Formalizing Software Bugs

Irena Bojanova
UMUC, NIST

12/08/2014

Software Bugs

» “Software bug” — a concept that applies to:
« CWE - Common Weakness Enumeration
« CVE - Common Vulnerabilities and Exposures
« CAPEC — Common Attack Pattern Enumeration and Classification.

» Related, but different:
» Weakness — a static presence in software — might never cause problems;
« only when an attacker finds the weakness and exploits it
« the vulnerability of this software is exposed.

» CWE & CVE + CAPEC:

» Considerable efforts, providing foundational knowledge
« However, not sufficient, accurate, and precise enough.

Building CWE & Consensus

Publicly Available: Security Taxonomies,
Research, and Checklists

Fortify

Brian Chess Gary McGraw

Cigital

Klockwork Ounce Labs Gramma
Tech

Secure

Software
CLASP

National
Vulnerability
Database -
(NVD)

Vulnerabilities
and Exposures

Object
Management
Group System

Assurance Task

Force

Common

(CVE)

ﬁ

Application [~ D
Security
Project Web Application
(OWASP) Security
Consortium
(WASC)
_

ﬁ

&
Preliminary —
4 a .
CVE-based }
Preliminary l Previous
List of | Vulnerability
Vulnerability g Taxonomy
Examples for B! pacearch
Researchers §|

(PLOVER)

CWE
Compatibility

WatchFire

IBM James Madison
University (JMU)

KDM Analytics Cenzic

Other Work St Bymantic Core Security Checkmarx
Available in iatieele Stanford
Security Coverity SEI - CERT CC
Taxonomies, B

———_ Kestrel
Research, and “Teehnology
Checklists ~

Parasoft

Unisys Purdue

f uc Security MIT Lincoln Labs

k Berkeley University o
North Carolina State Marytand
University (NCSU)
Oracle

GMU

SEI CERT
Secure Coding
Standards

e
SANS
National Secure
Programming

DHS

Software Skills
Assurance Assessment
Common

\ Body of

w Knowledge

DHS's 'SWA'
and
'Build Security
In' Web Sites

DHS and NIST
Software Assurance NSA Center for
Metrics and Tool Assured Software

Evaluation (SAMATE)

Test Repositories

Problems with CWE, CVE, & CAPEC

» CWE:
« Not orthogonal, just an enumeration
« Ambiguous definitions
« Do not match well with classes reported by test tools.

Example: CWE-119:
Improper Restriction of Operations within the Bounds of a Memory Buffer

“The software performs operations on a memory buffer, but it can read
from or write to a memory location that is outside of the intended
boundary of the buffer.”

Problems CWE, CVE, & CAPEC (cont.)

» CVE:

« Ambiguous definitions
« Do not fully and precisely describe involved CWE:s.

Example: CVE-160: Heartbleed.

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do
not properly handle Heartbeat Extension packets, which allows remote
attackers to obtain sensitive information from process memory via crafted
packets that trigger a buffer over-read, as demonstrated by reading private
keys, related to di_both.c and t1_lib.c, aka the Heartbleed bug.”

“Technical Details: Buffer Errors (CWE-119)”

- Actual exploited is CWE-126, while only parent CWE-119 is listed.
- CWE-130 is in CWE-126, but CWE-20 also can precede CWE-126.

Problems CWE, CVE, & CAPEC (cont.)

» CAPEC:

« Do not fully show dynamics of activities leading to realization of attack
* CVE, CWE, CAPEC inks could be confusing.

Example: Heartbleed — which CAPEC and CWEs?

From attack to weakness:

« Heartbleed exploits Buffer Overread (CWE-126)
-> attack should be CAPEC 540: Overread Buffers

« CAPEC 540, “Related Weakness” is CWE-125, parent of CWE-126, lists
CVE-160 (Heartbleed).
Form weakness to attack:
 CVE-160 (Heartbleed), “Technical Details”— CWE-119.
« CWE-119, “Related Attack Patterns” — no CAPEC 540, closest CAPEC-47.
— It is a fact that CVE-160 is listed in CAPEC 540, but not in CAPEC-47.

Need For

-~ Precise descriptions of attacks (CAPECs) that
lead to realization of vulnerabilities (CVESs),
exposed by software weaknesses (CWESs).

- Research to explore formalization of
CWEs, CVEs, & CAPECs.

CAPEC 540 - CAPEC 4/

CAPEC-540: Overread Buffers

“An adversary attacks a target by providing input that causes an
application to read beyond the boundary of a defined buffer. This typically
occurs when a value influencing where to start or stop reading is set to
reflect positions outside of the valid memory location of the buffer. This
type of attack may result in exposure of sensitive information, a system
crash, or arbitrary code execution.”

CAPEC-47: Buffer Overflow via Parameter Expansion

“In this attack, the target software is given input that the attacker knows
will be modified and expanded in size during processing. This attack relies
on the target software failing to anticipate that the expanded data may
exceed some internal limit, thereby creating a buffer overflow.”

Previous Related Work

- Semantic Templates — Yan Wu’s Dissertation
* Classity
« Extract commonalities
» Reorganize information into four groups:
+ Software faults that lead to a weakness
- 2) Resources that a weakness affects
+ 3) Weakness characteristics
* 4) Consequences/failures resulting from the weakness.
« Support by vulnerabilities and feedback to annotate vulnerabilities

 Software Fault Patterns — KDM Analytics
 Classify
 Identify patterns
» Test cases generator.

INTEGER

COERCION OVERFLOW IMPROPER STRING
ERROR #190 #680 HANDELING OF MANAGEMENT
SIGN #192 EXTRA VALUES API ABUSE

INTEGER
UNDERFLOW

ERRORS #231

#194 #195
#196

RETURN OF POINTER
VALUE OUTSIDE OF

EXPECTED RANGE
#466

INCORRECT-
BUFFER-SIZE-
CALCULATION

APIABUSE
#227
L

POINTER
ERRORS
#467 #468

MPROPER NUL
TERMINATION
#170

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

MPROPER HANDLING Ol
LENGTHPARAMETER
INCONSISTENCY
#130

VALIDATION
#20

CALCULATION
#682

#120

CAN-PRECEDE

WEAKNESS CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED HEAP-BASED
#121 #122

INDEX
(POINTER #466
INTEGER #129)

ACCESSAND
OUT-OF-BOUNDS
READ #125, #126,
#127,#786

ACCESSAND OUT-
OF-BOUNDS WRITE
#787,#788, #124

OCCURS-IN

FAILURETO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY
BUFFER
#119

INDEXABLE-
RESOURCE
#118

BUFFER
#119

CONSEQUENCES UNCONTROLLED
MEMORY
ALLOCATION
#789

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

WRITE-WHAT-WHERE

CONDITION INFORMATION
CAN-PRECEDE #123 LOSSOR

OMMISSION
#199#221

Buffer Overflow Semantic Template

MISSING
INITIALIZATION

FREED MEMORY
#415#416

BUFFER COPYWITHOUT
CHECKING SIZE OF INPUT
('CLASSIC BUFFER OVERFLOW)

FUNCTIONS

IS-A

Previous Related Work

Semantic Template

Summary

Extendeg de:

a

SOFTWARE FAULTS: flaws in the software program and designt

. Software Fault Pattern

tain languages allow direct

addressing of and do not
automdtically ensure that these locations are valid
for the{memory buffer that is being referenced. Thi
R

= e (e e e o
WEAKNESS: defining chacacteristic — < r .
PRECEDE As a resuR, an attacker may be able to execute 119 - Improper Restriction
T A | alln'xa:y code, aler the intended control flow, read fof Operations within the | \ \ \‘ \ \ \
(snzneene) (" S) senditive informatidp, or cause the system to crash [Bounds of a Memory Buffer
N e AN
120 - Buffer Copy without ' " ;
| ~|Checking Size of Input v v v v v v
|| (Classic Buffer Overflow)
\ { | |
\ | 121 - Stack Overflow 2. S 3 X ¥
\ |)) i j
v | 122 - Heap Overflow L i 2 X N
CWE-120 \ Copy without (heclhnq Size of input 123 - Write-what-where N N X V y
{'Classic) (Condition
Summ: T . || foUt Py 124 - Buffer Underwrite v N J J J
Summary o es af) input to an (Buffer Ui fiow’)
output without verifying ’hal the size of the)
———_input Is lesyghan the size of the output 125 - Out-of-bounds read 3 i M N b
|
2ading to 3 | i i "
i s , 126 - Buffer Over-read \ M N \ v
gscription: A ndition - =
ogram attempts to put more data In a 127 - Buffer Under-read b Y N g v

than it caishold, or when a program attempts

4 Note: chart is adapted
outside of the P

to put dota in a
" boundaries of a b
Common Consequences
execute arbitrary code
lead to crashes.

CAN-PRECEDE ——

—

iYan Wu, “Using Semantic Templates to Study Vulnerabllities Recorded in Large Software Repositories”, 2011

Tried to formally describe :
» Vulnerabilities as chains of exploited weaknesses
» Involved CWEs utilizing the corresponding SFPs.
Failed midway — realized need to specify also the dynamic aspect of the attack.

Formalization of CWE, CVE & CAPEC

» Formalization of CWEs will:
* Clarify their definitions
« Remove ambiguities among them.
=> As a result, reclassification of CWEs will be possible.
» Same reasoning applies to CVEs and CAPECs formalization.

» Important:

« Base of CVEs are CWEs.
Each CVE is a result of CAPEC(s) exploiting software CWEs.

- Each CWE is a static software property.

- Each CVE is a dynamic software property that occurs as a result
of some CAPEC (s).

Considered Notations

» Static software properties: formal software specification models,
languages, notations, and tools.
« Znotation - standardized by ISO.

» Dynamic software properties — those used for process specification:
process algebra, Petri nets, and state machines.
* CSP - Communicating Sequential Processes

« UML & OCL - Unified Modeling Language with Object Constraint
Language.

» Z notation and CSP — strongly based on the mathematical notation
without introducing strange constructions

» UML - provides good visual representation.

CWEs “Mental Models” (Step 1)

» CWE & CVE databases — represented in XML
» CWEs & CVEs text presentations — verbose and hardly navigable.

First Research Step:
« Formal graph representation of these databases
« “Mental models” of base CWEs — UML class diagrams:
* CWEs —classes
 Relationships between CWEs — associations

=» