

NIST Technical Note NIST TN 2279

Self-Diffusion and Binary-Diffusion Coefficients in Gases

Donald R. Burgess Jr.

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2279

NIST Technical Note NIST TN 2279

Self-Diffusion and Binary-Diffusion Coefficients in Gases

Donald R. Burgess Jr. Chemical Sciences Division Material Measurement Laboratory

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2279

February 2024

U.S. Department of Commerce *Gina M. Raimondo, Secretary*

National Institute of Standards and Technology Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper in order to specify the experimental procedure adequately. Such identification does not imply recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies

Copyright, Use, and Licensing Statements NIST Technical Series Publication Identifier Syntax

Publication History

Approved by the NIST Editorial Review Board on 2024-01-29

How to Cite this NIST Technical Series Publication

Burgess DR (2024) Self-Diffusion and Binary-Diffusion Coefficients in Gases. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Technical Note (TN) NIST TN 2279. https://doi.org/10.6028/NIST.TN.2279

Author ORCID iD

Donald R. Burgess Jr.: 0000-0002-3428-6540

Abstract

In this work, we compiled and evaluated both self-diffusion and binary-diffusion coefficients *D* for gases as a function of temperature. The tables in this paper have approximately 300 individual diffusion coefficients for a wide range of chemical classes: rare gases, small H/O/N/S species, hydrocarbons, and oxygen-, nitrogen-, and halogen-substituted hydrocarbons. The recommended values for the diffusion coefficients are for standard room temperature 298.15 K (D_{298}) and standard atmospheric pressure (101.325 kPa). We also provide expressions for many of the diffusion coefficients as a function of temperature, where available in the literature.

Keywords

Self-diffusion coefficients; binary-diffusion coefficients; temperature-dependent diffusion coefficients; gases; small molecules; hydrocarbons; substituted-hydrocarbons; critical evaluation.

Table of Contents

1.	Intro	oduction1
2.	Ove	rview2
	2.1.	Diffusion Coefficients
	2.2.	Uncertainties in Diffusion Coefficients
	2.3.	Diffusion Coefficients Calculated from First Principles
	2.4.	Dependence of Diffusion Coefficients on Molecular Weight and Compound Class
	2.5.	Details in Sources Regarding Diffusion Coefficients
3.	Self-	and Binaary-Diffusion Coefficients for Gases7
	Table	1. Self- and Binary-Diffusion Coefficients for Gases 8
	Table	a. Small Molecules
	Table	1b. Hydrocarbons
	Table	1c. Oxidized Hydrocarbons
	Table	1d. Nitrogen-Substituted Hydrocarbons 15
	Table	1e. Halogen-Substituted Hydrocarbons
4.	Sum	mary18
D	eclarati	on of Competing Interest
Da	ata Ava	ilability18
5.	Refe	rences

1. Introduction

In this work, we compiled and evaluated both self-diffusion and binary-diffusion coefficients *D* for gases as a function of temperature and provide recommended values for the diffusion coefficients at standard room temperature 298.15 K (*D*₂₉₈) and standard atmospheric pressure (101.325 kPa). We also provide recommended temperature-dependent expressions for many (about 30 %) of the diffusion coefficients. In the tables, the substances are ordered by chemical class (e.g., Rare Gases, Small Molecules, Halogen Species, NO_x species, Alkanes, Alkenes, Alcohols, Ethers, etc.) and then by molecular weight. The tables in this paper have approximately 300 individual diffusion coefficients.

Throughout this work, we used absolute temperatures *T* in K, not the Celsius temperature scale with *t* in °C. Where possible, the temperature dependencies of the diffusion coefficients were fit in three different ways. (1) $\ln(D) = A + B/T + C \cdot \ln(T)$, an extended expression over the entire temperature range, (2) $D = A_n \cdot (T/298.15)^n$, a power-law expression over the entire temperature range, and (3) $\ln(D) = A + B/T$, a fit just near room temperature in order to calculate a precise value for the diffusion coefficient at room temperature (D_{298}) and to provide a measure of the activation barrier (*E*) to diffusion ($D = A \cdot e^{-E/RT}$).

We estimated the generic expanded uncertainty for the diffusion coefficients at T = 298.15 K to be up to about $U/D_{298} = (15 \text{ to } 20)$ % based on deviations from correlations. The individual uncertainties, however, are probably in the range of (5 to 10) %. This (15 to 20) % broad uncertainty estimate excludes the rare gases and small molecules such as H₂, N₂, O₂, NH₃, CH₄, ethane, ethylene, acetylene, CO, and CO₂, where it is much more difficult to assign uncertainties based on simple correlations.

2. Overview

2.1. Diffusion Coefficients

In the tables in this paper, for each substance, the bath gas is given in the column "Bath" – for self-diffusion coefficients, the bath gas is same as the substance. Note that to a very good approximation for a low-density binary gas, the diffusivity of A in B is the same as the diffusivity of B in A – the difference is generally much less than 1 %, which is significantly less than the uncertainties in the experimental diffusion coefficients which are on the low end about (2 to 5) % and can be up to (10 to 15) %.

For each substance, several different typical diffusion-coefficient expressions have been employed to fit the diffusion coefficients as a function of temperature. In this work, we used absolute temperatures T in K, not the Celsius temperature scale with t in °C.

- (1) They were fit over the entire temperature range that was reported using the extended diffusion expression $\ln(D) = A + B/T + C \cdot \ln(T)$.
- (2) They were fit over the entire temperature range using the power-law expression $D = A_n \cdot (T/298.15 \text{ K})^n$.
- (3) They were also fit just near room temperature using the simple form of the diffusion expression $\ln(D) = A + B/T$ in order to extract a precise value for the diffusion coefficient at 298.15 K (D_{298}). This is necessary because the slopes (B) of these curves increase substantially with temperature, for example, for a curve with a $T^{2.0}$ dependence, the activation energy (E) for diffusion $D = A \cdot e^{-E/RT}$ is about $E(kJ \text{ mol}^{-1}) = (T/60)$ or (5.0, 8.5, 16.5, and 24.9) kJ mol⁻¹ at (300, 500, 1000, and 1500) K, respectively. In order to have a systematic way of providing D_{298} , we chose the temperature ranges of these fits to be over about a 100 K range from about 273 K to 373 K using the temperatures reported closest to those values. In cases where the lowest temperature reported was above 273 K, we fit from the lowest temperature reported to the closest temperature to 473 K. Here, we used the power-law expression $D = A_n \cdot (T/298.15 \text{ K})^n$ to fit the diffusion coefficients and computed D_{298} from this fit, that is $D_{298} = A_n$.

