition is forbidden, and two
peaks occur. The peaks may have different heights and
widths in this model. Finally, we emphasize that the light
emission dynamics would be correlated to the dynam-
ics of the flakes. It implies that the saturated-Lindblad
model predicts a sequence of bursts corresponding to the
cascade transitions, while the phenomenological model
rather suggests emission at both frequencies in parallel.

The role of the cascade transitions is emphasized as
the system is initially excited to higher-energy states.
We further illustrate this point in Fig. 4, considering the
same 18-atom flake, initially with a 50% probability of oc-
cupation transfer from the HOMO to the highest-excited
level [Fig. 4(a)]

ρ(t = 0) =
1

9

 7∑
j=1

|φj⟩⟨φj |

+
3

4
|φ8⟩⟨φ8| (13)

+
3

4
|φ9⟩⟨φ9| +

1

2
|φ18⟩⟨φ18|

]
.

The relaxation dynamics are shown in Fig. 4(b). The
cascade nature of the process with population trans-
ferred down the ladder of states is represented by the
saturated-Lindblad model (dashed lines), contrary to the
phenomenological model (solid lines) that predicts a di-
rect transfer to the HOMO energy level with the rate
chosen to exactly reproduce the dynamics of the initially
excited state shown with the red curves. The agreement
between the predictions of the two models becomes worse
as the number of active transitions involved in the decay
process is increased. The intermediate states contribute
to the Lindblad dynamics [Fig. 4(c)], but they remain un-
populated in the phenomenological model. All of these
populations sum up to a significant number, responsi-
ble for the difference in predicted populations of the
HOMO level [cyan-shaded area in Fig. 4(b)]. This cas-
cade dynamics leads to the rich emission spectra shown in
Fig. 4(d) (blue line), different from the prediction of the
phenomenological model (red line). The latter only cap-
tures the transitions from the initially excited state |φ18⟩.
At the same time, the spectral structure predicted by the
saturated-Lindblad model is much richer, accounting for
all the contributing transitions.

D. Including an adatom

We now investigate how an adatom may influence the
predictions of the dynamics within the two models. A
two-level adatom with a single electron is attached to
the edges of the same graphene flakes with 6, 18, and 36
carbon atoms. The adatom is coupled to a single carbon
atom in each flake and is located in the plane, with a dis-
tance of 5.6 Å as depicted in the insets of Fig. 5(d-f). The
adatom induces gap states according to the Lieb theorem
[47], as confirmed by DFT calculations and experiments
([48, 49], and references therein). Thus, we find it in-
teresting to consider the adatom as a two-level system

with an occupied state in the HOMO-LUMO gap and
another state above. The energies of the isolated adatom
are ±0.38t. (Here, t = −2.66 eV is the hopping param-
eter in graphene.) The hopping parameter between the
adatom orbitals and its nearest-neighbor carbon atom
0.76t is slightly lower than in graphene. As a result, the
adatom and the flake hybridize, and the energy spectra
for different flake sizes are depicted in Fig. 5(a-c). The
energy levels are plotted against the eigenstate number,
and the marker colors indicate the fraction of the popu-
lation localized at the adatom. The states marked in red
originate at the adatom, while the dark blue ones are lo-
calized on the flake. The marker colors in between reflect
the degree of hybridization between the two subsystems.
Note that the HOMO state of the hybrid system is now
mostly localized on the adatom and is indicated by the
numbers 4, 10, or 19 for different flake sizes. The sys-
tem is initialized in a state with an electron transferred
from the HOMO state to the one indexed as LUMO+2.
This state is chosen because it corresponds to the flake
LUMO state hybridizing with the adatom. Spontaneous
emission rates are evaluated according to the Weisskopf-
Wigner theory. The transition dipole moment between
the pair of isolated adatom eigenstates is set at ea0 = 1
atomic unit, with a0 being the Bohr radius. The dipole
moment is oriented at 45 degrees relative to the hori-
zontal direction in the figures, to couple with both basic
orientations of the flake dipole moments.

