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ABSTRACT
This paper develops a methodology for designing a control system composed of a
linear time-invariant system interconnecting with multiple decoupled time-invariant
memoryless nonlinearities. The design problem is to determine parameters of the
system such that its outputs and the nonlinearity inputs always remain within pre-
scribed bounds for all exogenous inputs whose magnitude and slope satisfy certain
bounding conditions. By using Schauder fixed point theorem, we show that a design
associated with a linear system is also a solution of the problem. Based on this, we
further develop surrogate design criteria in the form of the inequalities that can read-
ily be solved in practice. Sufficient conditions for the solvability of such inequalities
are given for deadzone and saturation. To show the usefulness and the effectiveness
of the methodology, a design example of a load frequency control system with time
delay is carried out where deadzone and saturation are taken into account.

KEYWORDS
Control systems design; nonlinear control systems; memoryless nonlinearity; peak
output; method of inequalities; BIBO stability.

1. Introduction

In many practical applications, some system variables are required to be kept within
their prescribed bounds (or tolerances) for all time and for all inputs (or disturbances)
that happen or are likely to happen. This requirement has prompted many researchers
(e.g., Birch & Jackson, 1959; Horowitz, 1962; Bongiorno, 1967; Zakian, 1979b, 1986,
1987b, 1996, 2005; Lane, 1992, 1995; Rutland, 1994b; Reinelt, 2000; Silpsrikul & Arun-
sawatwong, 2010; Arunsawatwong & Chuman, 2017, and also the references therein) to
investigate – for the case of linear time-invariant (LTI) systems – the following design
criteria:

ẑi ≤ εi, i = 1, 2, . . . ,m (1)
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where ẑi is a performance measure defined as

ẑi ≜ sup
f∈F

∥zi∥∞, (2)

the notation zi denotes an output (or response) of the system under consideration
which is caused by an exogenous input f , F is a set of continuous functions that
satisfy certain norm-bounding conditions, εi is the largest value of ∥zi∥∞ that can
be accepted, and ∥x∥∞ denotes the infinity norm of a function x. The set F can be
regarded as the set of all possible inputs (defined as inputs that happen or are likely to
happen in practice); for this reason, F is called the possible set (Zakian, 1996, 2005).
The performance measure ẑi is called the peak output of zi for the possible set F .
Notice that the criteria (1) are often used by practical engineers for monitoring the
performance of control systems.

Once the peak outputs ẑi (or their upper bounds z̃i) can be evaluated efficiently,
the criteria (1) (or z̃i ≤ εi) become useful design inequalities that can be solved by
numerical methods, which is in keeping with the method of inequalties (Zakian &
Al-Naib, 1973; Zakian, 1979b, 1996, 2005).

Important case studies (Rutland, 1992, 1994a; Lane, 1992, 1995; Whidborne, 1993,
2005; Ono & Inooka, 2009; Arunsawatwong, 2005; Silpsrikul & Arunsawatwong, 2010;
Arunsawatwong & Kalvibool, 2016), where linear dynamical models are used, manifest
that if the problem of designing control systems is formulated by using the criteria
(1), then the problem is expressed in a realistic and useful manner. For more details
regarding the criteria (1), readers are referred to Zakian (1996, 2005); Silpsrikul and
Arunsawatwong (2010) and the references therein.

For LTI systems whose input and whose output are related by a convolution integral,
Silpsrikul and Arunsawatwong (2010) develop a unified method for computing peak
outputs defined in (2) for a class of possible sets described by

F = Pi ∩ Ṗj (3)

where integers i, j ∈ {0, 1, 2} are specified; the sets Pi and Ṗj are defined as

Pi ≜ {f : ∥f∥k ≤Mk, k ∈ Ii}, Ṗj ≜ {f : ∥ḟ∥k ≤ Dk, k ∈ Ij},

I0 ≜ {2,∞}, I1 ≜ {∞}, I2 ≜ {2};

the positive constantsMk, Dk are given by designers; and ∥x∥k (k = 2,∞) denotes the
k-norm of a function x. Notice that the possible sets Pi ∩ Ṗj contain time functions
whose magnitude and whose slope satisfy norm-bounding conditions. The reasons for
imposing the restrictions on both the magnitude and the slope of inputs can be found in
Zakian (1996, 2005) and also Silpsrikul and Arunsawatwong (2010). In this method, the
original infinite-dimensional convex optimization problem is approximated as a large-
scale convex programme defined in a Euclidean space with sparse matrices, which
can be solved efficiently by available tools. Moreover, it is worth noting that the
description in (3) includes two notable cases that had been considered previously by
many researchers: namely,

(I) P1 ∩ Ṗ1 = {f : ∥f∥∞ ≤ M∞, ∥ḟ∥∞ ≤ D∞} (e.g., Birch & Jackson, 1959;
Horowitz, 1962; Bongiorno, 1967; Zakian, 1979b; Lane, 1992; Reinelt, 2000),

(II) P2 ∩ Ṗ2 = {f : ∥f∥2 ≤M2, ∥ḟ∥2 ≤ D2} (e.g., Lane, 1995).
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G(s,p)

LTI system

Figure 1. System with multiple nonlinearities where Ψ(u) = [ψ1(u1), ψ2(u2), . . . , ψn(un)]T and f ∈ F

For detailed discussion on this and a complete list of related references, see Silpsrikul
and Arunsawatwong (2010). Hence, for the whole class of possible sets in (3), not only
can the method be used for computing the peak outputs ẑi but it also enables ones to
design linear control systems to fulfil the criteria (1) in conjunction with the method
of inequalities.

In this paper, we consider a more general and practical control system as shown in
Figure 1, where: G(s,p) is the transfer matrix of an LTI system; p ≜ [p1, p2, . . . , pN ]

T

is a vector of design parameters (pi may be, for example, the coefficients in a controller
transfer function); Ψ ≜ [ψ1, ψ2, . . . , ψn]

T is the vector of n decoupled time-invariant
and memoryless nonlinearities that are continuous functions; f is an exogenous input
known to the extent that it belongs to a set F ; F is one of the possible sets described
in (3); z ≜ [z1, z2, . . . , zm]

T is the vector of m outputs of interest; u ≜ [u1, u2, . . . , un]
T

is the vector of the nonlinearity inputs; v ≜ [v1, v2, . . . , vn]
T is the vector of the

nonlinearity outputs. The details of the system model are given in equations (8).
The aim of the paper is to develop a methodology for determining a vector p ∈ RN

satisfying the following design criteria.

ẑi(p) ≤ εi, i = 1, 2, . . . ,m (4a)

ûj(p) ≤ σj , j = 1, 2, . . . , n (4b)

where: εi > 0 and σj > 0 represent the bounds or tolerances given by designers; F is
one of the possible sets given in (3); ẑi(p) and ûj(p) are respectively the peak outputs
of zi and uj for the set F , defined as

ẑi(p) ≜ sup
f∈F

∥zi∥∞ and ûj(p) ≜ sup
f∈F

∥uj∥∞. (5)

Any vector p that satisfies (4) is called a design solution. From Figure 1, it is clear
that the responses zi and uj depend on both f and p. For simplicity of notation, we
simply write zi and uj throughout the paper.

Since computing ẑi(p) and ûj(p) is intractable, we derive a sufficient condition for
(4) in the form of the following inequalities.

ẑ∗i (p) ≤ εi, i = 1, 2, . . . ,m (6a)

û∗j (p) ≤ σj , j = 1, 2, . . . , n (6b)

where ẑ∗i (p) and û
∗
j (p) are the peak outputs of a certain linear system (to be called a

nominal system in Section 3 and thereafter) and thereby can readily be obtained by
known results for linear systems (see Section 3 for details). Consequently, inequalities
(6) can be solved by numerical methods and hence will be used to obtain a solution
of the criteria (4).
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It should be noted that in connection with the present paper, preliminary investi-
gations were carried out for the case of single-loop unity-feedback systems consisting
of an LTI controller Gc(s,p), a time-invariant nonlinearity ψ and an LTI plant Gp(s)
where the design problem is to determine a design parameter vector p such that for
the possible set P1 ∩ Ṗ1, the peak outputs of the error and the controller output do
not exceed prescribed bounds. Specifically, Mai, Arunsawatwong, and Abed (2010a,
2010b, 2011) considered the case of nonlinearities ψ that are continuous and mem-
oryless, whereas Nguyen and Arunsawatwong (2013, 2014) investigated the case of
backlash nonlinearities ψ that are represented by an uncertain band model containing
multi-valued functions.

The methodology developed in this paper can be seen as a generalization of the
previous results in Mai et al. (2010a, 2010b) so that control systems with general
configuration and multiple nonlinearities can be treated. More specifically, the main
contributions of the present paper are as follows.

• We derive a sufficient condition for the design criteria (4) for possible sets con-
sisting of bounded and continuous functions, which is presented in Theorem 2.6.
This is the key result for subsequent development in the paper.

• By applying Theorem 2.6 to the case of the possible sets described in (3), we
derive inequalities (6). This result is presented in Theorem 3.1.

• Conditions for the solvability of inequalities (6b) are given in connection with
deadzone and saturation nonlinearities. A sufficient condition for the solvability
of (6b) associated with deadzones is provided in Proposition 5.2, whereas a
sufficient condition for the solvability of (6b) associated with one saturation is
provided in Theorem 5.4. Both conditions are used to facilitate the numerical
solution of (6).