In the tables, the diffusion coefficients from the fits are valid over the temperature range provided in the column T(K). For all mixtures, a diffusion coefficient (D_{ref}) is given at a reference temperature. For those mixtures with expressions for the diffusion coefficient, this reference temperature is T = 298.15 K, while for all others, the reference temperature is that given in the T(K) column.

2.2. Uncertainties in Diffusion Coefficients

We estimated the expanded uncertainty for the diffusion coefficients at T = 298.15 K to be up to about $U/D_{298} = (15 \text{ to } 20)$ %, based on deviations from various correlations that we tried – this estimated uncertainty was simply based on deviations from simple correlations (in order to screen for outliers). The individual uncertainties are more likely in the range of (5 to 10) %. Where experimental uncertainties are given in the original sources, we provide these

uncertainties. The (15 to 20) % broad uncertainty estimate excludes the rare gases and small molecules – such as H_2 , N_2 , O_2 , NH_3 , CH_4 , ethane, ethylene, acetylene, CO, and CO_2 , where it is more difficult to assign uncertainties based on simple correlations. Of the roughly 300 diffusion coefficients, approximately 45 of them have assigned uncertainties with the first two quartiles, the third quartile, and the fourth quartile having average uncertainties of 2 %, 4 %, and 10 %, respectively.

In the work of McGivern and coworkers, the expanded uncertainties (*U*) are about 6 %, (12 to 15) %, (3 to 4) %, and (5 to 8) % in Ref. 1, Ref. 2, Ref. 6, and Ref. 8, respectively. For the diffusion coefficients from the sources where the diffusion coefficients were calculated from first principles (Refs. 10-31), the inherent uncertainties are very small – much less than 1 %. However, we provide the uncertainties in the <u>experimental</u> determinations as estimated by the authors in Refs. 10-31 from the deviations of their predicted values and the experimental determinations.

2.3. Diffusion Coefficients Calculated from First Principles

In Refs 10-31, highly accurate diffusion coefficients were calculated from collision cross-sections derived using first principles using intermolecular potential energy surfaces (PES) and gas kinetic theory. This methodology can calculate thermodynamic and transport properties including the second virial coefficient *B*, shear viscosity η , thermal conductivity λ , and diffusion coefficients *D*.

The potential energy surfaces can be accurately calculated using quantum-chemical *ab initio*, semi-empirical, classical, or semi-classical methods. An important aspect of the derivation of diffusion coefficients is that the second virial coefficient *B* in the virial expansion provides a first-order correction to the ideal gas law (real versus ideal densities),

$$(P/\rho_m RT) = 1 + B(T)\rho_m + C(T)\rho_m^2 + \dots$$

where *P* is pressure, ρ_m is molar density, *R* is the gas constant, *T* is temperature, and *C* is the third virial coefficient. *B* is a simple function of the collision partners.

Transport properties, such as diffusion coefficients, which have been derived from first principles agree with experimental measurements which generally have uncertainties on the order of (2 to 4) %. However, transport properties calculated from first principles are believed to be accurate to less than 1 % for atoms and small, nearly rigid molecules. Calculated diffusion coefficients are a function of temperature *T*, the reduced mass of the collision partners $\mu(m_a,m_b)$, the average molecular speed $\langle v_{ab} \rangle$ (from gas kinetic theory), the molar density (from the second virial coefficient *B*), and the collision cross-sections σ (from first principles using the PES).

2.4. Dependence of Diffusion Coefficients on Molecular Weight and Compound Class

We found that overall that the diffusion coefficients (D_{298}) for the alkanes in N₂ followed an approximate empirical relationship:

$$D_{298}(alkanes/N_2) = 1.45 \cdot M^{-0.656} \text{ cm}^2 \text{ s}^{-1}$$

where *M* is the molecular weight of the substance in g mol⁻¹. Note that this correlation ignores the cross-section dependence of the diffusion coefficient, among other factors. This simple empirical relationship has the diffusion coefficients decreasing slightly more strongly with molecular weight than $D \sim M^{-1/2}$, which is a baseline dependence from gas kinetic theory. In contrast, the observed diffusion coefficients in He for the alkanes are about a factor of 3.33 ± 0.2 times larger than in N₂ (see Figure 1 for $D_{298}(M)$ in He and N₂):

 $D_{298}(alkanes/He) = 4.26 \cdot M^{-0.625} \text{ cm}^2 \text{ s}^{-1}$

This ratio is consistent with the scaling of diffusion coefficients with the reduced mass of the substance and bath gas, M_1 and M_2 , respectively, and the average kinetic collision diameter d_{12} :

$$D \sim (1/d_{12})^2 (1/M_1 + 1/M_2)^{1/2}$$

Utilizing collision diameters for He, N₂, propane, and heptane of 2.60 Å, 3.67 Å, 4.84 Å, and 5.72 Å (and interpolating/extrapolating for the other alkanes),[38] we found the ratios of D_{298} in He versus N₂ to be 2.83, 2.92, and 2.98 for propane, *n*-butane, and *n*-pentane – or close to the 3.33 ratio found experimentally. For the mass dependence of D_{298} for the alkanes in He and N₂ scaled by the collision cross-section, we found:

$$(\pi d_{12})^2 \cdot D_{298}(alkanes/He) \approx 76.6 \cdot M^{-0.393} \text{ cm}^2 \text{ s}^{-1} \text{ Å}^2$$

and

$$(\pi d_{12})^2 \cdot D_{298}(alkanes/N_2) \approx 38.0 \cdot M^{-0.452} \text{ cm}^2 \text{ s}^{-1} \text{ Å}^2$$

with the dependence of the mass (*M*) of the substance decreasing slightly less strongly than $D \sim M^{-1/2}$. In short, we believe that the experimental diffusion coefficients for the alkanes are consistent with the masses and kinetic collision cross-sections of the substance and bath gas.

