
Towards a “Periodic

Table” of Bugs

Irena Bojanova, Paul E. Black, Yaacov Yesha, Yan Wu

NIST, BGSUApril 9, 2015

Agenda

I. Our Vision (Why Use the Term "periodic table“)

II. Taxonomy and (Formal) Meanings

III. Examples on Applying Our Approach (Techniques)

IV. Next Steps

V. Conclusion

I. Our Vision (Why Use the Term "periodic table“)

Our vision is a “natural” organization of a catalog or dictionary or taxonomy to

describe software weaknesses and vulnerabilities. Such an organization will help

the community to:

a) more closely explain the nature of vulnerabilities (e.g. Heartbleed, Shellshock,

Ghost, Chrome WebCore, etc.) and eventually detect, mitigate, or prevent them

b) more closely describe the classes of weaknesses that tools warnings cover (e.g.

buffer overflow, injection, etc.)

c) eliminate the need for an exhaustive Cartesian product of weakness classes as in

CWEs [1].

It may also help:

d) predict new classes of weaknesses and vulnerabilities

e) improve existing classifications.

Definition: Vulnerability

According to NIST Special Publication 800-27 A:

A vulnerability is “a weakness in system security

requirements, design, implementation, or operation that

could be accidentally triggered or intentionally exploited

and result in a security failure” [2].

We use the term “periodic table” by analogy.

However obvious it seems today, it required extensive thought and investigation:

➢ Greeks used element and atom to name differences
between materials and smallest parts of matter.

➢ In 330 BC, Aristotle proposed that everything
is a mixture of “root elements”: Earth, Fire, Air, Water.

➢ In the Middle Ages, alchemists made lists of materials,
such as alcohol, sulfur, mercury, and salt.

• Lavoisier created a list of 33 elements – e.g. oxygen, nitrogen, hydrogen, phosphorus,
mercury, zinc, sulfur, light, and caloric, and distinguished metals from non-metals.

• Dalton realized “atoms of same element are identical in all respects, particularly weight."

Towards Mendeleev’s Periodic Table

Source: Reich Chemistry, http://reich-

chemistry.wikispaces.com/Ancient%20Time%20LG

http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

Figure 1. Historic development documents of modern periodic table
(clockwise from top left) - Lavoisier's 'Table of Simple substances'; de Chancourtois'

'Vis Tellurique'; Mendeleev's hand-written periodic table; a modern periodic table;

John Dalton's list of atomic weights & symbols (Source: The History of the Periodic

Table, http://allperiodictables.com/ClientPages/AAEpages/aaeHistory.html).

Several tables of elements were developed in the
1800s (Fig. 1).

• De Chancourtois first noticed periodicity of
elements. When ordered by their atomic weights,
similar elements occur at regular intervals.

• Mendeleev’s Periodic Table in 1869 and his
forecast of properties of missing elements
reflected the century of growth in knowledge that
reflects atomic structure.

❖ Columns correspond to the number of electrons in the
outer shell and the fundamental chemical properties

❖ Rows correspond to the number of electron shells.

Mendeleev’s Periodic Table

http://allperiodictables.com/ClientPages/AAEpages/aaeHistory.html
http://en.wikipedia.org/wiki/File:Periodic_table_compilation.svg

Other Organizational Structures in Science

Science has developed many different

organizational structures:

➢ Linnaeus’ Taxonomy –
Categorizes living things into a hierarchy of:
Domain (added recently), Kingdom, Phylum, Class,

Order, Family, Genus, Species.

Figure 2. Applying Linnaean system to classify our own species, Homo sapiens.
(Source: c-K12, http://www.ck12.org/book/CK-12-Life-Science-For-Middle-School/section/2.3/)

http://www.ck12.org/book/CK-12-Life-Science-For-Middle-School/section/2.3/

Other Organizational Structures in Science (Cont.)

➢ Tree of Life –

Division of life into three domains:

Bacteria, Archaea, and Eukaryotes.

Other Organizational Structures in Science (Cont.)

➢ Dewey Decimal Classification system –
Allows new books and whole new subjects

to be placed in reasonable locations in a library,

for easy retrieval based on subject (Fig. 3).

➢ Fingerprints are classified and retrieved using:

loops, whorls, and arches as basic patterns.

Figure 3. Categories of Dewey Decimal Classification System.
(Source: AIS, http://www.ais.up.ac.za/vet/infomania/infomania14/dewey14.htm)

Source: Wikipedia,
https://en.wikipedia.org/?title=Fingerprint

http://www.ck12.org/book/CK-12-Life-Science-For-Middle-School/section/2.3/
https://en.wikipedia.org/?title=Fingerprint

Other Organizational Structures in Science (Cont.)

➢ Geographic Coordinate System –
Specifies any location on Earth using: Latitude, Longitude, and Elevation.(Fig.4).

Figure 4. Longitude lines are perpendicular and latitude lines are parallel to the equator.
(Sources: Wikipedia, http://en.wikipedia.org/wiki/Geographic_coordinate_system ; http://en.wikipedia.org/wiki/Elevation)

http://en.wikipedia.org/wiki/Geographic_coordinate_system
http://en.wikipedia.org/wiki/Elevation

Other Organizational Structures in Science (Cont.)

➢ Medical professionals have extension vocabulary to name all muscles, bones, and
organs, and conditions and diseases, so they can communicate clearly.

For instance, the image caption uses some obscure/precise medical terminology.
• They are not trying to obfuscate.
• They are "painting a picture" (adding arrows and circles) with words.

(Source: http://i.stack.imgur.com/uLH9P.jpg)

http://i.stack.imgur.com/uLH9P.jpg

Other Organizational Structures in Science (Cont.)

➢ Chemists have a detailed system beyond the periodic table to describe chemicals.

For instance, Zofran ODT is:

C18H19N3O

or

(±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-

1H-imidazol-1-yl)methyl]-4H-carbazol-4-one.

Analogously, we seek to:
Factor software weaknesses into their constituent components.

Problem: Existing Classifications Must Be Improved

 Common Weakness Enumerations

(CWE) [1] are:

➢ not orthogonal

➢ coarse-grained.

 Software Fault Patterns (SFP) [3] don’t

include:

➢ attacks, upstream influences, or

consequences

 Semantic Templates (ST) [4] are:

➢ only general interactions.

WEAKNESS

ACCESS AND

OUT-OF-BOUNDS

READ #125, #126,

#127, #786

ACCESS AND OUT-

OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY

BUFFER

#119

IMPROPER-ACCESS-OF-

INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-

AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-

BUFFER-SIZE-

CALCULATION

#131

INTEGER

OVERFLOW

#190 #680
OFF-BY-

ONE

#193

INCORRECT-

CALCULATION

#682

IMPROPER-

INPUT-

VALIDATION

#20

INTEGER

UNDERFLOW

#191 RETURN OF POINTER

VALUE OUTSIDE OF

EXPECTED RANGE

#466

IMPROPER

VALIDATION OF

ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT

CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')

#120

WRITE-WHAT-WHERE

CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED

#121

ARRAY

#129
HEAP-BASED

#122

MEMORY-

BUFFER

#119

BUFFER

#119

INDEXABLE-

RESOURCE

#118PART-OF

INDEX

(POINTER #466

INTEGER #129)

PART-OF

IMPROPER

HANDELING OF

EXTRA VALUES

#231

USE OF DANDEROUS

FUNCTIONS

#242
API ABUSE

#227
IMPROPER NULL

TERMINATION

#170

IMPROPER USE OF

FREED MEMORY

#415 #416

MISSING

INITIALIZATION

#456SIGN

ERRORS

#194 #195

#196

STRING

MANAGEMENT

API ABUSE

785 #134 #251

UNCONTROLLED

MEMORY

ALLOCATION

#789

INFORMATION

LOSS OR

OMMISSION

#199 #221

POINTER

ERRORS

#467 #468

INTEGER

COERCION

ERROR

#192

IMPROPER HANDLING OF

LENGTH PARAMETER

INCONSISTENCY

130

IS-A

Figure 5. Buffer Overflow ST. (Source: Yan Wu’s dissertation.)

Solution: A Formal Orthogonal “Periodic Table” of Bugs

A “natural” organization of a catalog or dictionary or taxonomy to describe

software weaknesses and vulnerabilities. It will help the community to:

a) more closely explain the nature of vulnerabilities (e.g. Heartbleed, Shellshock,

Ghost, Chrome WebCore, etc.) and eventually detect, mitigate, or prevent them

b) more closely describe the classes of weaknesses that tools warnings cover (e.g.

buffer overflow, injection, etc.)

c) eliminate the need for an exhaustive Cartesian product of weakness classes as in

CWEs [1].

It may also help:

d) predict new classes of weaknesses and vulnerabilities

e) improve existing classifications.

II. Taxonomy and (Formal) Meanings

We refined and extended the structures based on:

• Common Weaknesses Enumeration (CWEs) &

the notions of chains and composites

• Software Fault Patterns (SFPs)

• Semantic Templates.

Focus First On: Buffer Overflow

 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

The software performs operations on a memory buffer, but it can read from or write

to a memory location that is outside of the intended boundary of the buffer.

→ “Read from or write to a memory location” is not tied to the buffer. Our definition clarifies

that access is through the same buffer to which the intended boundary pertains. Our definition

also accurately, precisely, and concisely describes violation of memory safety.

 Our Definition: The software can access through a buffer a memory location that is not

allocated to that buffer.

Buffer Overflow: Attributes

• Segment (memory area):

➢ Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text) [5,6,3].

• Access:

➢ Read, Write. [5,3].

• Side:

➢ Below (before or under), Above (after or over) [5].

• Method:

➢ Indexed, (bare) Pointer [5,3].

• Magnitude (how far outside):

➢ Minimal (just barely outside), Moderate, Far (e.g. 4000) [5].

• Data Size (base may be inside, but large chunk of data extends outside).

Note: Any of these attributes may be “Unknown”, “Any”, or “Don’t Care”.

Buffer Overflow: Causes

➢ There are only 3 proximate causes of buffer overflows:
• Destination is too small
• Data is too big
• Wrong index / pointer out of range.

➢ Some of the preceding causes that may lead to those.

Buffer Overflow
Attributes:

• Access:
✓Read, Write.

• Side:
✓Below (before or under), Above (after or over)

• Segment (memory area):
✓Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text)

• Method:
✓Indexed, (bare) Pointer.

• Magnitude (how far outside):
✓Minimal (just barely), Moderate, Far (e.g. 4000).

• Data Size (base may be inside, but large chunk of data extends

outside).

No NULL

Termination

Causes

Destination

Too Small

Wrong Index /

Pointer Out of Range

Data

Too Big

Incorrect

Conversion

Incorrect

Calculation
Off By

One

User Input Not

Checked Properly

Integer

Underflow

Integer Overflow

Wrap-around

Integer

Coercion

Incorrect

Argument

Missing

Factor

means “is-a”
means “can precede”.

Buffer Overflow: Consequences

Buffer Overflow
Attributes:

• Access:
✓Read, Write.

• Side:
✓Below (before or under), Above (after or over)

• Segment (memory area):
✓Heap, Stack, BSS (uninitialized data), Data (initialized), Code (text)

• Method:
✓Indexed, (bare) Pointer.

• Magnitude (how far outside):
✓Minimal (just barely), Moderate, Far (e.g. 4000).

• Data Size (base may be inside, but large chunk of data extends outside).

Consequences

Resource Exhaustion

(Memory/CPU)

Information

Exposure

Information

Loss

Arbitrary Code

Execution

System Crash

Program

Crash
Denial Of

Service

Buffer Overflow: Attributes, Causes & Consequences

Buffer Overflow
Attributes:

• Access:

✓Read, Write.

• Side:

✓Below (before or under), Above (after or over)

• Segment (memory area):

✓Heap, Stack, BSS (uninitialized data), Data (initialized),

Code (text)

• Method:

✓Indexed, (bare) Pointer.

• Magnitude (how far outside):

✓Minimal (just barely), Moderate, Far (e.g. 4000).

• Data Size (base may be inside, but large chunk of data

extends outside).