• A design example of a load frequency control (LFC) system is carried out where
deadzone and saturation nonlinearities are explicitly taken into account. The nu-
merical results show that the controller obtained by neglecting the nonlinearities
may lead to unacceptable results or instability, whereas the controller obtained
by using the developed methodology (if exists) provides satisfactory results for
the nonlinear LFC system.

The structure of the paper is as follows. Section 2 presents the main theoretical
result, which provides a sufficient condition for the criteria (4). Section 3 derives the
design inequalities (6), which will be used for obtaining a solution of (4) for the
possible sets in (3). Section 4 presents a useful inequality for ensuring the finiteness of
ẑ∗i (p) and û

∗
j (p) in connection with a known class of LTI systems; with this inequality,

algorithms for computing a solution of (6) are able to start from an arbitrary point in
the parameter space RN . Section 5 presents conditions for the solvability of inequalities
(6b) for deadzone and saturation nonlinearities. In Section 6, the design example of
the LFC system is presented so as to illustrate the usefulness of the developed method.
Finally, conclusions and discussion are given in Section 7.

2. Main Theoretical Result

This section presents the main theoretical result, which is presented in Theorem 2.6.
The result provides a foundation for the development in Section 3.

The following notations are used throughout this paper. Let R+ ≜ [0,∞). For a func-
tion x : R+ → R, let the norms ∥x∥1, ∥x∥2 and ∥x∥∞ be defined as ∥x∥1 =

∫∞
0 |x(t)|dt,
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∥x∥2 =
[∫∞

0 x2(t)dt
]1/2

and ∥x∥∞ = supt≥0 |x(t)|. Let Li (i = 1, 2,∞) denote the set

of functions x : R+ → R such that ∥x∥i <∞. Define L∞
n ≜ L∞ × L∞ × . . .× L∞︸ ︷︷ ︸

n

. For

any x ≜ [x1, x2, . . . , xn]
T ∈ L∞

n , define the norm

||x|| ≜
n∑
i=1

||xi||∞. (7)

For any x : R+ → Rn and for a fixed T > 0, define the truncated function xT as
follows.

xT (t) ≜

{
x(t), 0 ≤ t ≤ T
0, t > T

.

For X ⊆ L∞
n , define the truncated set XT as XT ≜ {xT : x ∈ X}. For any operator

H : X ⊆ L∞
n → L∞

n and for any set M ⊆ X, let H(M) denote the image of M under
the operator H, i.e., H(M) = {H(x) : x ∈M}. The symbol ∗ denotes the convolution;
i.e., for x : R+ → R and y : R+ → R,

(x ∗ y)(t) =
∫ t

0
x(t− τ)y(τ)dτ, t > 0.

Now consider the mathematical description of the control system in Figure 1. To
this end, let G(s,p) be the transfer matrix from [f,vT ]T to [zT ,uT ]T where

G(s,p) =

[
Gz
f (s,p) Gz

v(s,p)

Gu
f (s,p) Gu

v (s,p)

]
,

Gz
f (s,p) ≜ [Gzif (s,p)]m×1, Gz

v(s,p) ≜ [Gzivk(s,p)]m×n,

Gu
f (s,p) ≜ [Gujf (s,p)]n×1, Gu

v (s,p) ≜ [Gujvk(s,p)]n×n.

And let gzif (p), g
zi
vk(p), g

uj
f (p) and gujvk(p) denote the inverse Laplace transforms of

Gzif (s,p), G
zi
vk(s,p), G

uj
f (s,p) and Gujvk(s,p), respectively. Notice that the notation

Gxiyk(s,p) denotes the transfer function from input yk to response xi. Then the control
system is described by

zi = gzif (p) ∗ f +

n∑
k=1

gzivk(p) ∗ vk, i = 1, 2, . . . ,m

uj = gujf (p) ∗ f +

n∑
k=1

gujvk(p) ∗ vk, j = 1, 2, . . . , n

 (8a)

vj = ψj(uj), j = 1, 2, . . . , n (8b)

where f ∈ F . Notice that equations (8a) and (8b) describe the LTI system and the
nonlinearities of the system, respectively.

Assumption 1. The LTI system (8a) is non-anticipative and has zero initial condi-
tions.
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G(s,p)

LTI system

K

Figure 2. Equivalent system of the original nonlinear system (8) where f ∈ F

Assumption 2. Each nonlinearity ψj : R → R (j = 1, 2, . . . , n) is a continuous and
time-invariant nonlinear function.

Assumption 3. There are unique z : R+ → Rm and u : R+ → Rn that satisfy (8)
for every input f ∈ F .

In the following, the nonlinear functions ψi are decomposed as

ψj(uj) = Kjuj + ηj(uj), j = 1, 2, . . . , n (9)

where Kj ∈ R and ηj : R → R. Then the system (8) becomes equivalent to the system
shown in Figure 2 where

K ≜ diag(K1,K2, . . . ,Kn) and η(u) ≜ [η1(u1), η2(u2), . . . , ηn(un)]
T .

Notice that, as a consequence of Assumption 2, η(u) is bounded whenever u is
bounded.

Oldak, Baril, and Gutman (1994) used the decomposition (9) in connection with
quantitative feedback theory for designing control systems with hard nonlinearities
that can be expressed as

ψj(uj) = Kjuj + ηj(uj), j = 1, 2, . . . , n where |ηj(uj)| ≤ C <∞ ∀uj ∈ R. (10)

Equations (10) include many time-invariant nonlinearities found in practice such as
deadzone, saturation, dry friction, backlash, etc. Note, however, that the class of non-
linearities considered here is different from that in Oldak et al. (1994). For example,
asymmetric deadzone and polynomial functions satisfy Assumption 2 but not condi-
tion (10).

Now let U denote the set of additional input vectors, defined as

U ≜ U1 × U2 × . . .× Un, Uj ≜ {wj ∈ L∞ : ∥wj∥∞ ≤ σj} (11)

where A×B is the Cartesian product of sets A and B. By replacing each ηj(uj) with
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Figure 3. Auxiliary system of the original nonlinear system (8) where f ∈ F and w ∈ U

ηj(wj) for wj ∈ Uj , the equivalent system in Figure 2 becomes

z′i = gzif (p) ∗ f +

n∑
k=1

gzivk(p) ∗
(
Kku

′
k + dwk

)
, i = 1, 2, . . . ,m (12a)

u′j = gujf (p) ∗ f +

n∑
k=1

gujvk(p) ∗
(
Kku

′
k + dwk

)
, j = 1, 2, . . . , n (12b)

dwj = ηj(wj), j = 1, 2, . . . , n (12c)

where f ∈ F and w ≜ [w1, w2, . . . , wn]
T ∈ U . The system (12) is depicted in Figure 3

where z′ ≜ [z′1, z
′
2, . . . , z

′
m]
T , u′ ≜ [u′1, u

′
2, . . . , u

′
n]
T and dw ≜ [dw1, dw2, . . . , dwn]

T , and
hereafter is called the auxiliary system. Define the peak outputs ẑ′i(p) and û′j(p) for
the system (12) as follows.

ẑ′i(p) ≜ sup
f∈F ,w∈U

∥z′i∥∞ and û′j(p) ≜ sup
f∈F ,w∈U

∥u′j∥∞. (13)

Consider the system (12) and let H(s,p) be the transfer matrix from [f,dTw]
T to

[z′T ,u′T ]T . Then it is easy to verify that

H(s,p) ≜

[
Hz
f (s,p) Hz

d(s,p)

Hu
f (s,p) Hu

d(s,p)

]
,

Hz
f (s,p) ≜ [Hzi

f (s,p)]m×1, Hz
d(s,p) ≜ [Hzi

dk(s,p)]m×n,

Hu
f (s,p) ≜ [Huj

f (s,p)]n×1, Hu
d(s,p) ≜ [Huj

dk (s,p)]n×n,

(14)

Hz
f (s,p) = Gz

f (s,p) +Gz
v(s,p)K[I −Gu

v (s,p)K]−1Gu
f (s,p), (15a)

Hz
d(s,p) = Gz

v(s,p)[I −KGu
v (s,p)]

−1, (15b)

Hu
f (s,p) = [I −Gu

v (s,p)K]−1Gu
f (s,p), (15c)

Hu
d(s,p) = [I −Gu

v (s,p)K]−1Gu
v (s,p). (15d)

Furthermore, let hzif (p), h
zi
dk(p), h

uj
f (p) and hujdk(p) denote the inverse Laplace trans-

forms of Hzi
f (s,p), Hzi

dk(s,p), H
uj
f (s,p) and Huj

dk (s,p), respectively.

Theorem 2.1. [BIBO Stability (see, e.g., Chen, 1984)]. Consider a single-input single-
output LTI system whose input x : R+ → R and output y : R+ → R are related by

y(t) = (g ∗ x)(t)
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where g is the impulse response of the system and all initial conditions at t = 0 are
zero. The system is bounded-input bounded-output (BIBO) stable if and only if∫ ∞

0
|g(t)|dt <∞.

In connection with Theorem 2.1, the following definition will be used in the paper
for convenience.

Definition 2.2. A transfer function G(s) is said to be BIBO stable if∫ ∞

0
|g(t)|dt <∞

where g is the inverse Laplace transform of G(s).

Assumption 4. The transfer functions Huj
f (s,p) (j = 1, 2, . . . , n) are proper and

BIBO stable and the transfer functions Huj
dk (s,p) (j, k = 1, 2, . . . , n) are strictly proper

and BIBO stable.

Next the main result is stated in Theorem 2.6 and, in essence, is obtained by using
the Schauder fixed point theorem in the time domain. Prior to this work, Baños and
Horowitz (2004) had used the fixed point theorem in the time domain to develop
design methods. However, it is important to note that we consider the control system
(8) in connection with the design criteria (4), whereas the problem settings considered
by Baños and Horowitz (2004) are different.

Theorem 2.3. [Schauder theorem (Zeidler, 1986, p. 56)]. Suppose that Ω is a
nonempty, closed, bounded and convex subset of a Banach space. Every compact oper-
ator Φ : Ω → Ω has a fixed point.

The following results will be used in the proof of Theorem 2.6. It may be noted that
Lemma 2.4 is a key tool in proving the theorem.

Lemma 2.4. Let X ⊂ L∞
n . For every T > 0, let H denote the affine operator defined

over XT as

Hx(t) = [H1x(t),H2x(t), . . . ,Hnx(t)]
T

Hjx(t) =

n∑
k=1

(hjk ∗ xk)(t) + rj(t)

 , ∀ t ∈ [0, T ] (16)

where hjk : R+ → R are given, and rj : [0, T ] → R are continuous and satisfy ∥rj∥∞ ≤
Mr for some Mr <∞. If hjk ∈ L1 for all j, k, then H is compact.

Proof. See Appendix A.

Proposition 2.5. Let X, Y and Z be Banach spaces. Let Q : D1 ⊂ X → Y be a
continuous operator, and let H : Y → Z be an operator that is compact over D2 ⊂ Y .
If Q(D1) ⊂ D2, then the composite operator HQ : D1 → Z is compact.

Proof. See Appendix A.
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We are now ready to state the main result of this section.

Theorem 2.6. Consider the nonlinear system (8) and assume that the possible set
F is a set of bounded and continuous functions. Let Assumptions 1–4 hold. Then the
original design criteria (4) are satisfied if, for the auxiliary system (12), the following
inequalities hold.

ẑ′i(p) ≤ εi, i = 1, 2, . . . ,m, (17a)

û′j(p) ≤ σj , j = 1, 2, . . . , n. (17b)

Proof. First, we prove that if condition (17b) holds, then the design criteria (4b) are
satisfied. Let f ∈ F be a fixed input and let (17b) hold. Consider the auxiliary system
(12). From (12b), (12c), (15c) and (15d), it can be verified that for j = 1, 2, . . . , n,

u′j =

n∑
k=1

hujdk(p) ∗ ηk(wk) + hujf (p) ∗ f ≜ Φj(w) (18)

for any input vector w. Let T > 0 be fixed. Truncating to both sides of (18) yields

u′j,T =

( n∑
k=1

hujdk(p) ∗ ηk(wk,T ) + hujf (p) ∗ f
)
T

≜ Φj,T (wT ). (19)

In connection with (19), define ΦT (wT ) ≜ [Φ1,T (wT ), . . . ,Φn,T (wT )]
T .

Now letw ∈ U . Then (17b) implies that u′ ∈ U and thus u′
T ∈ UT . Hence, ΦT (UT ) ⊆

UT ; i.e., ΦT maps UT into itself. Then we use the Schauder theorem to show that ΦT
has a fixed point in UT . To this end, write ΦT = HQ where Qx = η(x),

Hx = [H1x,H2x, . . . ,Hnx]
T and Hjx =

( n∑
k=1

hujdk(p) ∗ xk + hujf (p) ∗ f
)
T

.

Since Huj
f (s,p) (j = 1, 2, . . . , n) are BIBO stable and f is bounded and continuous, we

can verify that rj ≜
(
hujf (p) ∗ f

)
T
(j = 1, 2, . . . , n) are continuous and satisfy ∥rj∥∞ ≤

Mr for some Mr < ∞. Furthermore, the condition that Huj
dk (s,p) (j, k = 1, 2, . . . , n)

are strictly proper and BIBO stable implies that hujdk(p) ∈ L1. Consequently, it follows
from Lemma 2.4 that H is compact over UT . Because of this and by the continuity
of Q, it follows from Proposition 2.5 that ΦT is compact over UT , which is clearly a
nonempty, closed, bounded and convex set. By applying Theorem 2.3, one can see that

ΦT always has a fixed point u†
T ≜ [u†1,T , u

†
2,T , . . . , u

†
n,T ]

T ∈ UT such that

u†
T = ΦT (u

†
T ). (20)

From (19) and (20), it follows immediately that for each j,

u†j,T =

(
hujf (p) ∗ f +

n∑
k=1

hujdk(p) ∗ ηk(u
†
k,T )

)
T

.
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Consequently, by using (15c) and (15d), one can verify that for each j,

u†j,T =

(
gujf (p) ∗ f +

n∑
k=1

gujvk(p) ∗
{
Kku

†
k,T + ηk(u

†
k,T )

})
T

=

(
gujf (p) ∗ f +

n∑
k=1

gujvk(p) ∗ ψk(u
†
k,T )

)
T

(21)

where the second equality follows by the decomposition in (9). By the uniqueness of

u in Assumption 3, it follows from (21) that u†
T is identical to uT of the original

nonlinear system (8). Thus, uT ∈ UT since u†
T ∈ UT . Because the above arguments

hold for any f ∈ F and any T > 0, we conclude that the criteria (4b) are satisfied.
Second, we prove that condition (17a) and the consequence of condition (17b)

imply that the design criteria (4a) are satisfied. Let (17a) hold and let z† ≜
[z†1,T , z

†
2,T , . . . , z

†
m,T ]

T denote the vector of the associated outputs of the auxiliary sys-

tem (12) when w = u†
T . Following (12b), (12c) and (21), one can verify that u′

T = u†
T

when w = u†
T . Consequently, from (12a) and (12c), it follows that for each i,

z†i,T =

(
gzif (p) ∗ f +

n∑
k=1

gzivk(p) ∗
{
Kku

†
k,T + ηk(u

†
k,T )

})
T

=

(
gzif (p) ∗ f +

n∑
k=1

gzivk(p) ∗ ψk(u
†
k,T )

)
T

(22)

where the second equality follows by using (9) again. Then, by Assumption 3, one can

see that z†T is identical to zT of the original nonlinear system (8). Moreover, condition

(17a) implies that ∥z†i,T ∥∞ ≤ εi (i = 1, 2, . . . ,m). For these reasons, it follows that

∥zi,T ∥∞ ≤ εi (i = 1, 2, . . . ,m). Finally, since the above arguments hold for any f ∈ F
and any T > 0, the criteria (4a) are satisfied.

Regarding the possible set F , Theorem 2.6 uses only the assumption that F com-
prises bounded and continuous functions. For this reason, it should be noted that apart
from the possible sets F in (3), Theorem 2.6 is also applicable to other possible sets
F as long as all inputs in F are bounded and continuous.

From Theorem 2.6, we see that when a solution of inequalities (17) (associated with
the auxiliary system (12) subject to f and dw) is found, it is also a solution of the
criteria (4) (associated with the nonlinear system (8) subject to f). However, the peak
outputs ẑ′i(p) and û

′
j(p) are in general not easily obtainable, because dw is a nonlinear

function of w for w ∈ U . Therefore, solving inequalities (17) is not convenient, and
more tractable design inequalities will be developed in Section 3.

3. Practical Design Inequalities and Evaluation of Associated Peak
Outputs

Based on Theorem 2.6, this section develops a practical sufficient condition for (4) in
connection with the possible sets F in (3).
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Figure 4. Nominal system where f ∈ F and d ∈ D

Consider the auxiliary system (12). Let Dw denote the set of all input vectors dw
for w ∈ U . Then the set Dw is given by

Dw = Dw1 ×Dw2 × . . .×Dwn where Dwj = {dwj = ηj(wj) : wj ∈ Uj}. (23)

From (13), it follows that the peak outputs ẑ′i(p) and û
′
j(p) can be rewritten as

ẑ′i(p) = sup
f∈F ,dw∈Dw

∥z′i∥∞ and û′j(p) = sup
f∈F ,dw∈Dw

∥u′j∥∞. (24)

Now let D denote the set of additional input vectors, defined as

D ≜ D1 ×D2 × . . .×Dn, Dj ≜ {dj ∈ L∞ : ∥dj∥∞ ≤ Mj} (25)

where the bounds Mj are given by

Mj ≜ sup
|x|≤σj

|ηj(x)|, j = 1, 2, . . . , n. (26)

Notice that, for each j, the bound Mj is always finite since ηj is continuous. Further-
more, since dwj = ηj(wj), it follows from (26) that ∥dwj∥∞ ≤ Mj for all j. Thus, it is
clear from (23) and (25) that Dw ⊂ D.