As in previous examples, the phenomenological model
shows a direct population transfer between a pair of levels
[Fig. 5(d-f)]. The phenomenological decay rate was set to
reproduce the decay of the initially excited state obtained
within the saturated-Lindblad approach shown with the
blue curves. On the other hand, the cascade nature
of the population transfer is captured by the saturated-
Lindblad approach. The difference in predictions of the
two models is more significant than for isolated flakes
investigated in Fig. 3 and clearly seen in Fig. 5(d-f).
This difference arises due to the characteristic evolution
timescales of the two subsystems that may significantly
vary.

Furthermore, the presence of the adatom leads to spa-
tial symmetry breaking of the system. The pair of
states constituting the LUMO level of isolated flakes
[e.g., the green level in Fig.4(a)] is two-fold degener-
ate. The presence of the adatom lifts this degeneracy.
In consequence, the LUMO+2 state is hybridized with
the adatom, and the LUMO+1 is decoupled. States
LUMO+2 and LUMO+1 are states 7 and 6 in Fig. 5(a),
13 and 12 in (b), 22 and 21 in (c), respectively. LUMO+2
is marked with vertical dotted lines. Transitions involv-
ing the state denoted as LUMO+1 are dipole-forbidden,
so this state plays little role in the relaxation dynam-
ics. This illustrates that the system eigenstates may
be modified because of the symmetry breaking by the
adatom. The eigenstates are defined by the Hamiltonian,
and hence, they are the same for both relaxation models.
However, this symmetry breaking is further included in
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FIG. 4. (a) Energy scheme of an 18-atom armchair graphene flake with colors representing different levels. States shown in
blue are all occupied with one electron. Two electrons are distributed between the states at the HOMO and the highest-excited
level. (b) Relaxation dynamics in the system according to the phenomenological (solid lines) and saturated-Lindblad (dashed
lines) models. Lines show populations of levels color-encoded in panel (a). Labels in the legend are indices of the eigenstates.
The solid and dashed red lines for the highest-excited state overlap. The shaded area highlights the difference between the
HOMO level occupation in the two models, which arises as a sum of the contributions of the subsequent states in the relaxation
cascade. (c) Zoom on the population dynamics in the states contributing to the relaxation cascade in the saturated-Lindblad
model. (d) Emission spectra based on the phenomenological (red) and saturated-Lindblad (blue) dynamics. Note that the
phenomenological model neglects the cascade dynamics and the resulting structure of the emission spectra.

the saturated-Lindblad relaxation term, which accounts
for the modified selection rules via different transition
rates. Thus, the presence of the adatom may signifi-
cantly influence the relaxation dynamics of the graphene
flakes, which is accounted for by the saturated-Lindblad
model. In fact, the lifetime of the LUMO state of the hy-
brid system may be longer than in pristine flakes, which
could be of interest for experiments on graphene-based
light emitters.

CONCLUSIONS

This study addresses the challenge of modeling the
relaxation dynamics of quantum mechanical many-
body systems using the single-particle approach. The
saturated-Lindblad model introduced in this work suc-
cessfully prevents the drain of the population to the
single-particle ground state predicted by the treatment
without saturation. Due to its simplicity, the phe-
nomenological model cannot capture the optical selection
rules, the richness of the cascade phenomena in relaxation
dynamics or the complexity of the emission spectra.

The benchmark results with small-size many-body sys-
tems indicate that the saturated model effectively mimics
the outcomes of the many-body calculations. This agree-
ment enabled us to study large systems, such as pristine
graphene flakes and flakes with adatoms. The model
exhibits the expected cascade dynamics commonly ex-
plored in quantum optical technologies in the context of
light emission. It is noteworthy that the model enables
the assignment of different relaxation rates to different
transitions and processes, in particular, taking into con-
sideration the optical selection rules. Furthermore, it can
capture the effects of symmetry breaking by the adatom,
which can make forbidden transitions become bright with
possibly distinct lifetimes. The proposed model may
be important in engineering the emission properties of