No NULL

Termination

Causes Consequences

Destination

Too Small

Wrong Index /

Pointer Out of Range

Data

Too Big Resource Exhaustion

(Memory/CPU)

Information

Exposure

Incorrect

Conversion

Incorrect

Calculation

Off By

One

Information

Loss

Arbitrary Code

Execution

System

Crash

Program

Crash

Denial Of

Service

User Input Not

Checked Properly

Integer

Underflow

Integer Overflow

Wrap-around

Integer

Coercion

Incorrect

Argument

Missing

Factor

Note: In the graph of causes:
means “is-a”
means “can precede”.

The graph of causes shows:
➢ There are only 3 proximate causes of buffer overflows:

• Destination is too small
• Data is too big
• Wrong index / pointer out of range.

➢ Some of the preceding causes that may lead to those.

III. Examples on Applying Our Techniques

➢ CVE (Common Vulnerabilities and Exposures,) is a dictionary of security

vulnerabilities.
→We will demonstrate the use of our techniques for describing some CVEs.

➢CppCheck is a static analysis tool [7]
→We will demonstrate the use of our techniques for analysis of cppCheck warning

classes.

➢We will also demonstrate characterization of buffer overflow CWEs.

Example 1: Ghost (CVE-2015-0235)

CVE-2015-0235 is “Heap-based buffer overflow in the __nss_hostname_digits_dots

function in glibc 2.2, and other 2.x versions before 2.18, allows context-dependent

attackers to execute arbitrary code via vectors related to the (1) gethostbyname or

(2) gethostbyname2 function, aka "GHOST."” [8,9].

Applying our techniques, we obtain:

Ghost — glibc gethostbyname buffer overflow is

• caused by a Destination Too Small

• because of an Incorrect Calculation specifically Missing Factor

• where there was a Write that was After the end by a Moderate number of bytes

• of a buffer in the Heap

• which may be exploited for Arbitrary Code Execution.

Example 2: Chrome WebCore (CVE-2010-1773)

CVE-2010-1773 is “Off-by-one error in the toAlphabetic function in

rendering/RenderListMarker.cpp in WebCore in WebKit before r59950, as used in Google

Chrome before 5.0.375.70, allows remote attackers to obtain sensitive information, cause a

denial of service (memory corruption and application crash), or possibly execute arbitrary

code via vectors related to list markers for HTML lists, aka rdar problem 8009118.” [10]

Applying our techniques we obtain:

Chrome WebCore — toAlphabetic render buffer overflow is

• caused by a Wrong Index

• because of an Incorrect Calculation specifically Off by One

• where there was a Read that was Below the start by a Minimal amount

• of a buffer in the Heap

• which leads to use of User Input Not Checked Properly

• which may be exploited for Information Exposure, Arbitrary Code Execution, or Program

Crash leading to Denial of Service.

Example 3: Heartbleed (CVE-2014-0160)

 CVE-2014-0160 is: “The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1

before 1.0.1g do not properly handle Heartbeat Extension packets, which allows

remote attackers to obtain sensitive information from process memory via crafted

packets that trigger a buffer over-read, as demonstrated by reading private keys,

related to d1_both.c and t1_lib.c, aka the Heartbleed bug.”[11].

 Applying our techniques, we obtain:

 Heartbleed buffer overflow is:

• caused by Data Too Big

• because of User Input not Checked Properly

• where there was a Read that was After the End that was Far Outside

• of a buffer in the Heap

• which may be exploited for Information Exposure

Example 3: Heartbleed (CVE-2014-0160) (cont.)

 Information Exposure is also enabled by CWE-244: Improper Clearing of Heap

Memory Before Release [14], and CWE-908: Use of Uninitialized Resource [15].

Example 4: cppCheck Warning Classes

Warning\Attribute Access Side Indexed Size Magnitude

array Index Out Of Bounds - - Yes - -

buffer Access Out Of Bounds - - - - -

out Of Bounds - - - - -

negative Index - Below Yes - -

insecure Cmd Line Args - - - - -

write Outside Buffer Size Write - - - -

invalid Scanf Write Above - Variable Moderately outside

CppCheck is a static analysis tool [7]. Table 1 provides descriptions of its warning classes.

