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Software Bugs

» “Software bug” — a concept that applies to:
« CWE - Common Weakness Enumeration
« CVE - Common Vulnerabilities and Exposures
« CAPEC — Common Attack Pattern Enumeration and Classification.

» Related, but different:
» Weakness — a static presence in software — might never cause problems;
« only when an attacker finds the weakness and exploits it
« the vulnerability of this software is exposed.

» CWE & CVE + CAPEC:

» Considerable efforts, providing foundational knowledge
« However, not sufficient, accurate, and precise enough.
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Problems with CWE, CVE, & CAPEC

» CWE:
« Not orthogonal, just an enumeration
« Ambiguous definitions
« Do not match well with classes reported by test tools.

Example: CWE-119:
Improper Restriction of Operations within the Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but it can read
from or write to a memory location that is outside of the intended
boundary of the buffer.”



Problems CWE, CVE, & CAPEC (cont.)

» CVE:

« Ambiguous definitions
« Do not fully and precisely describe involved CWE:s.

Example: CVE-160: Heartbleed.

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do
not properly handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory via crafted
packets that trigger a buffer over-read, as demonstrated by reading private
keys, related to di_both.c and t1_lib.c, aka the Heartbleed bug.”

“Technical Details: Buffer Errors (CWE-119)”

- Actual exploited is CWE-126, while only parent CWE-119 is listed.
- CWE-130 is in CWE-126, but CWE-20 also can precede CWE-126.



Problems CWE, CVE, & CAPEC (cont.)

» CAPEC:

« Do not fully show dynamics of activities leading to realization of attack
* CVE, CWE, CAPEC inks could be confusing.

Example: Heartbleed — which CAPEC and CWEs?

From attack to weakness:

« Heartbleed exploits Buffer Overread (CWE-126)
-> attack should be CAPEC 540: Overread Buffers

« CAPEC 540, “Related Weakness” is CWE-125, parent of CWE-126, lists
CVE-160 (Heartbleed).
Form weakness to attack:
 CVE-160 (Heartbleed), “Technical Details”— CWE-119.
« CWE-119, “Related Attack Patterns” — no CAPEC 540, closest CAPEC-47.
— It is a fact that CVE-160 is listed in CAPEC 540, but not in CAPEC-47.



Need For

-~ Precise descriptions of attacks (CAPECs) that
lead to realization of vulnerabilities (CVESs),
exposed by software weaknesses (CWESs).

- Research to explore formalization of
CWEs, CVEs, & CAPECs.



CAPEC 540 - CAPEC 4/

CAPEC-540: Overread Buffers

“An adversary attacks a target by providing input that causes an
application to read beyond the boundary of a defined buffer. This typically
occurs when a value influencing where to start or stop reading is set to
reflect positions outside of the valid memory location of the buffer. This
type of attack may result in exposure of sensitive information, a system
crash, or arbitrary code execution.”

CAPEC-47: Buffer Overflow via Parameter Expansion

“In this attack, the target software is given input that the attacker knows
will be modified and expanded in size during processing. This attack relies
on the target software failing to anticipate that the expanded data may
exceed some internal limit, thereby creating a buffer overflow.”



Previous Related Work

- Semantic Templates — Yan Wu’s Dissertation
* Classity
« Extract commonalities
» Reorganize information into four groups:
+ Software faults that lead to a weakness
- 2) Resources that a weakness affects
+ 3) Weakness characteristics
* 4) Consequences/failures resulting from the weakness.
« Support by vulnerabilities and feedback to annotate vulnerabilities

 Software Fault Patterns — KDM Analytics
 Classify
 Identify patterns
» Test cases generator.
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Previous Related Work

Semantic Template

Summary

Extendeg de:

a

SOFTWARE FAULTS: flaws in the software program and designt

. Software Fault Pattern

tain languages allow direct

addressing of and do not
automdtically ensure that these locations are valid
for the{memory buffer that is being referenced. Thi
R

= e (e e e o
WEAKNESS: defining chacacteristic — < r .
PRECEDE As a resuR, an attacker may be able to execute 119 - Improper Restriction
T A | alln'xa:y code, aler the intended control flow, read fof Operations within the | \ \ \‘ \ \ \
(snzneene ) (" S ) senditive informatidp, or cause the system to crash [Bounds of a Memory Buffer
N e AN
120 - Buffer Copy without ' " ;
| ~|Checking Size of Input v v v v v v
|| (Classic Buffer Overflow)
\ { | |
\ | 121 - Stack Overflow 2. S 3 X ¥
\ | ) ) i j
v | 122 - Heap Overflow L i 2 X N
CWE-120 \ Copy without (heclhnq Size of input 123 - Write-what-where N N X V y
{'Classic ) (Condition
Summ: T . || foUt Py 124 - Buffer Underwrite v N J J J
Summary o es af) input to an (Buffer Ui fiow’)
output without verifying ’hal the size of the )
———_input Is lesyghan the size of the output 125 - Out-of-bounds read 3 i M N b
|
2ading to 3 | i i "
i s , 126 - Buffer Over-read \ M N \ v
gscription: A ndition - =
ogram attempts to put more data In a 127 - Buffer Under-read b Y N g v

than it caishold, or when a program attempts

4 Note: chart is adapted
outside of the P

to put dota in a
" boundaries of a b
Common Consequences
execute arbitrary code
lead to crashes.

CAN-PRECEDE ——

—
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Tried to formally describe :
» Vulnerabilities as chains of exploited weaknesses
» Involved CWEs utilizing the corresponding SFPs.
Failed midway — realized need to specify also the dynamic aspect of the attack.



Formalization of CWE, CVE & CAPEC

» Formalization of CWEs will:
* Clarify their definitions
« Remove ambiguities among them.
=> As a result, reclassification of CWEs will be possible.
» Same reasoning applies to CVEs and CAPECs formalization.

» Important:

« Base of CVEs are CWEs.
Each CVE is a result of CAPEC(s) exploiting software CWEs.

- Each CWE is a static software property.

- Each CVE is a dynamic software property that occurs as a result
of some CAPEC (s).



Considered Notations

» Static software properties: formal software specification models,
languages, notations, and tools.
« Znotation - standardized by ISO.

» Dynamic software properties — those used for process specification:
process algebra, Petri nets, and state machines.
* CSP - Communicating Sequential Processes

« UML & OCL - Unified Modeling Language with Object Constraint
Language.

» Z notation and CSP — strongly based on the mathematical notation
without introducing strange constructions

» UML - provides good visual representation.



CWEs “Mental Models” (Step 1)

» CWE & CVE databases — represented in XML
» CWEs & CVEs text presentations — verbose and hardly navigable.

First Research Step:
« Formal graph representation of these databases
« “Mental models” of base CWEs — UML class diagrams:
* CWEs —classes
 Relationships between CWEs — associations

=» Later incorporate an OCL specification for each CWE.
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CWE-119 Mental Model
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CWEs Formal Specification (Step 2)

Second Research Step :

« CWEs formalization in Z notation
- will remove ambiguities in their definitions
- can lead to CWEs reclassification.

« Conversion of these Z notations in OCL specifications.

- UML representations — could be source to industry tools for code
verification and tests generation (RSA, MS Visio).

« However, humans will not be able to use efficiently OCL, because
of its complexity.

« Formalization in Z notation — open to theorem solvers and
eventually to analyzers (e.g Alloy Analyzer).

« Z Word can be used for specification purposes and Z/Eves for
verification.



CWE-128 in Z notation

CWE-128: Wrap-around Error: “Wrap around errors occur whenever a value
is incremented past the maximum value for its type and therefore "wraps
around" to a very small, negative, or undefined value.”

MAX_INT: 7.
MIN_INT:Z.
INT=={i: Z | MIN_INT<i A i< MAX_INT}

BAD_INT:Z

BAD_INT < MIN_INTV MAX_INT < BAD_INT

add, mul: INT x INT = INT U {BAD_INT}

Vi, j: INT « add(i, j) = if i+j > MAX_INT then BAD_INT else i+j
Vi, j: INT « mul(i, j) = if i*j > MAX_INT then BAD_INT else i*;




CWE-119 in Z notation

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:
“The software performs operations on a memory buffer, but it can read from or write to
a memory location that is outside of the intended boundary of the buffer.”

[Bytel
‘maxAddress: N

_Memory
contents: seq Byte

fcontents = maxAddress + 1

_read
EMemory
i?: N
r!: Byte

i? € dom contents
r! = contents(i?+1)




_write
AMemory
i?: N

w?: Byte

i? € dom contents
contents' = (1..1i?) < contents ~ ( w?) = ((i?+2)..#contents) < contents

_Program
Memory
m, n: N

BufferSpace: P N

m £ n £ maxAddress
BufferSpace = m..n

_badRun
AProgram

m?, n?: N

m=m? AN n = n-
di: N o i &€ BufferSpace A
((3r: Byte e readl[i/i?, r/r']) V (3w: Byte e writel[i/i?, w/w?]))




CVE/ CAPECs Formal Specification
(Step 3)

Third Research Step:

« CVEs/CAPECs specification in CSP.

« CVEs/CAPECs specification in UML activity diagrams or BPPMN diagrams
-~ will remove ambiguities in CVEs definitions

- can lead to CWEs reclassification

- CAPECs could be assembled on higher levels.

« Humans accept UML and BPMN diagrams better

* But UML and BPMN diagrams could be not too precise,
as they are open to many platforms and programming languages.

« UML activity diagrams with OCL or to BPMN diagrams can be used for
tests code generation.

- Zmnotation and CSP specifications can be used in theorem solvers for
verification of dynamic software properties.



CVE-2014-160/CAPEC-540 in CSP

channel network 2;
payload, validPayload, invalidPayload};

enum {payloadLength,
Attacker () = network!payloadLength -> network!payload -
network?payloadResponse->Attacker () ;

>
CWE 126 () = network?payloadLength -> network?payload->
(payvloadLengthIsEqualTopa loadSize—}networkIvalidPayload—>CWE_126()
loadLengthIsNotEqualTopayloadSize->network!invalidPayload ->

[] pa
CWE 126());

System() = Attacker() ||| CWE 126();



CVE-160/ CAPEC 540 SCP Simulation

etwork?validPayload

network!payloadLength

7

network!payload

network?payloadLength

etwork!validPayload

yloadSize




CVE 160/CAPEC 540 in UML & OCL

First, the two signals for a “heart beat” are
defined in a class diagram.

“esmSign:b «Signal»
iRequesiMesane | ResponseMessage
payload_length iz ettt
| | _payload

The attribute types are not defined, because nowhere in corresponding
CWEs or CVEs and CAPECs is mentioned anything about their types. They
have to be C types as follows, independently of the attacker software:

prayload length: short;
payload: string;



Malicicus Message
{context RequestMessage inv;

payload.length < (payload_length &&

payload_length <= 65536}

|" @ Create AskMessage |

||
: RequestMessage

: Requesw essage

& Request

4 Receive RequestMessage

-2' Receive ResponseMessage

: ResponseMessage

L

| & Process Sensitive information '

|
: RequestMessage

o

Copy to
ResponseMessage
payload the buffered
&3  RequestMessage
payload using
RequestMessage
payload_length

L

: ResponseMessage

«target»
: ResponseMessage
Jugle

k& Response




Final Notes

» Pending;:

» Explore how OCL specifications can be used to connect the CWE Z-
specification to the UML class diagram and the UML activity diagrams.
—> converting Z specifications into OCL.

« Demonstrate how chains of CWEs can be specified with CAPECs in UML.

- There are industry efforts on legacy code reengineering. Their target
are UML code representation for reuse and integration. UML is the
point where CWEs, CVEs and CAPECs specifications can meet.



	Default Section
	Slide 1: Formalizing Software Bugs
	Slide 2: Software Bugs
	Slide 3
	Slide 4: Problems with CWE, CVE, & CAPEC
	Slide 5: Problems CWE, CVE, & CAPEC (cont.)
	Slide 6: Problems CWE, CVE, & CAPEC (cont.)
	Slide 7: Need For
	Slide 8: CAPEC 540 – CAPEC 47
	Slide 9: Previous Related Work
	Slide 10
	Slide 11: Previous Related Work
	Slide 12: Formalization of CWE, CVE & CAPEC
	Slide 13: Considered Notations
	Slide 14: CWEs “Mental Models” (Step 1)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: CWE-119 Mental Model
	Slide 20: CWEs Formal Specification (Step 2)
	Slide 21: CWE-128 in Z notation
	Slide 22: CWE-119 in Z notation
	Slide 23
	Slide 24: CVE/ CAPECs Formal Specification (Step 3)
	Slide 25: CVE-2014-160/CAPEC-540 in CSP
	Slide 26: CVE-160/ CAPEC 540 SCP Simulation
	Slide 27: CVE 160/CAPEC 540 in UML & OCL
	Slide 28
	Slide 29: Final Notes