We also considered the molecular weight dependence of D_{298} on chemical compound class and find that as the compounds become more polar that there is a slightly stronger dependence of the diffusion coefficients on molecular weight (*M*).

 $D_{298}(Class) = a \cdot M^b \text{ cm}^2 \text{s}^{-1}$

Compound Class	Bath	а	b
Alkanes	Air	1.35	-0.656
Alkenes	Air	1.84	-0.702
Subst-Benzenes	Air	4.18	-0.869
Esters	Air	4.85	-0.899
Alcohols	Air	4.36	-0.916
Alkanoic Acids	Air	8.73	-1.050

Mass Dependence of D₂₉₈ by Compound Class

Figure 1. D₂₉₈ for Alkanes as a Function of Mass in Air and Helium

We also find that as the compounds become more polar, that the barriers-to-diffusion (*E*) become higher – the following examples are for self-diffusion in the <u>liquid phase</u> (there are insufficient instances in the gas phase, but the correlation should be similar). In the table below, *n*-pentane, which is non-polar, has barrier of just 7 kJ mol⁻¹ compared to 12 kJ mol⁻¹ for the slightly polar benzene and toluene compared to the very polar *tert*-butanol which has a large barrier of 31 kJ mol⁻¹.

 $D = A \cdot e^{-E/RT}$

Compound	E/kJ mol ⁻¹	Ref.
<i>n</i> -pentane	6.93	31
<i>n</i> -hexane	8.22	31
ethyl acetate	10.8	32
toluene	12.1	34
benzene	12.3	33
octanoic acid	16.6	35
tert-pentanoic acid	20.3	34
tert-butanol	30.9	36

Barriers-to-Diffusion by Compound Class (in the Liquid Phase)

2.5. Details in Sources Regarding Diffusion Coefficients

In the evaluation of Ref. 3 by Tang *et al.*, where the measurements in the literature were not carried out at 296 K, the original diffusivities were adjusted to 296 K using the relationship $D_{296} = D(T) \cdot (296/T)^{1.75}$. The diffusion coefficients in these tables from Ref. 7 by Gu *et al.* were taken from the original data in the supplementary information of that work, not from the tables in that paper (where there are some inconsistencies).

The diffusion coefficients from the sources where the diffusion coefficients were calculated from first principles (Refs. 10-31) were fit in the three ways outlined above: (1) $\ln(D) = A + B/T + C \cdot \ln(T)$ over the entire temperature range, (2) $D = A_n \cdot (T/298.15)^n$ over the entire temperature range, and (3) $\ln(D) = A + B/T$, which was fit just near room temperature to determine D_{298} .

3. Self- and Binaary-Diffusion Coefficients for Gases

Column	Definition
Heading	
Substance	atom or molecule
Bath	bath gas
Trange	reported temperature range, in K
T _{ref}	reference temperature (298 K or single temperature reported, see text), in
	К
D _{ref}	diffusion coefficient at reference temperature, in cm ² s ⁻¹
U	expanded uncertainty in %
A	A coefficient in $\ln(D/\text{cm}^2 \text{ s}^{-1}) = A + B/(T/\text{K}) + C \cdot \ln(T/\text{K})$
В	B coefficient in $\ln(D/\text{cm}^2 \text{ s}^{-1}) = A + B/(T/K) + C \cdot \ln(T/K)$
С	C coefficient in $\ln(D/\text{cm}^2 \text{ s}^{-1}) = A + B/(T/K) + C \cdot \ln(T/K)$
Ref	reference

The data in Table 1 is ordered by Chemical Compound Class and then by Molecular Formula.

Small Molecules	Hydrocarbons	Substituted Hydrocarbons
Rare gases	Alkanes (C-C)	Carbon-Oxygen species (CO/CO
Hydrogen-Oxygen species (H/C	Alkenes (C=C)	Alcohols (ROH)
Nitrogen compounds (N/H)	Alkynes (C#C)	Ethers (ROR)
NO _x compounds (N/H/O)	Cycloalkanes (-CC-)	Ketones RC(O)R
Halogen compounds (H/X/O)	Alkylbenzenes (Ph-R)	Carboxylic acids (RCO ₂ H)
Sulfur compounds (S/H/O)	Polycyclic aromatics (PAHs)	Esters (RCO ₂ R)
		Nitrogen-substituted hydrocar
		Halogen-substituted hydrocart

3.1.1. Table 1. Self- and Binary-Diffusion Coefficients for Gases

3.1.2. Table 1a. Small Molecules

Substance	Bath	T _{range} /K	T _{ref} /K	D _{ref} / cm ² s ⁻¹	U	A	В	С	Ref
Rare Gases									
Не	He	77-888	298	1.759		-9.421	8.428	1.748	4
Не	N ₂	300-723	298	0.703	7.6%	-10.266	27.449	1.724	1
Не	Ar	300-723	298	0.743	9.0%	-10.372	32.501	1.749	1
Ne	Ne	300-1400	298	0.511		-10.021	-9.327	1.647	4
Ar	He	300-723	298	0.728	6.8%	-9.843	1.729	1.671	1
Ar	Ar	235-418	298	0.182		-11.097	-45.486	1.676	4
Kr	Kr	70-5000	298	0.099	1-2%	-11.928	-38.548	1.709	19
Хе	Хе	100-5000	298	0.058	1-2%	-12.479	-50.933	1.721	20
Hydrogen-Oxygen									
H ₂	H ₂	115-295	298	1.309		-9.309	-8.028	1.686	4
D ₂	D ₂	195-353	298	0.933		-9.318	-1.746	1.624	4
ОН	He	298	298	0.871					3
ОН	Air	298	298	0.253					3
H ₂ O	N ₂	150-2000	298	0.254	2-3%	-10.324	-84.181	1.620	25
H ₂ O	CO ₂	250-2000	298	0.166	2-3%	-10.298	-180.060	1.597	27
D ₂ O	D ₂ O	250-2500	298	0.153	2-3%	-11.611	-189.247	1.817	22
O ₂	02	55-2000	298	0.215	2-5%	-10.787	-44.220	1.649	29
HO ₂	He	296	296	0.566					3
H ₂ O ₂	Air	296	296	0.153					3
H ₂ O ₂	Air	333	333	0.188					3
O ₃	He	296	296	0.539					3
Nitrogen-Hydrogen									
NH ₃	NH₃	301-446	298	0.190		0.811	-737.205	-	4
NH ₃	N ₂	293-523	298	0.227		-10.541	-60.256	1.625	3
NH ₃	Air	298	298	0.228					3
NH ₃	O ₂	293-473	298	0.235		-10.882	-34.912	1.676	3
N ₂	He	300-723	298	0.703	7.6%	-10.266	27.449	1.724	1
N ₂	CH ₄	70-1200	298	0.232	2-3%	-10.636	-48.119	1.637	16
N ₂	H ₂ O	150-2000	298	0.254	2-3%	-10.324	-84.181	1.620	25
N ₂	N ₂	233-422	298	0.209		-10.397	-52.566	1.581	4
N ₂	ethane	90-1200	298	0.154	2-4%	-10.945	-63.243	1.629	26
N ₂	CO ₂	253-473	298	0.224	1-3%	-7.317	-139.909	1.103	31
NO _x Species									
NO	N ₂	293	293	0.232					3
NO	Air	296	296	0.232					3
N ₂ O	N ₂ O	150-1500		0.113	2.0%	-11.112	-112.381	1.635	17
NO ₂	N ₂	283	283	0.129					3
NO ₂	Air	296	296	0.139					3
HONO	He	294	294	0.570					3
HONO	Air	296	296	0.126					3
NO ₃	He	273	273	0.454					3
NO ₃	N ₂	273	273	0.105					3
NO ₃	Air	296	296	0.121					3
NO ₃	O ₂	273	273	0.105					3