graphene-based optoelectronic devices and nanoscaled
light emitters. In general, the model may encompass the
quantum dynamics of diverse systems, including quan-
tum dots, nanoscaled optoelectronic devices [50], light
sources [51], plasmonic particles and 2D-materials-based
nanocomposites [52].
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FIG. 5. Energy level schemes (a-c) and relaxation dynam-
ics (d-f) of small graphene flakes with adatoms. The (a,d)
panels correspond to a 6-atom ring; (b,e) – an 18 atom flake;
(c,f) – a 36-atom flake with an adatom. Eigenstate energies
in (a-c) are shown against the eigenstate number, while the
colors indicate the localization |ajg|2 + |aje|2 of the eigenstate
|φj⟩ on the adatom, i.e., the fraction of population occupying
its ground and excited states. The insets encode the relax-
ation rates in the Weisskopf-Wigner model. (d-f) Relaxation
dynamics in the system according to the phenomenological
(solid lines) and saturated-Lindblad (dashed lines) models.
Numbers in the legend describe the eigenstate index. The
solid and dashed blue curves for the initially excited state
overlap. The phenomenological model of two coupled subsys-
tems fails to reproduce trends even for the largest system size.

Appendix A: Approaches to describe electrons on
graphene flakes and atomic chains

1. Single-particle description

The tight-binding Hamiltonian for graphene flakes or
atomic chains used as examples in this work takes the
form

H =
∑
⟨l,l′⟩

tll′ |l⟩⟨l′|, (A1)

where |l⟩, |l′⟩ stand for orbitals localized on atomic sites
l and l′, tll′ = t⋆l′l is the hopping rate between the pair
of orbitals, and the bracket ⟨·, ·⟩ indicates a summation
over the nearest-neighbors. For graphene, all hopping
rates are taken to be equal tll′ ≡ t. The nearest-neighbor
model can naturally be extended without affecting the
general conclusions of this work. The dimension of the
Hamiltonian is equal to the number of sites. Therefore,
this Hamiltonian can be diagonalized to determine the
eigenstates |φj⟩ and the corresponding energies εj .

For the one-dimensional SSH model of atomic chains,
the single-particle tight-binding Hamiltonian (A1) can be

rewritten as[41, 43, 44]

HTB =

N−1∑
l=1

[t + (−1)l−1∆] (|l⟩⟨l + 1| + |l + 1⟩⟨l|) . (A2)

leading to an alternated coupling t + ∆, t − ∆ between
subsequent pairs of atoms. In this work, we consider even
numbers of atoms N . The case of ∆ = 0 corresponds to a
linear chain with all nearest-neighbor hopping rates be-
ing equal, while the case of ∆ > 0 describes a dimer
chain with alternate hoppings. In both cases, the inver-
sion symmetry of the system is responsible for the sym-
metry of its eigenstates being even and odd functions of
electron positions. Selection rules forbid transitions be-
tween states of the same parity. The results presented in
Fig. 2 have been obtained for ∆ = 0 (the case of linear
chain) and ∆ = 0.3t (dimer chain). The optical prop-
erties of SSH chains have been described at length in
Refs. [43, 44, 53].

Our method is based on a single-electron picture,
which can capture superposition states as linear com-
binations of orbitals with occupation probability ampli-
tudes varying in time. The relaxation dynamics in the
saturated-Lindblad approach is expected to work also for
systems initiated in superpositions states of many single-
particle transitions. More intricate properties of many-
body systems, e.g., related to entanglement, may not be
reproduced well in the single-electron approach.