Table 1. Analysis of cppCheck warning classes.

Example 5: Refactoring CWEs

Applying our definition and attributes, Buffer Overflow CWEs can be categorized as follows.

Buffer Overflow CWEs:
CWE 120: Write beyond buffer end.

CWE 121: Write outside buffer that is on stack.

CWE 122: Write outside buffer that is on heap.

CWE 123: Write outside buffer.

CWE 124: Write before start of buffer.

CWE 125: Read outside buffer.

CWE 126: Read after end of buffer.

CWE 127: Read before start of buffer.

CWE 786: Access before start of buffer.

CWE 787: Write outside buffer.

CWE 788: Access after end of buffer.

before after either end stack heap
read 127 126 125
write 124 120 123, 787 121 122

either r/w 786 788

Where:

• access = either read/write

• outside = either before/below start or after/above

Table 2. Buffer Overflow CWEs Attributes.

IV. Next Steps

➢ Provide more examples of applying our techniques

➢ Define more “vocabulary” – add terms, more formal, refine

➢ Focus on other CWEs – for example:

• Improper Restriction of Excessive Authentication Attempts (CWE-307)

• OS Command Injection (CWE-78 Improper Neutralization of Special Elements used

in an OS Command).

Focus On: Injection

 CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection'):

The software constructs all or part of an OS command using externally-influenced input

from an upstream component, but it does not neutralize or incorrectly neutralizes

special elements that could modify the intended OS command when it is sent to a

downstream component.

→ “Using input”, “intended command”, and “correctly neutralizing” are imprecise. Our definition

precisely defines “using input” and “intended command”. We do not include “correctly

neutralizing”, because it simply means that intended OS command cannot be modified.

 Our Definition: For a common trusted input and two untrusted inputs, the sub-sequences

of code symbols in the output program differ in a way that is not included in a

description of a given syntax of allowed different sequences.

Focus On: Authentication

 CWE-307: Improper Restriction of Excessive Authentication Attempts:

The software does not implement sufficient measures to prevent multiple failed

authentication attempts within in a short time frame, making it more susceptible to

brute force attacks.

 → “Multiple” and “short” are vague. Our definition recognizes that CWE-307 actually

represents a set of weaknesses, each of which satisfies particular institution-specific definitions

of “multiple” and “short”.

 Our Definition: The software does not limit the number of failed authentication

attempts or may allow more than a specified number of failed authentication attempts

within a specified time period.

V. Conclusion

➢ This presentation outlined the progress we have made towards better

understanding of software weaknesses and their:

• definitions

• causes

• consequences.

➢

We hope that such progress will result in being able to:

• write more secure software

• improve tools that find weaknesses in code.

References

[1] The MITRE Corporation, CWE Common Weakness Enumeration, https://cwe.mitre.org/, viewed

2 April 2015.

[2] Stoneburner, G. et al., “Engineering Principles for Information Systems Security (A Baseline for

Achieving Security)”, Revision A, NIST Special Publication 800-27 Rev A, June 2004.

[3] Nikolai Mansourov, DoD Software Fault Patterns, https://buildsecurityin.us-

cert.gov/sites/default/files/Mansourov-SoftwareFaultPatterns.pdf viewed on June 3, 2015, listed in

CWE, Common Weakness Enumeration, Sources, https://cwe.mitre.org/about/sources.html viewed

on June 3, 2015.

[4] Yan Wu, Robin A Gandhi, and Harvey Siy, “Using semantic templates to study vulnerabilities

recorded in large software repositories”, Proc. 2010 ICSE Workshop on Software Engineering for

Secure Systems, pp 22-28.

[5] Kendra Kratkiewicz and Richard Lippmann, Using a Diagnostic Corpus of C Programs to

Evaluate Buffer Overflow Detection by Static Analysis Tools. 2005 Workshop on the Evaluation of

Software Defect Detection Tools 2005,June 12, Chicago, IL. https://www.cs.umd.edu/

~pugh/BugWorkshop05/papers/62-kratkiewicz.pdf viewed on April 23, 2015

https://buildsecurityin.us-cert.gov/sites/default/files/Mansourov-SoftwareFaultPatterns.pdf%20viewed%20on%20June%203
https://buildsecurityin.us-cert.gov/sites/default/files/Mansourov-SoftwareFaultPatterns.pdf%20viewed%20on%20June%203
https://cwe.mitre.org/about/sources.html
https://www.cs.umd.edu/~pugh/BugWorkshop05/papers/62-kratkiewicz.pdf
https://www.cs.umd.edu/~pugh/BugWorkshop05/papers/62-kratkiewicz.pdf

References (cont.)

[6] WIKIPEDIA, The Free Encyclopedia, Data segment

https://en.wikipedia.org/wiki/Data_segment viewed on April 27, 2015

[7] ccpcheck.xml, SAMATE, NIST.

[8] CVE-2015-0235, MITRE, CVE, Common Vulnerabilities and Exposures,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0235 accessed April 23,

2015.

[9] Qualys Security Advisory, Qualys Security Advisory CVE-2015-0235 - GHOST: glibc

gethostbyname buffer overflow, Openwall, bringing security into open environments,

http://www.openwall.com/lists/oss-security/2015/01/27/9, viewed 9 April 2015.

[10] CVE-2010-1773, MITRE, CVE, Common Vulnerabilities and Exposures,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1773 accessed April 27, 2015.

https://en.wikipedia.org/wiki/Data_segment
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0235
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1773

References (cont.)

[11] CVE-2014-0160, MITRE, Common Vulnerabilities and Exposures, https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-0160 viewed on July 16, 2015.

[12] Kupsch & Miller https://continuousassurance.org/swamp/SWAMP-Heartbleed.pdf

viewed on July 16, 2015.

[13] http://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-

protect/#.VagHQXbD-fA viewed on July 16, 2015.

[14] https://cwe.mitre.org/data/definitions/244.html viewed on July 20, 2015

[15] https://cwe.mitre.org/data/definitions/908.html viewed on July 20, 2015

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://continuousassurance.org/swamp/SWAMP-Heartbleed.pdf
http://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/#.VagHQXbD-fA
http://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/#.VagHQXbD-fA
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/908.html

	Slide 1: Towards a “Periodic Table” of Bugs
	Slide 2: Agenda
	Slide 3: I. Our Vision (Why Use the Term "periodic table“)
	Slide 4: Definition: Vulnerability
	Slide 5: Towards Mendeleev’s Periodic Table
	Slide 6: Mendeleev’s Periodic Table
	Slide 7: Other Organizational Structures in Science
	Slide 8: Other Organizational Structures in Science (Cont.)
	Slide 9: Other Organizational Structures in Science (Cont.)
	Slide 10: Other Organizational Structures in Science (Cont.)
	Slide 11: Other Organizational Structures in Science (Cont.)
	Slide 12: Other Organizational Structures in Science (Cont.)
	Slide 13: Problem: Existing Classifications Must Be Improved
	Slide 14: Solution: A Formal Orthogonal “Periodic Table” of Bugs
	Slide 15: II. Taxonomy and (Formal) Meanings
	Slide 16: Focus First On: Buffer Overflow
	Slide 17: Buffer Overflow: Attributes
	Slide 18: Buffer Overflow: Causes
	Slide 19: Buffer Overflow: Consequences
	Slide 20: Buffer Overflow: Attributes, Causes & Consequences
	Slide 21: III. Examples on Applying Our Techniques
	Slide 22: Example 1: Ghost (CVE-2015-0235)
	Slide 23: Example 2: Chrome WebCore (CVE-2010-1773)
	Slide 24: Example 3: Heartbleed (CVE-2014-0160)
	Slide 25: Example 3: Heartbleed (CVE-2014-0160) (cont.)
	Slide 26: Example 4: cppCheck Warning Classes
	Slide 27: Example 5: Refactoring CWEs
	Slide 28: IV. Next Steps
	Slide 29: Focus On: Injection
	Slide 30: Focus On: Authentication
	Slide 31: V. Conclusion
	Slide 32: References
	Slide 33: References (cont.)
	Slide 34: References (cont.)