February 2024					
HNO ₃	Air	296	296	0.120	
CINO ₂	He	275	275	0.362	
CINO ₂	N ₂	275	275	0.099	
CINO ₂	Air	296	296	0.112	
N ₂ O ₅	N ₂	296	296	0.086	
N ₂ O ₅	Air	296	296	0.086	
Halogen Species					
HCI	N ₂	373-523	298	0.151	0.843
HCI	Air	296	296	0.161	
HCI	HCI	294.96	294.96	0.125	
Cl ₂	Air	296	296	0.124	
HBr	N ₂	391-525	298	0.122	0.438
HBr	Air	296	296	0.125	
HBr	HBr	295.26	295.26	0.079	
HOBr	He	274	274	0.420	
HOBr	N ₂	274	274	0.111	
HOBr	Air	296	296	0.111	
HOI	He	253	253	0.296	
Br ₂	Air	298	298	0.107	
ICI	He	293	293	0.389	
I ₂	N ₂	273	273	0.070	
l ₂	Air	298	298	0.083	

150-1200

150-1200

180-2000

150-1200

296

300

296

298

296

 CH_4

ethane

 H_2S

CO₂

Air

 N_2

Air

 N_2

Air

298

298

298

298

296

300

296

298

296

0.123

0.116

0.119

0.182

0.124

0.125

0.120

0.093

0.097

1-2%

-11.160

-11.324

-11.287

-10.913

3

3 4 3

3

18

28

13

18

3

3

3

3

3

_

—

1.656

1.665

1.678

1.660

-814.331

-758.301

-109.817

-94.304

-115.203

-75.475

NIST TN 2279

Sulfur Species

 H_2S

 H_2S

 H_2S

 H_2S

SO₂

SO₃

SO₃

 H_2SO_4 H_2SO_4

3.1.3. Table 1b. Hydrocarbons

Substance	Bath	T _{range} /K	T _{ref} /K	$D_{ref}/cm^2 s^{-1}$	U	A	В	С	Ref
Alkanes				0 0					
CH4	He	300-723	298	0.668	7.2%	-10.367	26,786	1,733	1
CH ₄	CH₄	80-1500	298	0.232	2-6%	-10.725	-54.979	1.657	12
CH ₄	N ₂	250-500	298	0.234	1.1%	-10.325	-55.449	1.590	8
CH ₄	Air	298	298	0.221					5
CH ₄	Ethane	253-473	298	0.175	1-2%	-4.763	-350.286	0.737	31
CH ₄	H ₂ S	150-1200	298	0.123		-11.160	-109.817	1.656	18
CH ₄	CO ₂	150-1200	298	0.182		-10.620	-86.243	1.615	18
CH ₄	propane	150-1200	298	0.115	2-3%	-11.591	-63.882	1.692	20
ethane	He	300-723	298	0.492	12%	-10.690	29.230	1.735	2
ethane	CH ₄	253-473	298	0.175	1-2%	-4.763	-350.286	0.737	31
ethane	N ₂	300-723	298	0.154	13%	-10.064	-101.199	1.498	2
ethane	Air	298	298	0.150					5
ethane	Ethane	298-383	298	0.105		-0.069	-651.663	-	4
ethane	H₂S	150-1200	298	0.116		-11.324	-94.304	1.665	28
ethane	CO ₂	297-625	298	0.115	4-6%	-10.582	-135.748	1.558	31
propane	He	300-723	298	0.400	12%	-11.063	44.904	1.755	2
propane	CH ₄	150-1200	298	0.115	2-3%	-11.591	-63.882	1.692	20
propane	N ₂	300-723	298	0.120	16%	-9.901	-131.167	1.442	2
propane	Air	298	298	0.114					5
propane	CO ₂	150-1200	298	0.087	2-3%	-11.351	-107.782	1.628	20
propane	propane	160-1200	298	0.061	2-3%	-11.914	-111.570	1.668	21
propane	isobutane	298-626	298	0.051		-12.984	-54.058	1.787	31
<i>n</i> -butane	He	300-723	298	0.336	13%	-9.730	-50.409	1.546	2
<i>n</i> -butane	N ₂	300-723	298	0.102	20%	-10.658	-96.357	1.526	2
methyl propane	Air	298	298	0.093					5
<i>n</i> -butane	Air	298	298	0.099					5
<i>n</i> -pentane	He	300-600	298	0.294	1.7%	-9.338	-60.094	1.460	6
<i>n</i> -pentane	N ₂	350-600	298	0.088	7.6%	-9.732	-153.619	1.372	6
2,2-dimethyl propane	Air	298	298	0.088					5
<i>n</i> -pentane	Air	298	298	0.086					5
2,3-dimethyl butane	Air	298	298	0.079					5
2-methyl pentane	Air	298	298	0.093					5
<i>n</i> -hexane	Air	298	298	0.078					5
hexane	He	300-600	298	0.245	1.6%	-4.381	-387.669	0.750	6
2,4-dimethyl pentane	Air	298	298	0.072					5
<i>n</i> -heptane	Air	298	298	0.072					5
<i>n</i> -octane	Не	350-600	298	0.163	3.6%	2.053	-890.802	-0.154	6
2,2,4-trimethyl pentane	Air	298	298	0.070					5
<i>n</i> -octane	Air	298	298	0.066					5
<i>n</i> -nonane	Air	298	298	0.058					5
2,3,3-trimethyl heptane	Air	298	298	0.068					5
<i>n</i> -decane	Air	298	298	0.058					5
<i>n</i> -dodecane	Air	298	298	0.049					5
<i>n</i> -hexadecane	Air	298	298	0.041					5
<i>n</i> -heptadecane	Air	298	298	0.042					5
<i>n</i> -octadecane	Air	298	298	0.042					5