Replacing each dwj in the auxiliary system (12) with dj ∈ Dj yields the following
LTI system.

z∗i = gzif (p) ∗ f +

n∑
k=1

gzivk(p) ∗ (Kku
∗
k + dk), i = 1, 2, . . . ,m

u∗j = gujf (p) ∗ f +

n∑
k=1

gujvk(p) ∗ (Kku
∗
k + dk), j = 1, 2, . . . , n

(27)

where f ∈ F and d ≜ [d1, d2, . . . , dn]
T ∈ D. The system (27) is depicted in Figure 4

where z∗ ≜ [z∗1 , z
∗
2 , . . . , z

∗
m]
T and u∗ ≜ [u∗1, u

∗
2, . . . , u

∗
n]
T , and hereafter is called the

nominal system. The only difference between the auxiliary system (12) and the nominal
system (27) is that dw is replaced with d. So the transfer matrix of the system (27)
from [f,dT ]T to [z∗T ,u∗T ]T is identical to H(s,p) described in (14) and (15).

Define the peak outputs ẑ∗i (p) and û
∗
j (p) for the nominal system (27) as follows.

ẑ∗i (p) ≜ sup
f∈F ,d∈D

∥z∗i ∥∞ and û∗j (p) ≜ sup
f∈F ,d∈D

∥u∗j∥∞. (28)
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Then we state the sufficient condition for the criteria (4) in connection with the peak
outputs ẑ∗i (p) and û

∗
j (p).

Theorem 3.1. Consider the nonlinear system (8) and let the possible set F be given
by (3). Let Assumptions 1–4 hold. Then the original design criteria (4) are satisfied
if, for the nominal system (27), the following inequalities hold.

ẑ∗i (p) ≤ εi, i = 1, 2, . . . ,m (29a)

û∗j (p) ≤ σj , j = 1, 2, . . . , n (29b)

where the peak outputs ẑ∗i (p) and û
∗
j (p) are given by

ẑ∗i (p) = ϕzif (p) +

n∑
k=1

Mk∥hzidk(p)∥1, i = 1, 2, . . . ,m, (30a)

û∗j (p) = ϕujf (p) +

n∑
k=1

Mk∥hujdk(p)∥1, j = 1, 2, . . . , n, (30b)

ϕzif (p) ≜ sup{∥z∗i ∥∞ : f ∈ F ,d = 0}, ϕujf (p) ≜ sup{∥u∗j∥∞ : f ∈ F ,d = 0}. (31)

Proof. Since Dw ⊂ D, it readily follows that ẑ′i(p) ≤ ẑ∗i (p) (i = 1, 2, . . . ,m) and
û′j(p) ≤ û∗j (p) (j = 1, 2, . . . , n), provided that ẑ∗i (p) and û

∗
j (p) are all finite. Then it

follows from Theorem 2.6 that if inequalities (29) are satisfied, then the criteria (4)
are also satisfied.

Now it remains to prove the formulae (30a) and (30b). By using (15), the nominal
system (27) can be described by

z∗i = hzif (p) ∗ f +

n∑
k=1

hzidk(p) ∗ dk, i = 1, 2, . . . ,m

u∗j = hujf (p) ∗ f +

n∑
k=1

hujdk(p) ∗ dk, j = 1, 2, . . . , n

. (32)

Thus, by the system linearity, the peak outputs ẑ∗i (p) and û
∗
j (p) are given by

ẑ∗i (p) = ϕzif (p) +

n∑
k=1

ϕzidk(p), û∗j (p) = ϕujf (p) +

n∑
k=1

ϕujdk(p) (33)

where ϕzidk(p) and ϕujdk(p) are the peak outputs of z∗i and u∗j , respectively, that are
associated with the input dk while other inputs being zero. Furthermore, by using a
known result (Pfeiffer, 1955), it follows that

ϕzidk(p) = Mk∥hzidk(p)∥1, ϕujdk(p) = Mk∥hujdk(p)∥1. (34)

From (33) and (34), the theorem readily follows.

Remark 1. From the first part of the proof of Theorem 2.6, one can see that condition
(17b) implies the satisfaction of the criteria (4b). Consequently, since û′j(p) ≤ û∗j (p)
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(j = 1, 2, . . . , n), it readily follows that condition (29b) also implies that the criteria
(4b) are satisfied. □

Remark 2. The numbers ϕzif (p) and ϕ
uj
f (p) are the peak outputs of z∗i and u

∗
j , respec-

tively, in response to the input f with d = 0. For the possible sets F in (3), the peak

outputs ϕzif (p) and ϕujf (p) are computed by using Silpsrikul and Arunsawatwong’s

(2010) method, in which associated convex optimization problems can be solved by
using solvers available in open sources (for example, SeDuMi and SDPT3). References
to such solvers can be found in Silpsrikul and Arunsawatwong (2010). □

Remark 3. Following Theorem 2.6, one can conclude that the peak outputs ẑ′i(p)
and û′j(p) are upper bounds of the peak outputs ẑi(p) and ûj(p), respectively, when
inequalities (17) are satisfied. Moreover, it follows from Theorem 3.1 that the peak
outputs ẑ∗i (p) and û

∗
j (p) are also upper bounds of ẑi(p) and ûj(p), respectively, when

inequalities (29) are satisfied. Furthermore, it is clear that ẑ∗i (p) and û
∗
j (p) are upper

bounds of ẑ′i(p) and û
′
j(p), respectively, provided that ẑ∗i (p) and û

∗
j (p) are finite. □

From Theorem 3.1, it is clear that once ẑ∗i (p) and û∗j (p) are readily computable,
inequalities (29) provide a practical condition for checking whether the criteria (4) are
satisfied for a given p. More importantly, such inequalities can be used in conjunction
with a numerical algorithm to search for a solution of the criteria (4) in the space RN ;
see Section 4.2 for further details. For this reason, inequalities (29) are appropriately
called the surrogate design criteria for (4).

In this work, an algorithm called the moving-boundaries-process (MBP) is used for
determining a solution of inequalities; the details of the MBP algorithm can be found
in Zakian (2005); Zakian and Al-Naib (1973). It may be noted that other algorithms
for solving inequalities may also be used; for more details, see Chapters 7 and 8 of
Zakian (2005) and the references therein.

Following Theorem 3.1 and the above discussion, an algorithm for computing the
peak outputs ẑ∗i (p) and û

∗
j (p) for the nominal system (27) is stated as follows.

Algorithm 1. Consider the nonlinear system (8) as stated in Theorem 3.1 and
the possible set F in (3). Let a design parameter vector p be given such that the
nominal system (27) is BIBO stable. Let σj > 0 (j = 1, 2, . . . , n) be given.

Step 1. Determine the transfer matrix H(s,p) defined in (14) and (15).

Step 2. Compute the impulse responses hzif (p), h
zi
dk(p), h

uj
f (p) and hujdk(p) from

the transfer functions Hzi
f (s,p), Hzi

dk(s,p), H
uj
f (s,p) and Huj

dk (s,p), respec-
tively.

Step 3. With the obtained responses hzif (p) and hujf (p), compute ϕzif (p) and

ϕujf (p) defined in (31) by using Silpsrikul and Arunsawatwong’s (2010)
method.

Step 4. With the given ψj and σj , compute Mj by using (9) and (26).

Step 5. With the responses hzidk(p) and hujdk(p) obtained from Step 2 and the

bounds Mj obtained from Step 4, compute ϕzidk(p) and ϕ
uj
dk
(p) given in the

formula (34) by using a numerical integration method (e.g., the trapezoidal
rule).

Step 6. Compute ẑ∗i (p) and û
∗
j (p) given in the formula (33).
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4. Determination of a Solution in the Space of Design Parameters

In this section, we point out the connection between the finiteness of the peak outputs
ẑ∗i (p) and û∗j (p) for the possible sets in (3) and the BIBO stability of the nominal
system (27). Then we explain how to use numerical search methods to determine a
solution p of inequalities (29) in the space RN of design parameters, for a known class of
LTI systems whose BIBO stability is equivalent to the condition that all characteristic
roots have negative real parts.

4.1. Connection between finiteness of peak outputs and BIBO stability

Below, we show that the BIBO stability of the nominal system (27) implies the finite-
ness of the peak outputs ẑ∗i (p) and û

∗
j (p) for the possible sets in (3).

Proposition 4.1. Consider the nominal system (27). Let F be given by (3) and D
by (25). Then the peak outputs ẑ∗i (p) (i = 1, 2, . . . ,m) and û∗j (p) (j = 1, 2, . . . , n) are
finite if the following two conditions hold.

(a) For i = 1, 2, . . . ,m and k = 1, 2, . . . , n, the transfer functions Hzi
f (s,p) and

Hzi
dk(s,p) are BIBO stable.

(b) For j = 1, 2, . . . , n and k = 1, 2, . . . , n, the transfer functions Huj
f (s,p) and

Huj
dk (s,p) are BIBO stable.

Proof. It is easy to see from (32) that z∗ ∈ L∞
m for any f ∈ L∞ and d ∈ L∞

n if and
only if condition (a) holds, and that u∗ ∈ L∞

n for any f ∈ L∞ and d ∈ L∞
n if and only

if condition (b) holds. Since F ⊂ L∞ (Silpsrikul & Arunsawatwong, 2010, Proposition
2.1) and since D ⊂ L∞

n , it follows from equations (28) that ẑ∗i (p) and û
∗
j (p) are finite

for all i, j if conditions (a) and (b) hold.

From the above, it is clear that for the nominal system (27), the finiteness of the
peak outputs is in close connection with BIBO stability, which is a basic concept that
has been used widely in control engineering.