2. Many-body description

The rigorous quantum-mechanical many-body ap-
proach allows for obtaining exact dynamics for small sys-
tems. It is based on the second quantization picture, in
which the tight-binding Hamiltonian for a chain takes the
form analogous to Eq. (A2), but is not limited to a single
electron[41, 42, 54]

Hmb =

N−1∑
l=1

[t + (−1)l−1∆]
(
a†l al+1 + a†l+1al

)
. (A3)

Here, the operator al annihilates an electron at site l.
The operators obey the fermionic anticommutation rules

{al, a†l′} = δll′ and {al, al′} = {a†l , a
†
l′} = 0. This Hamil-

tonian preserves the number of excitations, hence, its
eigenstates are simultaneously eigenstates of the total

excitation number operator
∑

l a
†
l al. Consequently, the

problem can be solved independently in manifolds cor-
responding to fixed numbers of excitations (electrons)
M , and the Hamiltonian can be rewritten in a block-
diagonal form. The size of each block is the combina-
torial number of possibilities to position M electrons on

N lattice sites

(
N
M

)
, and the total Hamiltonian size is∑N

M=0

(
N
M

)
= 2N for each of the sites can be occupied
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or unoccupied by an electron. The Hamiltonian block
corresponding to M = 1 of dimension N describes a sin-
gle electron on a given lattice and takes the form given in
Eq. (A1). Each Hamiltonian block can be independently

diagonalized to yield M -body eigenstates |φ(M)
j ⟩ within

the given manifold. For M = 1 we drop the superscript
in the state notation.

We restrict our analysis to relaxation processes that
preserve the number of electrons. Then, a Lindblad
operator can be independently defined for each mani-
fold, where it takes the form analogous to the right-
hand side of Eq. (4). However, the density matrix ρ(t)
and the Lindblad operators Lk describe the states and
transitions in the given manifold and have its dimension(

N
M

)
. The jump operators Lk → |φ(M)

i ⟩⟨φ(M)
j | de-

scribe a population transfer from a (higher-energy) state

|φ(M)
j ⟩ to a (lower-energy) state |φ(M)

i ⟩, while operators

|φ(M)
i ⟩⟨φ(M)

i | are responsible for pure dephasing.
The master equation in the form of Eq. (1), rewrit-

ten for the M -body case, describes the dynamics of the
M -body system. Since the size of the problem scales bi-
nomially with the number of sites and electrons, we make
direct comparisons between the rigorous many-body ap-
proach and approximate single-particle models for small
systems. The benchmark discussed in the main text con-
siders a 3-electron case on a 6-site chain. The many-

body Hilbert space is spanned by

(
6
3

)
= 20 eigenstates.

Three of them are considered in the comparison:

|φ(M=3)
1 ⟩ = b†1b

†
2b

†
3|vac⟩, (A4)

|φ(M=3)
2 ⟩ = b†1b

†
2b

†
4|vac⟩, (A5)

|φ(M=3)
3 ⟩ = b†1b

†
2b

†
5|vac⟩. (A6)

Here, the operators b†j create an excitation in the single-

particle eigenstate |φj⟩ and again, {bj , b†j′} = δjj′ and

{bj , bj′} = {b†j , b
†
j′} = 0. The symbol |vac⟩ represents the

chain state without electrons. The energies of the many-
body eigenstates are sums of the corresponding single-
particle energies. Note that in the case of the linear

chain, there exists a state |φ(M=3)
4 ⟩ = b†1b

†
3b

†
4|vac⟩ de-

generate with |φ(M=3)
3 ⟩.

The many-body eigenstates represented in the com-
pact second-quantization form in Eqs. (A4), can also be
written in the form of Slater determinants, e.g.

|φ(M=3)
1 ⟩ =

1√
3!

∣∣∣∣∣∣
|φ1⟩1 |φ2⟩1 |φ3⟩1
|φ1⟩2 |φ2⟩2 |φ3⟩2
|φ1⟩3 |φ2⟩3 |φ3⟩3

∣∣∣∣∣∣ , (A7)

where |φi⟩j denotes the orbital i describing electron j.
The connection to the single-particle density matrices in
the main text is made through a partial trace of an ar-
bitrary pair of electrons. For example, the density ma-
trix obtained through the partial trace of the many-body
ground state is

Tr2,3|φ(M=3)
1 ⟩⟨φ(M=3)

1 | = Tr3,1|φ(M=3)
1 ⟩⟨φ(M=3)

1 | = Tr1,2|φ(M=3)
1 ⟩⟨φ(M=3)

1 | =
1

3
(|φ1⟩⟨φ1| + |φ2⟩⟨φ2| + |φ3⟩⟨φ3|) ,

(A8)

which is the special case of the equilibrium state in
Eq. (3) for Ne = 3.

Many-body calculations in the main text,
as shown in Fig. 2(h,j), have been performed
for the linear or dimer chain initial state
1
2

(
|φ(M=3)

1 ⟩⟨φ(M=3)
1 | + |φ(M=3)

3 ⟩⟨φ(M=3)
3 |

)
. This

state is the many-body analogue of the single-particle
state in Eq. (10) assumed to generate the dynamics
in Fig. 2(e,f,g,i). With this initial state, the system
evolves according to the many-body form of the master
equation (1), where the density matrix describes the
full three-electron system. The Hamiltonian is the
three-electron block of Hmb in Eq. (A3). Relaxation is
described within the traditional Lindblad approach in

Eq.(4). The Lindblad operators Lk are given above, and
the decay rates are set in accordance with the ones in
the single-particle approach. As a result, we obtain the
time-dependent three-electron 20 × 20 density matrix
ρ(3). For the relaxation process, the states of energy

higher than that of |φ(M=3)
3 ⟩ remain unoccupied, and

the block spanned by {|φ(M=3)
k=1,2,3⟩} has nonzero elements.

The level occupations Neρjj in Fig. 2(e,f,g,i) are elec-
tron densities in the single-particle eigenstates |φj⟩, nor-
malized by the elementary charge. We use Eqs. (A4-
A8) to evaluate the corresponding densities in the
many-body framework. We note that the three-body

state b†j1b
†
j2
b†j3 |vac⟩ describes three electrons distributed

among the three single-particle eigenstates |φj⟩ with
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j = j1, j2, j3. Due to the electron indistinguishability,
each of the electrons occupies states |φj⟩ with the prob-
ability of 1

3 if j ∈ {j1, j2, j3} or 0 otherwise, as follows
from Eq. (A8). Thus, the probability P (|φj⟩) that an
arbitrary electron occupies the single-particle eigenstate
|φj⟩ takes the conditional form:

P (|φj⟩) =
∑

k=1,2,3

ρ
(3)
kk p

k
j . (A9)

The element ρ
(3)
kk is the probability of the system to be

found in the three-electron state |φ(M=3)
k ⟩, and pkj ∈

{0, 1
3} is the probability of an electron to occupy the

single-particle eigenstate |φj⟩ given that the system is

in |φ(M=3)
k ⟩. The normalized charge densities or single-

particle level occupations are obtained through the mul-
tiplication of P (|φj⟩) by the total number of electrons
being Ne = 3. We obtain for the occupations of subse-
quent levels:

P (|φ1⟩) = 3
∑

k=1,2,3

ρ
(3)
kk

1

3
= 1, (A10)

P (|φ2⟩) = 3
∑

k=1,2,3

ρ
(3)
kk

1

3
= 1, (A11)

P (|φ3⟩) = 3ρ
(3)
11

1

3
= ρ

(3)
11 , (A12)

P (|φ4⟩) = 3ρ
(3)
22

1

3
= ρ

(3)
22 , (A13)

P (|φ5⟩) = 3ρ
(3)
33

1

3
= ρ

(3)
33 , (A14)

P (|φ6⟩) = 0. (A15)

These quantities are shown in Fig. 2(h,j).