Alkenes								
ethylene	ethylene	298-383	298	0.124	0.137	-662.037	-	4
ethylene	Air	298	298	0.163				5
propene	Air	298	298	0.132				5
1-butene	Air	298	298	0.109				5
cis-2-butene	Air	298	298	0.109				5
trans-2-butene	Air	298	298	0.109				5
1-pentene	Air	298	298	0.096				5
1-hexene	Air	298	298	0.080				5
2,3-dimethyl-2-butene	Air	298	298	0.080				5
1-octene	Air	298	298	0.064				5
Alkadienes								
propadiene	Air	298	298	0.139				5
1,3-butadiene	Air	298	298	0.116				5
2-methylbutadiene	Air	298	298	0.096				5
1,5-hexadiene	Air	298	298	0.080				5
2,3-dimethyl-1,3 -butadiene	Air	298	298	0.080				5
Alkynes								
acetylene	acetylene	298-383	298	0.131	0.607	-785.739	-	4
acetylene	Air	298	298	0.146				5
propyne	Air	298	298	0.132				5
1-butyne	Air	298	298	0.116				5
Cycloalkanes								
cyclopropane	Air	298	298	0.128				5
cyclopentane	Air	298	298	0.092				5
cyclohexane	Air	298	298	0.083				5
methylcyclopentane	Air	298	298	0.082				5
Alkylbenzenes								
benzene	H ₂	311	311	0.404				9
benzene	He	423-523	298	0.285	1.320	-766.000	-	9
benzene	N ₂	311	311	0.102				9
benzene	Air	298	298	0.095				5
benzene	O ₂	311	311	0.101				9
benzene	Ar	323-373	298	0.070	-0.330	-693.000	-	9
benzene	toluene	331-692	298	0.027	-14.958	15.956	1.989	31
benzene	phenol	403-632	298	0.024	-14.020	-47.241	1.862	31
benzene	p-xylene	354-626	298	0.025	-14.273	-28.237	1.878	31
toluene	Air	298	298	0.088				5
ethyl benzene	Air	298	298	0.075				5
<i>m</i> -xylene	Air	298	298	0.068				5
<i>o</i> -xylene	Air	298	298	0.072				5
<i>p</i> -xylene	Air	298	298	0.067				5
1,2,4-trimethyl benzene	Air	298	298	0.064				5
1,3,5-trimethyl benzene	Air	298	298	0.066				5
isopropyl benzene	Air	298	298	0.067				5
<i>n</i> -propyl benzene	Air	298	298	0.067				5
<i>p</i> -isopropyltoluene	Air	298	298	0.063				5
<i>p-tert</i> -butyltoluene	Air	298	298	0.057				5
diphenyl	Air	298	298	0.068				5
Alkenylbenzenes								

styrene	Air	298	298	0.070			5
Polycyclic Aromatics							
naphthalene	H ₂	303	303	0.301			9
naphthalene	Air	298	298	0.062			9
anthracene	Air	298	298	0.053			5

3.1.4. Table 1c. Oxidized Hydrocarbons

Substance	Bath	T _{range} /K	T _{ref} /K	$D_{\rm ref}/$	U	А	В	С	Ref
Carebon Oridaa				cm ² s ⁻¹					
Carbon Oxiaes	<u> </u>	222 422	200	0.212		10 1 2 2	C4 21C	1 5 4 5	4
		233-422	298	0.213		-10.132	-64.216	1.545	4
		150-1200	298	0.182	2.20/	-10.620	-86.243	1.015	18
		250-2000	298	0.100	2-3%	-10.298	-180.060	1.597	27
	IN2 othano	207.625	298	0.224	1-3%	-7.317	125 740	1.103	31 21
		297-025	298	0.115	4-0%	10.012	-135.748	1.558	31 10
		120-1200	298	0.182		-10.913	-75.475	1.000	10
		255-505	290	0.120	2.20/	11 251	107.009	1 6 2 9	4
	propane	150-1200	298	0.087	2-3%	-11.351	-107.782	1.028	20
AICONOIS	Air	209	200	0.166					-
methanol	All	298	298	0.100		12 720	21 001	1 905	21
methanal	trimetriyiamine	325-490	298	0.047		12 255	-21.991	1.895	31 21
methanol	benzene	319-632	298	0.059		-13.255	-37.002	1.855	31
athanal	Cyclonexane	310-030	298	0.053		-12.192	-121.829	1.702	51
	All	298	298	0.129					5 F
1-propanol	Air	298	298	0.099					5
2-propanoi	Alr	298	298	0.104					5
1-butanol	Air	298	298	0.087					5
	Air	298	298	0.088					5
1-pentanoi	Air	298	298	0.071					5
2-pentanoi	Air	298	298	0.071					5
1-nexanol	Air	298	298	0.062					5
2-ethyl-1-butanol	Air	298	298	0.066					5
1-neptanoi	Air	298	298	0.055					5
	Air	298	298	0.050					5
	•	200	200	0.400					-
1,2-ethanediol	Air	298	298	0.100					5
	Alr	298	298	0.088					5
Aikenois	A :	200	200	0.102					-
prop-2-en-1-oi	Air	298	298	0.103					5
Etners	A :	200	200	0.000					-
dietnyl ether	Air	298	298	0.092					5
disopropyl etner	Air	298	298	0.068					5
di-n-butyl ether	Air	298	298	0.054					5
Cyclic Ethers	atta da a a cida	200 1000	200	0.074	2.00/	12 700	102 200	1 0 2 2	1.4
ethylene oxide	ethylene oxide	200-1000	298	0.071	2.0%	-12.790	-102.290	1.832	14
1,4-dioxane	Air	298	298	0.092					5
Ketones	•	200	200	0.407					-
acetone	Air	298	298	0.107					5
methyl ethyl ketone	Air	298	298	0.091					5
metnyi <i>n</i> -propyl ketone	Air	298	298	0.079					5
Alkanoic Acids	A:			0.155					-
tormic acid	Air	298	298	0.153					5
acetic acid	Air	298	298	0.124					5
propanoic acid	Air	298	298	0.095					5