4.2. Procedure for computing a solution of inequalities (29)

From Section 3, it follows that the peak outputs ẑ∗i (p) and û∗j (p) map RN to the

extended half line [0,∞]. In general, there are points p ∈ RN (possibly forming large
regions in RN ) such that ẑ∗i (p) = ∞ for some i or û∗j (p) = ∞ for some j (Zakian,
1987a); in which case, the values of ẑ∗i (p) and û∗j (p) (as well as their gradients) are
not defined. Consequently, numerical search methods can fail to locate a solution of
inequalities (29) if they start at such points.

Following previous work (Zakian & Al-Naib, 1973; Zakian, 1979b, 1986, 1987a,
2005), it is readily appreciated that in seeking a solution of inequalities (29) in RN , a
search algorithm in general needs to start from a point p ∈ RN such that

ẑ∗i (p) < ∞, i = 1, 2, . . . ,m
û∗j (p) < ∞, j = 1, 2, . . . , n.

(35)
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In connection with (35), we define a stability region S as

S ≜ {p ∈ RN : ẑ∗i (p) <∞ ∀ i and û∗j (p) <∞ ∀ j}.

Any point p ∈ S is called a stability point. Once a stability point is obtained, the
algorithm is then used to search for a solution of inequalities (29) inside the region S.

In fact, there are many classes of LTI systems whose BIBO stability is equivalent
to the condition that all the characteristic roots have negative real parts. Below a
condition for ensuring the finiteness of ẑ∗i (p) and û

∗
j (p) for such systems is stated.

Proposition 4.2. Consider the nominal system (27) whose characteristic function is
denoted by W (s). Suppose that the system is BIBO stable if and only if all roots of the
equation W (s) = 0 have negative real parts. Let F be described by (3) and D by (25).
Then the peak outputs ẑ∗i (p) (i = 1, 2, . . . ,m) and û∗j (p) (j = 1, 2, . . . , n) are finite if

α(p) < 0, α(p) ≜ max{Re s :W (s) = 0}. (36)

Proof. Let condition (36) hold. Clearly, (36) is equivalent to the fact that all the
roots of W (s) = 0 have negative real parts; hence it readily follows that the nominal
system (27) is BIBO stable. From this, one can see that all the elements of H(s,p)
are BIBO stable transfer functions. Therefore, it follows from Proposition 4.1 that all
the peak outputs ẑ∗i (p) and û

∗
j (p) are finite.

The number α(p) is known as the abscissa of stability of the characteristic function
W (s). Practical algorithms for computing the abscissa of stability, which makes use of
repeated stability tests, are developed by: (i) Zakian (1979a) for the case of rational
systems, (ii) Arunsawatwong (1996) for retarded delay differential systems (RDDSs)
(see, e.g., Hale & Verduyn-Lunel, 1993), and (iii) Arunsawatwong and Nguyen (2009)
for retarded fractional delay differential systems (RFDDSs) (see, e.g., Bonnet & Part-
ington, 2000, 2001). Because of the availability of such algorithms, inequality (36) can
be used to determine a stability point by numerical methods for rational systems,
RDDSs and RFDDSs.

In conjunction with the method of inequalities, inequality (36) is replaced with

α(p) ≤ −ε0 (0 < ε0 ≪ 1) (37)

where the bound −ε0 is introduced to ensure that the system is stable as long as
the magnitude of error in the computed value of α(p) is less than ε0. Note that
inequality (37) was introduced by Zakian and Al-Naib (1973) and, since then, has
been used by a number of researchers in designing control systems by the method
of inequalities (e.g., Rutland, 1992, 1994a; Lane, 1992, 1995; Whidborne, 1993, 2005;
Arunsawatwong, 2005; Arunsawatwong & Nguyen, 2009; Silpsrikul & Arunsawatwong,
2010; Arunsawatwong & Kalvibool, 2016); more references can be found in Zakian
(2005).

For the class of the nominal system considered in Proposition 4.2, a stability point
can easily be obtained by using a search algorithm to solve inequality (37). Once a
stability point is found, a design solution is obtained by solving the set of inequalities
(29) and (37). With inequality (37), the solution is being sought in the set

S̄ ≜ {p ∈ RN : α(p) < 0}. (38)
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For this class of the nominal system, we easily see that S̄ ⊂ S. However, when F =
P1 ∩ Ṗ1, both sets turn out to be identical; for the detail on this, see Proposition 2.2
in Silpsrikul and Arunsawatwong (2010).

According to Proposition 4.2 and the above discussion, a procedure for determining
a solution of inequalities (29) involves two phases of computation as follows.

Algorithm 2. Consider the nonlinear system (8) and the nominal system (27) as
stated in Theorem 3.1 and Proposition 4.2, respectively. Let the numbers εi > 0
(i = 1, 2, . . . ,m), σj > 0 (j = 1, 2, . . . , n) and ε0 be given where 0 < ε0 ≪ 1.

Phase 1. Given a starting point p0 ∈ RN , determine a stability point p1 by
solving inequality (37).

Phase 2. By starting from p1, determine a design solution p by solving inequal-
ities (29) and (37).

5. Solvability of Design Inequalities for Deadzone and Saturation
Nonlinearities

It is well known (Zakian & Al-Naib, 1973; Zakian, 1979b, 1996, 2005) that not every
design problem that is cast as a set of inequalities has a solution; thus, the designer has
to face the possibility that the design problem has no solution. In solving inequalities
(29) by numerical methods (which is usually a non-convex problem in the space RN ),
when a search algorithm cannot locate a solution of such inequalities after a large
number of iterations, a question often arising is whether or not the inequalities have a
solution. When no solution exists, the designer has to reformulate the inequalities by
simply increasing some bounds εi or σj or, in some cases, using a different controller
structure with non-decreasing complexity so that the resultant inequalities have a
solution.

From a computational viewpoint, it is useful to know a condition under which
inequalities (29a) and (29b) are guaranteed to have a solution for sufficiently large
bounds εi and σj , respectively. Following Zakian (1979b, 1996, 2005); Zakian and Al-
Naib (1973), it is appreciated that once such a solution is found, designers can tighten
some of the bounds and solve the inequalities again in order to obtain a better design.

In this connection, the following definition is used for the sake of convenience.

Definition 5.1. Consider inequalities (29a) and (29b). An inequality ẑ∗i (p) ≤ εi is
said to be solvable if it has a solution for sufficiently large εi. Similarly, an inequality
û∗j (p) ≤ σj is said to be solvable if it has a solution for sufficiently large σj .

From the definition of the stability region S, it follows that if there exists a stability
point p∗ (i.e., a point p∗ ∈ S), then ẑ∗i (p∗) and û∗j (p

∗) are finite for all i and j. From
this, we arrive at the following two facts.

• Consider inequalities (29a). From (30a) and the fact that ẑ∗i (p) does not depend
on εi, it follows that for each i, the inequality ẑ

∗
i (p

∗) ≤ εi holds for a sufficiently
large εi, i.e., each inequality is solvable. Hence, we conclude that if there exists
a stability point p∗, then inequalities (29a) are solvable.

• Consider inequalities (29b). In contrast to the former, it can be seen from (26)
and (30b) that û∗j (p) depends on σj for all p. In this case, we cannot conclude
that for each j, the inequality û∗j (p

∗) ≤ σj holds for a sufficiently large σj . To
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(a) Deadzone (b) Saturation

Figure 5. Characteristics of deadzone and saturation nonlinearities

answer whether or not the existence of a stability point p∗ implies the solvability
of inequalities (29b), more analysis needs to be done by taking into account the
characteristics of nonlinearities.

In this section, we provide conditions for ensuring that inequalities (29b) are solvable
for the cases of deadzone and saturation, in connection with the class of the nominal
system considered in Proposition 4.2. Such conditions will be used in solving the design
problem considered in Section 6.

5.1. Deadzone nonlinearity

Consider the nonlinear system (8). Let nd ≤ n and assume that ψj (j = 1, 2, . . . , nd)
are deadzones described by

ψj(x) =

 x+ aj , x < −aj
0, |x| ≤ aj
x− aj , x > aj

(39)

where aj > 0 (see Figure 5(a)). Let the deadzones ψj be decomposed as in (9) with
Kj = 1. Then the functions ηj (j = 1, 2, . . . , nd) are given by

ηj(x) =

 aj , x < −aj
−x, |x| ≤ aj
−aj , x > aj

.

Assume now that there exists a stability point p∗. Then û∗j (p
∗) are finite for all j.

Using (26) and (30b), one can verify that

û∗j (p
∗) ≤ ϕujf (p∗) +

n∑
k=1
k ̸=j

Mk∥hujdk(p
∗)∥1 + aj∥hujdj (p

∗)∥1, j = 1, 2, . . . , nd. (40)

In this case, since the right-hand side of (40) is finite and independent of σj , we
conclude from Definition 5.1 that the inequalities

û∗j (p) ≤ σj , j = 1, 2, . . . , nd (41)

are solvable.
From the above, we are ready to state a sufficient condition for the solvability of

inequalities (41) for the class of the nominal system considered in Proposition 4.2.
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Proposition 5.2. Consider the nonlinear system (8) and let Assumptions 1 and 2
hold. Let ψj (j = 1, 2, . . . , nd) be the deadzone functions given by (39) and be decom-
posed as in (9) with Kj = 1. Then for the class of the nominal system considered
in Proposition 4.2, inequalities (41) are solvable if there exists a vector p∗ such that
α(p∗) < 0.