Appendix B: Smooth saturating functional

The proposed saturated-Lindblad model involves an
abrupt cutoff of the relaxation channels to avoid trans-
ferring the population to fully occupied states for which
Neρjj = 1. We herein consider a smoother suppression of
the energy dissipation rates from |φi⟩ to |φj⟩ as the pop-
ulation ρjj of the target state approaches the Pauli limit
of 1 electron per eigenstate: γij → γijS [ρjj(t)], where
the saturating functional is given by

S [ρjj(t)] =
1

2

{
1 − tan−1 [m(Neρjj(t) − 1)]

tan−1 m

}
. (B1)

The multiplier m allows one to control the smooth-
ness of the saturating functional (Fig. A.1) that in the
m → ∞ limit becomes the theta function θ(1−Neρjj(t)).
This choice involves an arbitrary multiplier m. The cor-
responding shapes of the saturation function are shown
in Fig. A.1. Figure A.2 shows how the level occupations
are modified for different choices of the multiplier. The

FIG. A.1. Saturating function S(x) for various multipliers m.

dynamics of the system is well modeled for large multi-
pliers.

Note that other saturating functionals could be con-
sidered, e.g., exploiting the Fermi-Dirac distribution in
which inverse temperature might play a role analogous
to the multiplier m in (B1).

Appendix C: Discussion of relaxation rates in the
phenomenological and saturated-Lindblad models

The Weisskopf-Wigner theory provides a recipe to eval-
uate the spontaneous emission rates for quantum transi-
tions in the electric-dipole approximation. On the other
hand, the decoherence rate in graphene can be experi-
mentally determined. A comparison of the results ob-
tained for bulk graphene [28, 55–57] and graphene quan-
tum dots [58, 59] reveals a size dependence, in accordance
with the expectation that decoherence is reduced in small
quantum systems. In this appendix, we investigate con-
ditions in which the phenomenological and saturated-
Lindblad approaches converge to the same timescales in
dynamics. The analysis additionally helps us understand
how the phenomenological relaxation rate, known from
experiments, should be modified in small flakes.

The dynamics of a density matrix element in the phe-
nomenological approach follow straightforwardly from
Eq. (2)

ρ̇mn = −γ(ρmn − ρsmn). (C1)

For the Lindblad evolution, we first discuss the nonde-
generate case without saturation. To include saturation,
selected rates can be set to 0. Let us first consider the
evolution induced by the jump operators |φj⟩⟨φk| for the
density matrix elements ρmn in the basis of system eigen-
states:

ρ̇mm =
∑
k>m

γkmρkk − ρmm

∑
k<m

γmk, (C2)

ρ̇mn = −1

2
ρmn

(∑
k<m

γmk +
∑
k<n

γnk

)
, (C3)
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FIG. A.2. Impact of the multiplier m in the saturation function S(ρ) in Eq. (B1) on the modeled relaxation dynamics in 6-atom
linear (top row) and dimer (bottom row) chains. The left panels show the results obtained for the unsaturated-Lindblad model.
The right panel approaches the limiting results already presented in Fig. 2(g,i).

where we have inserted the jump dissipation operators
given above in the Lindblad equation (4). The first equa-
tion holds for the diagonal elements and describes the in-
flow of the population from the states energetically above
|φm⟩ and its outflow to the states energetically below.
The other equation demonstrates that the off-diagonal
elements decohere with the collective rate induced by all
contributing transitions. We repeat the calculation for
the dephasing operators |φk⟩⟨φk| to obtain

ρ̇mm = 0, (C4)

ρ̇mn = −1

2
(γm + γn) ρmn. (C5)

Let us now discuss the simple initial state with a sin-
gle excitation from the HOMO to the LUMO state, and
relaxation back to the equilibrium. Then, the only un-
saturated transition is from LUMO to HOMO, and we
obtain the relaxation dynamics of the populations:

ρ̇LL = −γρLL, (C6)

ρ̇HH = +γρLL, (C7)

and ρ̇mn = 0 otherwise. The exact same form of equa-
tions is found in the phenomenological case with the
stationary density matrix corresponding to the equilib-
rium distribution ρsii = 1

N . This happens since for the

HOMO state ∆ρHH = ρHH − 1
N = −ρLL. This explains

the perfect agreement of results obtained for the case of
single-excitation in the 6-atom ring [Fig. 1(b)] or chain,
discussed under Eq. (9).

In relatively large systems, higher excitations can be
considered around the HOMO-LUMO gap with m,n ≈
N
2 , N being the large number of atoms forming the flake.

Let us assume an initially excited state with the index
m. The states above |φm⟩ are usually empty, i.e., ρii = 0
for i > m. Now, if we assume all equal transition rates,
we obtain

ρ̇mm = −Nγ

2
ρmm, (C8)

ρ̇mn ≈ −Nγ

2
ρmn. (C9)

The decay rate of the initially excited state becomes Nγ,
which can be reproduced in the phenomenological model
in Eq. (2) with the replacement γ → Nγ. Indeed, in the
examples, we have fitted the phenomenological decoher-
ence rate to match the decay rate of the initially excited
state. Note however that the dynamics of the target-level
occupations are not well reproduced phenomenologically
as the cascade dynamics is not captured.

The above estimation demonstrates how in large sys-
tems the overall relaxation rate increases with system
size. This observation goes along with the expectation
that larger systems relax faster. To explain the finite re-
laxation rate in bulk graphene, we consider a fragment
of the sheet of the size of graphene coherence length lcoh.
At low temperatures, lcoh ∼ 1 µm [60, 61]. Then, the
carbon atoms within a circle of radius lcoh contribute to
the decoherence of the atoms in its center. The number
Ncoh of contributing atoms can be estimated as the ra-
tio of the coherence circle area and the hexagon area in
graphene, being the area per atom

Ncoh ∼
(
lcoh
acc

)2

≈ 107, (C10)
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where acc ≈ 1.42 Å is the carbon-carbon distance in
graphene. Bulk-graphene decoherence rate γbulk ≈ 10
THz [28, 55–57] is mostly related to inelastic electron
scattering. The above result suggests that its contribu-
tion “per transition” (or “per atom”) might be compa-
rable to the spontaneous emission rate of the LUMO-
HOMO transition, which in small flakes with band gaps

in the optical to the near-infrared regime is of the order
of a few MHz. In larger systems, decoherence scales lin-
early with the number of atoms as shown above, while
the spontaneous emission decreases proportionally to the
third power of the band gap energy. This means that
phonon-induced decoherence is expected to dominate in
flakes of sizes of several thousand atoms or larger.
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tunable nonlinear plasmonics in graphene nanoislands,
Nat. Commun. 5, 5725 (2014).

[9] J. D. Cox, A. Marini, and F. J. G. De Abajo, Plasmon-
assisted high-harmonic generation in graphene, Nat.
Commun. 8, 14380 (2017).

[10] A. Pizzi, G. Rosolen, and L. J. Wong et al., Graphene
metamaterials for intense, tunable, and compact extreme
ultraviolet and X-Ray sources, Adv. Science 7, 1901609
(2020).

[11] F. Aguillon and A. G. Borisov, Atomic-scale defects
might determine the second harmonic generation from
plasmonic graphene nanostructures, J. Phys. Chem. Lett.
14, 238 (2023).

[12] P. R. Wallace, The band theory of graphite, Phys. Rev.
71, 622 (1947).

[13] R. Yu, J. D. Cox, J. Saavedra, and F. J. Garćıa de Abajo,
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M. Atatüre, and A. C. Ferrari, Layered materials as a
platform for quantum technologies, Nature Nanotech. , 1
(2023).

[51] R. Khelifa, S. Shan, A. J. Moilanen, T. Taniguchi,
K. Watanabe, and L. Novotny, WSe2 light-emitting de-
vice coupled to an h-BN waveguide, ACS Photonics
(2023).

[52] A. Qadir, T. K. Le, and M. Malik et al., Representa-
tive 2d-material-based nanocomposites and their emerg-
ing applications: A review, RSC Advances 11, 23860
(2021).

[53] J. Kim and W. Su, Quantum lattice motion and optical
properties of polyenes, Synthetic Metals 49, 83 (1992).
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