2-methyl propanoic acid	Air	298	298	0.079		5
<i>n</i> -butanoic acid	Air	298	298	0.078		5
3-methyl butanoic acid	Air	298	298	0.066		5
4-methyl pentanoic acid	Air	298	298	0.059		5
hexanoic acid	Air	298	298	0.061		5
Esters						
methyl formate	Air	298	298	0.109		5
ethyl formate	Air	298	298	0.100		5
propyl formate	Air	298	298	0.083		5
2-methylpropyl formate	Air	298	298	0.079		5
isopentyl formate	Air	298	298	0.067		5
<i>n</i> -pentyl formate	Air	298	298	0.066		5
methyl acetate	Air	298	298	0.112		5
ethyl acetate	Air	298	298	0.088		5
propyl acetate	Air	298	298	0.076		5
2-methylpropyl acetate	Air	298	298	0.068		5
n-butyl acetate	Air	298	298	0.067		5
<i>n</i> -pentyl acetate	Air	298	298	0.061		5
benzyl acetate	Air	298	298	0.061		5
methyl propanoate	Air	298	298	0.087		5
ethyl propanoate	Air	298	298	0.080		5
isobutyl propanoate	Air	298	298	0.061		5
<i>n</i> -butyl propanoate	Air	298	298	0.061		5
<i>n</i> -pentyl propanoate	Air	298	298	0.055		5
methyl n-butanoate	Air	298	298	0.075		5
ethyl isobutanoate	Air	298	298	0.067		5
ethyl n-butanoate	Air	298	298	0.067		5
isopropyl isobutanoate	Air	298	298	0.063		5
isobutyl isobutanoate	Air	298	298	0.055		5
methyl n-pentanoate	Air	298	298	0.067		5
ethyl n-pentanoate	Air	298	298	0.061		5
methyl hexanonate	Air	298	298	0.061		5

Substance	Bath	T _{range} /K	T _{ref} /K	D _{ref} /	U	Α	В	С	Ref
				cm ² s ⁻¹					
Alkyl Amines									
diethylamine	Air	298	298	0.099					5
isobutylamine	Air	298	298	0.089					5
<i>n</i> -butylamine	Air	298	298	0.087					5
triethylamine	Air	298	298	0.075					5
Cycloamines									
piperidine	Air	298	298	0.087					5
Nitriles									
HCN	Air	298	298	0.201					5
2-propenenitrile	Air	298	298	0.105					5
benzonitrile	Air	298	298	0.071					5
N-substituted Aromatics									
pyridine	Air	298	298	0.095					5
aniline	Air	298	298	0.074					5
nitrobenzene	Air	298	298	0.079					5

3.1.5. Table 1d. Nitrogen-Substituted Hydrocarbons

3.1.6. Table 1e. Halogen-Substituted Hydrocarbons

Substance	Bath	T _{range} /K	T _{ref} /K	D _{ref} / cm ² s ⁻¹	U	A	В	С	Ref
Fluorocarbons									
fluoromethane	N ₂	300-550	298	0.184	1.3%	-11.647	-12.790	1.755	8
difluoromethane	N ₂	300-650	298	0.155	1.5%	-11.617	-16.745	1.721	8
trifluoromethane	N ₂	300-723	298	0.144	1.9%	-12.178	30.366	1.780	8
tetrafluoromethane	CH ₄	298-383	298	0.122		-0.066	-607.505	_	7
fluorobenzene	Air	295	295	0.083					7
Chloroalkanes									
chloromethane	CH ₄	298-478	298	0.143		0.456	-715.306	-	7
chloromethane	Air	298	298	0.143					7
chloroethane	chloromethane	358-438	298	0.054		-0.088	-842.964	_	7
dichloromethane	Не	298	298	0.104					7
1-chlorobutane	Air	296	296	0.090					7
1,2-dichloroethane	Air	295	295	0.090					7
1,2-dichloroethane	Air	298	298	0.092					7
trichloromethane	N ₂	383-418	298	0.077		0.260	-843.020	-	7
trichloromethane	Air	298-328	298	0.091		-0.647	-522.355	-	7
trichloromethane	CO ₂	363-383	298	0.079		-0.670	-556.413	-	7
1,1,1-trichloroethane	Air	298	298	0.079					7
1,1,2-trichloroethane	Air	298	298	0.079					7
tetrachloromethane	N ₂	364-423	298	0.074		-0.308	-682.285	-	7
tetrachloromethane	Air	298-348	298	0.078		-0.632	-573.918	-	7
tetrachloromethane	CO ₂	363-423	298	0.058		-0.691	-643.778	-	7
1,1,2,2-tetrachloroethane	Air	298	298	0.072					7
pentachloroethane	Air	298	298	0.067					7
Chloroalkenes									
chloroethylene	Air	298	298	0.122					7
1,2-dichloroethylene	Air	298	298	0.114					7
trichloroethylene	Air	298	298	0.088					7
tetrachloroethylene	Air	298	298	0.080					7
Aromatic Chlorocarbons									
chlorobenzene	Air	299-332	298	0.073		-0.649	-587.718	-	7
2-chlorotoluene	Air	298	298	0.068					7
3-chlorotoluene	Air	298	298	0.064					7
4-chlorotoluene	Air	298	298	0.062					7
benzyl chloride	Air	298	298	0.071					7
Bromocarbons									
bromoethane	Air	296	296	0.106					7
1-bromopropane	Air	298	298	0.088					7
1-bromobutane	N ₂	303	303	0.080					7
1,2-dibromoethane	Air	298	298	0.083					7
tribromomethane	Air	298	298	0.076					7
Iodocarbons									
iodoethane	Air	295	295	0.098					7
1-iodopropane	N ₂	303	303	0.079					7
1-iodopropane	Air	298	298	0.087					7
Chlorofluorocarbons									<u> </u>
dichlorodifluoromethane	H ₂ O	298	298	0.105					7

dichlorodifluoromethane	Air	298	298	0.095			7
Bromochlorocarbons							
bromochloromethane	Air	298	298	0.095			7
Oxidized Chlorocarbons							
CCl ₂ O	Air	273	273	0.095			7

4. Summary

In summary, we have compiled, evaluated, and recommend self-diffusion and binary-diffusion coefficients *D* for gases at standard room temperature 298.15 K (*D*₂₉₈) and standard atmospheric pressure (101.325 kPa). We also provided recommended expressions for many diffusion coefficients as a function of temperature, where the data was available in the literature. We provided approximately 270 binary-diffusion coefficients with ~200 in air, N₂, or O₂, and ~20 in helium (the remainder in other bath gases), and approximately 25 self-diffusion coefficients. These diffusion coefficients are for compounds in roughly 35 different chemical classes consisting of rare gases, small H/O/N/S species, hydrocarbons, and oxygen-, nitrogen-, and halogen-substituted hydrocarbons.

Declaration of Competing Interest

The authors have no conflicts to disclose.

Data Availability

The data that support the findings of this study are available within the article.

5. References

- W. S. McGivern and J. A. Manion, "Extending reversed-flow chromatographic methods for the measurement of diffusion coefficients to higher temperatures," *J. Chromatogr. A* **1218**, 8432-8442 (2011). <u>https://doi.org/10.1016/j.chroma.2011.09.035</u>
- W. S. McGivern and J. A. Manion, "Hydrocarbon binary diffusion coefficient measurements for use in combustion modeling," *Combust. Flame* 159, 3021-3026 (2012). <u>https://doi.org/10.1016/j.combustflame.2012.04.015</u>
- M. J. Tang, R. A. Cox and M. Kalberer, "Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 1. Inorganic compounds," *Atmos. Chem. Phys.* 14, 9233-9247 (2014). <u>http://doi.org/10.5194/acp-14-9233-2014</u>
- O. Suárez-Iglesias, I. Medina, M. D. Sanz, C. Pizarro and J. L. Bueno, "Self-diffusion in molecular fluids and noble gases: Available data," *J. Chem. Eng. Data* 60, 2757-2817 (2015). <u>http://doi.org/10.1021/acs.jced.5b00323</u>
- M. J. Tang, M. Shiraiwa, U. Pöschl, R. A. Cox and M. Kalberer, "Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations," *Atmos. Chem. Phys.* 15, 5585-5598 (2015). <u>http://doi.org/10.5194/acp-15-5585-2015</u>
- C. R. Liu, W. S. McGivern, J. A. Manion and H. Wang, "Theory and Experiment of Binary Diffusion Coefficient of *n*-Alkanes in Dilute Gases," *J. Phys. Chem. A* **120**, 8065-8074 (2016). <u>https://doi.org/10.1021/acs.jpca.6b08261</u>
- W. J. Gu, P. Cheng and M. J. Tang, "Compilation and evaluation of gas phase diffusion coefficients of halogenated organic compounds," *Roy. Soc. Open Sci.* 5, (2018). <u>http://doi.org/10.1098/rsos.171936</u>
- W. S. McGivern and J. A. Manion, "Binary diffusion coefficients for methane and fluoromethanes in nitrogen," *J. Chem. Eng. Data* 66, 3047-3056 (2021). <u>https://doi.org/10.1021/acs.jced.1c00161</u>
- H. Wang and M. Frenklach, "Transport-Properties of Polycyclic Aromatic-Hydrocarbons for Flame Modeling," *Combust. Flame* 96, 163-170 (1994). <u>https://doi.org/10.1016/0010-</u> <u>2180(94)90167-8</u>
- H. Behnejad, T. Hosseinnejad, V. Hatami Shahmir and F. Arianfar, "Direct determination of pair potential energy function from extended law of corresponding states and calculation of thermophysical properties for H₂–He," *Chem. Phys.* **311**, 245-253 (2005). <u>https://doi.org/10.1016/j.chemphys.2004.11.004</u>
- T. Hosseinnejad, H. Behnejad and V. H. Shahmir, "Calculation of transport properties and intermolecular potential energy function of the binary mixtures of H₂ with Ne, Ar, Kr and Xe by a semi-empirical inversion method," *Fluid Phase Equil.* 258, 155-167 (2007). <u>https://doi.org/10.1016/j.fluid.2007.06.009</u>

- 12. R. Hellmann, E. Bich, E. Vogel, A. S. Dickinson and V. Vesovic, "Calculation of the transport and relaxation properties of methane. I. Shear viscosity, viscomagnetic effects, and selfdiffusion," J. Chem. Phys. **129**, 064302 (2008). <u>https://doi.org/10.1063/1.2958279</u>
- 13. R. Hellmann, E. Bich, E. Vogel and V. Vesovic, Thermophysical properties of dilute hydrogen sulfide gas, *J. Chem. Eng. Data* **57**, 1312-1317 (2012). <u>https://doi.org/10.1021/je3000926</u>
- 14. J.-P. Crusius, R. Hellmann, E. Hassel and E. Bich, "Intermolecular potential energy surface and thermophysical properties of ethylene oxide," *J. Chem. Phys.* **141** (2014). <u>https://doi.org/10.1063/1.4899074</u>
- T. Hosseinnejad, H. Behnejad, "Prediction of transport properties of CO₂-N₂ binary mixtures via the inversion of reduced-viscosity collision integrals. *Russ. J. Phys. Chem. B* 8, 81-91 (2014). <u>https://doi.org/10.1134/S1990793113060110</u>
- R. Hellmann, E. Bich, E. Vogel and V. Vesovic, "Intermolecular potential energy surface and thermophysical properties of the CH₄–N₂ system," *J. Chem. Phys.* 141 (2014). <u>https://doi.org/10.1063/1.4902807</u>
- J.-P. Crusius, R. Hellmann, E. Hassel and E. Bich, "Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide," J. Chem. Phys. 142 (2015). <u>https://doi.org/10.1063/1.4922830</u>
- R. Hellmann, E. Bich and V. Vesovic, "Cross second virial coefficients and dilute gas transport properties of the (CH₄+CO₂), (CH₄+H₂S), and (H₂S+CO₂) systems from accurate intermolecular potential energy surfaces," *J. Chem. Thermodyn.* 102, 429-441 (2016). <u>https://doi.org/10.1016/j.jct.2016.07.034</u>
- B. Jäger, R. Hellmann, E. Bich and E. Vogel, "State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas," J. Chem. Phys. 144, 114304 (2016). <u>https://doi.org/10.1063/1.4943959</u>
- R. Hellmann, B. Jäger and E. Bich, "State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties," *J. Chem. Phys.* 147, 034304 (2017). <u>https://doi.org/10.1063/1.4994267</u>
- 21. R. Hellmann, "Intermolecular potential energy surface and thermophysical properties of propane," J. Chem. Phys. 146, 114304 (2017). <u>https://doi.org/10.1063/1.4978412</u>
- 22. R. Hellmann and E. Bich, "Transport properties of dilute D₂O vapour from first principles," *Mol. Phys.* 115, 1057-1064 (2017). <u>https://doi.org/10.1080/00268976.2016.1226443</u>
- R. Hellmann, "Cross second virial coefficients and dilute gas transport properties of the (CH₄ + C₃H₈) and (CO₂ + C₃H₈) systems from accurate intermolecular potential energy surfaces," *J. Chem. Eng. Data* 63, 246-257 (2018). http://dx.doi.org/10.1021/acs.jced.7b00886
- R. Hellmann, "Reference values for the second virial coefficient and three dilute gas transport properties of ethane from a state-of-the-art intermolecular potential energy surface," J. Chem. Eng. Data 63, 470-481 (2018). <u>https://doi.org/10.1021/acs.jced.7b01069</u>

- 25. R. Hellmann, "First-principles calculation of the cross second virial coefficient and the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of the (H₂O + N₂) system," J. Chem. Eng. Data 64, 5959-5973 (2019). https://doi.org/10.1021/acs.jced.9b00822
- R. Hellmann, "Cross second virial coefficients and dilute gas transport properties of the systems (CH₄ + C₂H₆) and (N₂ + C₂H₆) from accurate intermolecular potential energy surfaces," *J. Chem. Thermodyn.* 134, 175-186 (2019). https://doi.org/10.1016/j.jct.2019.03.002
- R. Hellmann, "Cross second virial coefficients and dilute gas transport properties of the (H₂O + CO₂) system from first-principles calculations," Fluid Phase Equil. 485, 251-263 (2019). <u>https://doi.org/10.1016/j.fluid.2018.11.033</u>
- R. Hellmann, "Cross second virial coefficients and dilute gas transport properties of the systems (CO₂ + C₂H₆) and (H₂S + C₂H₆) from accurate intermolecular potential energy surfaces," *J. Chem. Eng. Data* 65, 968-979 (2020). https://doi.org/10.1021/acs.jced.9b00212
- 29. R. Hellmann, "Ab initio potential energy surfaces for the O₂–O₂ system and derived thermophysical properties," *J. Chem. Phys.* 159. 104303 (2023). <u>https://doi.org/10.1063/5.0166781</u>
- E. Vogel, "Viscosity for eight gaseous and vapor mixtures: revisited from experiment between 297 K and 638 K. Final and preliminary values for the interaction viscosity and for the product of molar density and diffusion coefficient in the limit of zero density," *Int. J. Thermophys.* 44, 75 (2023). <u>https://doi.org/10.1007/s10765-023-03174-6</u>
- 31. E. Vogel, E. Bich, and R. Hellmann, "Determination of the binary diffusion coefficients and interaction viscosities of the systems carbon dioxide–nitrogen and ethane–methane in the dilute gas phase from accurate experimental viscosity data using the kinetic theory of gases," *Int. J. Thermophys.* 44, 129 (2023). <u>https://doi.org/10.1007/s10765-023-03233-v</u>
- 32. D. C. Douglass and D. W. McCall, "Diffusion in paraffin hydrocarbons," J. Phys. Chem. 62,1102–1107 (1958). <u>https://doi.org/10.1021/j150567a020</u>
- 33. T. Uminski, J. Dera, and G. Kupyszewski, "The measurement of self-diffusion coefficient in dielectric liquids using the method of open-ended capillaries and radioisotope technique," Acta Phys. Pol. 28, 17-24 (1965). [no DOI]
- D. Kessler, H. Witte, and A. Weiss, "Diffusion of spherical or almost spherical molecules in the liquid phase II: liquid mixtures," Ber. Bunsenges. Phys. Chem. 73, 368–376 (1969). <u>https://doi.org/10.1002/bbpc.19690730410</u>
- J. Fischer and A. Weiss, "Transport properties of liquids V: Self diffusion, viscosity and mass density of ellipsoidal shaped molecules in the pure liquid phase," Ber. Bunsenges. Phys. Chem. 90, 896–905 (1986). <u>https://doi.org/10.1002/bbpc.19860901013</u>
- 36. M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa, and H. Kobayashi, "Self-association of octan-1-ol in the pure liquid state and in decane solutions as observed by viscosity, self-

diffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements," J. Chem. Soc. Faraday Trans. 89, 707–712 (1993). <u>https://doi.org/10.1039/FT9938900707</u>

- D. Kessler, A. Weiss, and H. Witte, "Self-diffusion and spin-lattice relaxation time of nearly spherical molecules in the liquid phase," Ber. Bunsenges. Phys. Chem. 71, 3–19 (1967). <u>https://doi.org/10.1002/bbpc.19670710106</u>
- L. S. Tee, S.Gotoh, and W. E. Stewart, "Molecular Parameters for Normal Fluids. Lennard-Jones 12-6 Potential," Ind. Eng. Chem. Fund. 5, 356-363 (1966). <u>https://doi.org/10.1021/i160019a011</u>