Proof. The proof readily follows from Proposition 4.2 and the above discussion.

From Proposition 5.2, it is evident that condition (37) provides a practical sufficiency
test for the solvability of inequalities (41). That is, if a numerical solution of inequality
(37) is found, then S̄ is nonempty and hence inequalities (41) are solvable.

5.2. Saturation nonlinearity

Consider the nonlinear system (8) and assume that ψn is the only saturation and
described by

ψn(x) =

 −δ, x < −δ
x, |x| ≤ δ
δ, x > δ

(42)

where δ > 0 is the saturation level (see Figure 5(b)). Let ψn be decomposed as in (9)
with Kn = 1. Then it readily follows that

ηn(x) =

 −δ − x, x < −δ
0, |x| ≤ δ
δ − x, x > δ

. (43)

Consider the peak output û∗n(p) and define

A(p) ≜ ϕunf (p) +

n−1∑
k=1

Mk∥hundk (p)∥1. (44)

From (30b) and the definition of A(p), it is clear that if û∗n(p) is finite, then A(p) <
û∗n(p) and

û∗n(p) = A(p) +Mn∥hundn(p)∥1. (45)

Using (26) and (43), one can see that for any σn > δ, Mn = σn− δ and, consequently,
expression (45) can be rewritten as

û∗n(p) = A(p) + (σn − δ)∥hundn(p)∥1. (46)

Now consider the situation when the peak output û∗n(p) is greater than δ for all
p ∈ S. This is the case in which the bounds Mk and Dk of the possible set F in (3)
are relatively large; for an example of this, see Section 6. As a result, the inequality

û∗n(p) ≤ σn (47)
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has no solution for any σn ≤ δ. Regarding the case in which inequality (47) has a
solution for some σn ≤ δ, see comments in Remark 4.

The following lemma, which will be used to establish Theorem 5.4, is provided.

Lemma 5.3. Consider the nonlinear system (8) and let Assumptions 1 and 2 hold.
Let ψn be a saturation function given by (42) and be decomposed as in (9) with Kn = 1.
Let p∗ be a stability point. If ∥hundn(p∗)∥1 < 1, then the inequality

û∗n(p
∗) ≤ σn (48)

holds for sufficiently large σn > δ. Furthermore, provided that A(p∗) > δ, inequality
(48) holds for sufficiently large σn > δ if and only if ∥hundn(p∗)∥1 < 1.

Proof. Let ∥hundn(p∗)∥1 < 1 and let σn > δ. Since p∗ is a stability point, both A(p∗)
and û∗n(p

∗) are finite. Since σn > δ, the peak output û∗n(p
∗) is given by (46) and

inequality (48) becomes

A(p∗)− δ∥hundn(p∗)∥1 ≤ (1− ∥hundn(p∗)∥1)σn. (49)

Since 1− ∥hundn(p∗)∥1 > 0, dividing both sides of (49) by 1− ∥hundn(p∗)∥1 yields

σ̄n ≤ σn where σ̄n ≜
A(p∗)− δ∥hundn(p∗)∥1

1− ∥hundn(p∗)∥1
. (50)

So it follows that (48) is satisfied if and only if so is (50). Hence, we conclude that if
∥hundn(p∗)∥1 < 1, then (48) is satisfied for any σn ≥ σ̄n where σn > δ.

Now it remains to prove that whenever A(p∗) > δ, the condition ∥hundn(p∗)∥1 < 1 is
also necessary for (48) to hold for some σn > δ. Let A(p∗) > δ and let (48) be satisfied
for a given σn > δ. Then, by using (46), it follows that

A(p∗) + (σn − δ)∥hundn(p∗)∥1 ≤ σn

δ + (σn − δ)∥hundn(p∗)∥1 < σn.

Consequently, it follows that ∥hundn(p∗)∥1 < 1. Hence, the proof is complete.

From Lemma 5.3, one can see that to ensure that inequality (48) holds for sufficiently
large σn > δ, both conditions that p∗ is a stability point and that ∥hundn(p∗)∥1 < 1 are
needed. Furthermore, if p∗ is a stability point and if A(p∗) > δ, then the condition
∥hundn(p∗)∥1 < 1 turns out to be necessary for inequality (48) to hold for sufficiently
large σn > δ.

For the rest of this section, we investigate the solvability of inequality (47) in con-
nection with the class of the nominal system considered in Proposition 4.2.

Theorem 5.4. Consider the nonlinear system (8) and let Assumptions 1 and 2 hold.
Let ψn be a saturation function given by (42) and be decomposed as in (9) with Kn = 1.
Suppose that S̄ is nonempty. Then for the class of the nominal system considered in
Proposition 4.2, the following two statements hold.

(i) Inequality (47) is solvable if there exists a p∗ ∈ S̄ such that ∥hundn(p∗)∥1 < 1.

(ii) Provided that A(p) > δ for any p ∈ S̄, inequality (47) is solvable if and only if
there exists a p∗ ∈ S̄ such that ∥hundn(p∗)∥1 < 1.
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Proof. (i) Let there exist a p∗ ∈ S̄ such that ∥hundn(p∗)∥1 < 1. From Proposition 4.2,
the point p∗ is also a stability point. Consequently, it follows from Lemma 5.3 that
û∗n(p

∗) ≤ σn for sufficiently large σn > δ. Hence, we conclude from Definition 5.1 that
(47) is solvable.
(ii) Since the sufficiency readily follows from (i), it only remains to prove the necessity.
Let A(p) > δ for any p ∈ S̄ and assume that there exists a p∗ ∈ S̄ such that û∗n(p

∗) ≤
σn for sufficiently large σn > δ. Since p∗ is a stability point and since A(p∗) > δ, it
can be seen from Lemma 5.3 that ∥hundn(p∗)∥1 < 1. Hence, the proof is complete.

In contrast to the case of deadzone, Theorem 5.4 suggests that for the class of the
nominal system considered, inequality (47) is solvable if there exists a p∗ satisfying
both α(p∗) < 0 and ∥hundn(p∗)∥1 < 1. Moreover, if both A(p) > δ and ∥hundn(p)∥1 ≥ 1
for any p ∈ S̄, then inequality (47) is not solvable. For this reason, in conjunction with
the method of inequalities, the inequality

H(p) ≜ ∥hundn(p)∥1 − 1 ≤ −γ (0 < γ ≪ 1) (51)

is used together with inequality (37) for finding a solution of (47) for the cases in
which all solutions of (47) exist for σn > δ.

From Theorem 5.4 and the above discussion, it is evident that when the nonlinear
system (8) contains one saturation element, the condition ∥hundn(p)∥1 < 1 plays an
important role in the solvability of inequality (47), which is a part of the surrogate
criteria (29). Hence, in this case, a procedure for determining a solution of (29) involves
three phases of computation as follows.

Algorithm 3. Consider the nonlinear system (8) and the nominal system (27) as
stated in Theorem 5.4 and Proposition 4.2, respectively. Let the numbers εi > 0
(i = 1, 2, . . . ,m), σj > 0 (j = 1, 2, . . . , n), ε0 and γ be given where 0 < ε0 ≪ 1 and
0 < γ ≪ 1.

Phase 1. Given a starting point p0 ∈ RN , determine a stability point p1 by
solving inequality (37).

Phase 2. By starting from p1, determine a point p2 by solving inequalities (37)
and (51).

Phase 3. By starting from p2, determine a design solution p by solving inequal-
ities (29), (37) and (51).

Remark 4. If there exists a stability point p∗ such that û∗j (p
∗) ≤ σj (j = 1, 2, . . . , n−

1) and û∗n(p
∗) ≤ δ (cf. inequalities (29b)), then it follows from Remark 1 that ûn(p

∗) ≤
û∗n(p

∗) ≤ δ. With the point p∗, the response un never exceeds the saturation level
±δ for any input f ∈ F , thereby implying that the saturation never occurs in the
original system. In this case, the peak outputs ẑ∗i (p

∗) and û∗j (p
∗) should therefore be

recalculated by neglecting ψn so that the conservatism in ẑ∗i (p
∗) and û∗j (p

∗) can be
reduced (i.e., using (30) with Mn = 0).

The result obtained in this subsection is applicable to the case in which only one
of the nonlinearities ψj is a saturation. A condition for the solvability of inequalities
(29b) for the case of more than one saturation nonlinearities can be a topic for future
investigation.
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Figure 6. Block diagram of the LFC system with the GDZ and GRC

Power system gain Kp = 120.00 Hz/pu
Power system time constant Tp = 20.00 s
High pressure turbine fraction Kr = 0.50
Reheat time constant Tr = 10.00 s
Speed governor time constant Tg = 0.08 s
Steam chest time constant Tt = 0.30 s
Self regulation of the governor R = 2.40 Hz/pu
Deadzone width a = 3.5× 10−3 pu
Saturation level of GRC δ = 1.667× 10−3 pu/s
Delay time τ = 1 s

Table 1. Parameters of the LFC system in Figure 6

6. Numerical Example

This section demonstrates the usefulness of the developed method in designing a con-
troller for an LFC system where deadzone and saturation nonlinearities are explicitly
taken into account.

In power system operation, any imbalance between power generation and load de-
mand causes the system frequency to deviate from its nominal value. When the fre-
quency deviation is too large, it can cause severe problems to the system. The objective
of the LFC is to maintain the frequency deviation in the presence of load variations
within an acceptable range for all time during operation. For details on LFC, see, e.g.,
Kundur (1994).

6.1. LFC system model

The model of the LFC system considered is shown in Figure 6 where the system
variables are as follows:

• ∆pL is the incremental load in pu,
• ∆ω is the frequency deviation in Hz,
• uc is the control signal in pu,
• ∆ṗg0 is the incremental power generation rate before the saturation in pu/s,
• ∆ṗg is the incremental power generation rate in pu/s.

Furthermore, the values of the system parameters are given in Table 1.
Let ψ1 represent the governor deadzone (GDZ) in the LFC model (see, e.g., Bevrani,

2014) where ψ1 is described by (39) and its deadzone width a is 3.5×10−3 pu. Because
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of the generation rate constraint (GRC) in the reheat steam turbine, the saturation
nonlinearity ψ2 is included in the model to represent the upper and lower limits of the
power generation rate, as well. The characteristic of ψ2 is described by (42) where,
according to Nanda and Kaul (1978), the GRC of 0.1 pu/min (corresponding to the
saturation level δ given in Table 1) is used.

In order to demonstrate that the design methodology developed in this work is also
applicable to control system described by non-rational transfer functions, the time de-
lay term e−sτ , which represents communication delays, is included in the model where
τ is assumed to be 1 s. Note in passing that after deregulation of the electric power
industry, an open communication network is needed to support an increasing variety of
ancillary services. Under this situation, many researchers (e.g., Yu & Tomsovic, 2004;
Jiang, Yao, Wu, Wen, & Cheng, 2011) have considered time delays in the LFC model.

6.2. Problem formulation

Assume that the power system is subjected to persistent load disturbances (Arun-
sawatwong & Kalvibool, 2016) where the incremental load ∆pL is considered as any
persistent disturbance satisfying

∥∆pL∥∞ ≤ 0.05 pu and ∥∆ṗL∥∞ ≤ 1.57× 10−3 pu/s.

For this reason, the possible set F to be used in this example is characterized by

F = P1 ∩ Ṗ1 = {f : ∥f∥∞ ≤M∞, ∥ḟ∥∞ ≤ D∞}

where M∞ = 0.05 pu and D∞ = 1.57× 10−3 pu/s.
The main design objective is to determine the controller transfer function Gc(s,p)

for which the following specifications are satisfied.

1) The system is required to be stable so that the system responses are bounded.
2) According to ENTSO-E (2013), the frequency deviation ∆ω is required to stay

strictly within the range ±200 mHz for all time and for all ∆pL ∈ F .

One can see from Figure 6 that the variables uc and ∆ṗg0 are the nonlinearity
inputs and the variable ∆pL is the disturbance. Furthermore, the variable ∆ω is the
system output under consideration. Then the system can be represented as the system
in Figure 1 where

z = [z] ≜ ∆ω, u = [u1, u2]
T ≜ [uc,∆ṗg0]

T , v2 ≜ ∆ṗg, f ≜ ∆pL.

Accordingly, the principal design criteria are expressed as

ẑ(p) ≤ 200 mHz, û1(p) ≤ σ1 pu, û2(p) ≤ σ2 pu/s (52)

where ẑ(p), û1(p) and û2(p) are the peak outputs for the possible set F . For the
purpose of demonstration, the bounds σ1 and σ2 are chosen to be

σ1 = 0.1 pu and σ2 = 5× 10−2 pu/s. (53)

It should be noted that a controller satisfying the criteria (52) with simple structure
is usually preferred. In this example, by starting searching a design solution from the
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simplest controller structure (i.e., Gc(s,p) = p1 where p ≜ p1 ∈ R) and progressively
increasing the order of Gc(s,p), the following PID structure is chosen.

Gc(s,p) = p1

(
1 +

1

p2s
+

p3s

1 + p4s

)
(54)

where p ≜ [p1, p2, p3, p4]
T ∈ R4 is to be determined. It is worth noting that for a more

complex controller structure, a PID controller with anti-windup procedure could be
designed as well (if this is allowed) by using the developed methodology.

In the following, the peak outputs of the control system are computed with Algo-
rithm 1, in which the impulse responses of the system are required. For the system
with time-delay, the impulse responses are obtained by using Zakian IMN recursions
for delay differential systems, which are efficient and reliable even if the system is very
stiff. See Arunsawatwong (1998) for the details of the recursions and their properties.

6.3. Design by neglecting nonlinearities

In this subsection, we demonstrate what can go wrong when the nonlinearities ψ1 and
ψ2 are neglected in the design formulation. To this end, the nonlinearities ψ1 and ψ2

are replaced with a constant gain C = 1 and, consequently, the approximated linear
system is obtained.

The characteristic function of the approximated system is given by

W (s) = P0(s) + P1(s)e
−τs where P0(s) = p2s(1 + p4s)P2(s),

P1(s) = p1
{
p2(p3 + p4)s

2 + (p2 + p4)s+ 1
}
Kp(1 + sKrTr),

P2(s) = (1 + sTt)(1 + sTp)(1 + sTr)(1 + sTg) +Kp(1 + sKrTr)/R.

(55)

In this case, the system is BIBO stable and hence the peak outputs ẑ(p), û1(p) and
û2(p) are finite if

α(p) ≤ −10−6 where α(p) ≜ max{Re s :W (s) = 0}. (56)

Accordingly, the design problem is to determine a design parameter vector p ∈ R4

that satisfies inequality (56) and the following design inequalities:

ẑ(p) ≤ 200 mHz, û1(p) ≤ 0.1 pu, û2(p) ≤ 5× 10−2 pu/s. (57)

After a number of iterations, the MBP algorithm locates a solution p satisfying
inequalities (56) and (57), which yields the following controller.

Gc(s,p) = 2.137× 10−3

(
1 +

1

0.1514s
+

11.36s

1 + 65.20s

)
. (58)

And the corresponding values of α(p) and the peak outputs of the approximated linear
system are given by

α(p) = −1.526× 10−3,

ẑ(p) = 102.0 mHz, û1(p) = 5.825× 10−2 pu, û2(p) = 1.890× 10−3 pu/s.

23



Figure 7. Waveforms of the test input f̃ ∈ F and its derivative

To verify the design result, a simulation of the approximated LFC system is carried
out for the test input f̃ ∈ F . The waveforms of f̃ and its derivative are shown in
Figure 7. And the waveforms of the resultant system responses are shown in Figure
8 where the peak magnitudes of z, u1 and u2 are 100.2 mHz, 5.789 × 10−2 pu and
1.840× 10−3 pu/s, respectively.

Figure 8. Responses of the approximated LFC system due to the test input f̃ with the controller (58)

To investigate the actual performance for the original LFC system using the con-
troller (58), a nonlinear simulation is carried out with the test input f̃ . The waveforms
of the nonlinear system responses are displayed in Figure 9 and, in this case, the peak
magnitude of z is about 150 times of the bound 200 mHz. The numerical results clearly
show that with the controller (58), the performance of the nonlinear LFC system is
very poor and therefore unacceptable.

24



Figure 9. Responses of the nonlinear LFC system due to the test input f̃ with the controller (58)

Figure 10. Nominal system of the LFC system in Figure 6

6.4. Design using the original nonlinear model

In this subsection, the nonlinearities ψ1 and ψ2 are explicitly taken into account. By
replacing ψj(uj) (j = 1, 2) in the original LFC system with Kjuj + dj , we obtain

the nominal system that is displayed in Figure 10. It is easy to verify that Huj
dk (s,p)

(j, k = 1, 2) are strictly proper. Consequently, for any proper Gc(s,p), Assumption 4
is always satisfied whenever the nominal system is BIBO stable.

In this example, the fixed gains K1 and K2 are chosen to be K1 = K2 = 1. Thus,
from (26) and (53), it follows that the bounds M1 and M2 are given by

M1 = min(σ1, a) = 3.5× 10−3 and M2 = max(0, σ2 − δ) = 4.8323× 10−2. (59)

Moreover, the characteristic function of the nominal system is identical toW (s), which
is given in (55).

By applying Theorem 3.1, a solution p satisfying the criteria (52) is obtained by
solving the following inequalities.

ẑ∗(p) ≤ 200 mHz, û∗1(p) ≤ 0.1 pu, û∗2(p) ≤ 5× 10−2 pu/s. (60)
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By Proposition 4.2 and Theorem 5.4, it follows that a vector p satisfying inequalities
(60) needs to satisfy the following two constraints.

α(p) ≤ −10−6, (61)

H(p) ≤ −10−6. (62)

Inequality (61) ensures the BIBO stability of the nominal system and the finiteness of
ẑ∗(p), û∗1(p) and û

∗
2(p). Furthermore, together with (61), inequality (62) ensures that

the inequality û∗2(p) ≤ σ2 is solvable.
By using the MBP algorithm in conjunction with Algorithm 3, we obtain a solution

p of inequalities (60)–(62), which results in

Gc(s,p) = 5.333× 10−3

(
1 +

1

3.496× 103s
+

2.782s

1 + 3.741× 10−3s

)
. (63)

And the corresponding values of α(p), H(p) and the peak outputs of the nominal
system are given by

α(p) = −6.104× 10−5, H(p) = −0.2560,

ẑ∗(p) = 195.5 mHz, û∗1(p) = 8.150× 10−2 pu, û∗2(p) = 5.000× 10−2 pu/s.

Hence, by Theorem 3.1, the criteria (52) are satisfied.
For design verification, a simulation is carried out for the nonlinear LFC system

with the controller (63) and the test input f̃ . The waveforms of the resultant system
responses are displayed in Figure 11 where the peak magnitudes of z, u1 and u2
are 142.0 mHz, 5.997 × 10−2 pu and 3.983 × 10−2 pu/s, respectively. Evidently, the
controller (63) provides satisfactory performance for the nonlinear LFC system.

From this example, it can be seen that by neglecting nonlinearities, the so-obtained
design formulation may be inaccurate and could lead to a design solution that may
not be acceptable. On the other hand, the design methodology developed in this work
offers a more accurate design formulation for this kind of problem and, whenever a
design solution is found, always yields satisfactory results. Therefore, the value of the
developed methodology is evident.

7. Conclusions and Discussion

This article has developed a practical and systematic methodology for designing the
nonlinear system (8) so as to ensure that the outputs of interest zi (i = 1, 2, . . . ,m)
and the nonlinearity inputs uj (j = 1, 2, . . . , n) stay within the prescribed bounds ±εi
and ±σj , respectively, for all time and for all inputs f ∈ F where F is one of the
possible sets described by (3). The methodology developed in this work can be seen
as an adjunct to Zakian’s framework, which is a control design framework comprising
the method of inequalities and the principle of matching (Zakian, 1979b, 1986, 1987b,
1996, 2005).

Being obtained by using Schauder’s fixed point theorem, Theorem 2.6 provides an
essential basis for developing the practical design inequalities (29), which are associated
with the nominal linear system subject to the input f ∈ F and the additional input
vector d ∈ D. As a consequence, a solution of the original design problem can be
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Figure 11. Responses of the nonlinear LFC system due to the test input f̃ with the controller (63)

obtained by solving the surrogate problem with the computational tools developed
previously for LTI systems. In addition, because the nonlinear system (8) uses the
convolution representation, the methodology developed here is applicable to control
systems having rational and/or infinite-dimensional systems as long as Assumption 4
is satisfied.

In the numerical example, we design a controller for the LFC system with time-delay,
where deadzone and saturation nonlinearities are considered in the design formulation.
With regard to the criteria (52), Section 6.3 shows what can go wrong when such
nonlinearities are neglected in the formulation whereas Section 6.4 shows that the
developed methodology can be used to obtain the PID controller (63), which provides
satisfactory performance for the nonlinear LFC system. Hence, the example clearly
demonstrates the usefulness of the contribuition of this work.

For clarity, we assume that the nonlinear system (8) is subjected to only one exoge-
nous input. However, it should be noted that the results obtained here can be extended
in a straightforward manner to the case of multiple exogenous inputs.

It may be noted that the linear differential inclusion (LDI) approach (see, e.g., Boyd,
El Ghaoui, Feron, & Balakrishnan, 1994) can also be used to handle control systems
whose inputs and outputs are constrained. However, there are differences between the
problem formulation in this work and the LDI approach. First, the LTI system (8a)
can be any LTI system whose input and output are related by convolution integral
(see equations (8a)), whereas the LDI approach considers finite-dimensional systems,
which are special cases of convolution systems. More importantly, the performance
measures used in this work are the infinity norms of individual outputs, while the
LDI approach uses a weighted sum of the two norms of outputs. Furthermore, in this
work, system inputs are restricted in both magnitude and slope (see the description
in (3)), whereas the LDI approach considers system inputs that are restricted in only
magnitude.
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Appendix A. Proof of Lemma 2.4 and Proposition 2.5

Theorem A.1. [McShane (1944), p. 227 and Desoer and Vidyasagar (1975), p. 223].
If h ∈ L1, then

lim
∆t→0

∫ ∞

−∞
|h(τ +∆t)− h(τ)|dτ = 0.

Definition A.2. [McShane (1944)]. Let (E, ρ) be a metric space. Let G denote a set of
functions that are defined and finite-valued on E. The set G is said to be equicontinuous
if, for every ϵ > 0, there is a δ(ϵ) > 0 such that for all f ∈ G, |f(x1) − f(x2)| < ϵ
whenever x1, x2 ∈ E and ρ(x1, x2) < δ. The set G is said to be uniformly bounded if
there is an M <∞ such that |f(x)| ≤M, ∀x ∈ E, ∀ f ∈ G.

Theorem A.3. [Ascoli’s Theorem (McShane, 1944)]. Let G denote a set of functions
that are defined on a bounded and closed set. If G is equicontinuous and uniformly
bounded, then it is possible to select a uniformly convergent subsequence from every
sequence {fn} of functions of G.

Proposition A.4. [Zeidler (1986)]. In a Banach space, a subset K is relatively com-
pact if and only if every sequence in K contains a subsequence.

Definition A.5. [Zeidler (1986)]. LetX and Y be Banach spaces andH : D ⊂ X → Y
be an operator. Then H is called compact if and only if (i) H is continuous; and (ii)
H maps bounded sets into relatively compact sets.

Proof of Lemma 2.4. Since hjk ∈ L1 for all j, k, there exists C0 such that ∥hjk∥1 ≤
C0 <∞ for all j, k. Then one can verify from (7) and (16) that

∥Hx−Hy∥ ≤
n∑
j=1

n∑
k=1

∥hjk∥1∥xk − yk∥∞ ≤ nC0∥x− y∥.
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Thus, we conclude that H is continuous.
Let {x(l)} be any sequence in XT and let y(l) be defined as

y(l)(t) =
(
Hx(l)

)
(t), ∀ t ∈ [0, T ].

Then we can write

y
(l)
j (t) =

(
Hjx

(l)
)
(t), j = 1, 2, . . . , n. (A1)

Since XT ⊂ L∞
n,T , ∥rj∥ ≤Mr for all j and h

j
k ∈ L1 for all j, k, it follows from (16) that

{y(l)j } (j = 1, 2, . . . , n) are uniformly bounded on [0, T ] for any fixed T > 0.

Next we show that {y(l)j } (j = 1, 2, . . . , n) are equicontinuous. Since XT ⊂ L∞
n,T ,

there exists C <∞ such that ∥x(l)j ∥∞ ≤ C for all j. Consequently, one can verify from

(16) and (A1) that

|y(l)j (t1)− y
(l)
j (t2)| ≤ C

n∑
k=1

∫ T

0
|hjk(t1 − τ)− hjk(t2 − τ)|dτ + |rj(t1)− rj(t2)|. (A2)

Define ∆t ≜ t1 − t2. Since h
j
k ∈ L1 for all j, k, it follows from Theorem A.1 that

lim
∆t→0

∫ T

0
|hjk(t1 − τ)− hjk(t1 −∆t− τ)|dτ = 0, ∀ j, k. (A3)

Then statement (A3) implies that, for any ϵ > 0, there exists δ1 > 0 such that∫ T

0
|hjk(t1 − τ)− hjk(t1 −∆t− τ)|dτ ≤ ϵ

2nC
, ∀ j, k whenever ∆t ≤ δ1.

Therefore, if ∆t ≤ δ1, then for all j,

C

n∑
k=1

∫ T

0
|hjk(t1 − τ)− hjk(t2 − τ)|dτ ≤ nC · ϵ

2nC
=
ϵ

2
. (A4)

Furthermore, since rj is continuous on [0, T ], it is also uniformly continuous on [0, T ].
Consequently, there exists δ2 > 0 such that

|rj(t1)− rj(t2)| ≤
ϵ

2
, ∀ j whenever ∆t ≤ δ2. (A5)

From (A2)–(A5), it follows that, for any t1, t2 ∈ [0, T ] and for any l > 0, there exists
δ = min{δ1, δ2} such that

|y(l)j (t1)− y
(l)
j (t2)| ≤ ϵ, ∀ j whenever ∆t ≤ δ.

Consequently, we conclude by Definition A.2 that {y(l)j } (j = 1, 2, . . . , n) are equicon-

tinuous. Hence, in view of Theorem A.3, each {y(l)j } contains a convergent subsequence.
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Since Hj(x
(l)) = y

(l)
j , it readily follows from Proposition A.4 that the sets Hj(XT )

(j = 1, 2, . . . , n) are relatively compact. Thus, by virtue of Tychonoff’s theorem (see,
e.g., Zeidler, 1986, p.756), the set H(XT ) = H1(XT ) × H2(XT ) × · · · × Hn(XT ) is
relatively compact and so we conclude that the operator H maps bounded sets into
relatively compact sets. Because of this and the continuity of H, the compactness of
H readily follows from Definition A.5. □

Proof of Proposition 2.5. We prove the proposition by using Definition A.5. Since
Q(D1) ⊂ D2, the operator H is continuous over Q(D1). Consequently, because a
composite of continuous functions is continuous, we conclude that the operator HQ is
continuous over D1. Since Q is continuous, the boundedness of Q(D1) readily follows
from the boundedness of D1. Hence, by Definition A.5, the compactness of H implies
that the set HQ(D1) is relatively compact. This means that HQ maps bounded sets
into relatively compact sets. Because of this and the continuity of HQ, we conclude
by Definition A.5 that HQ is compact over D1. □
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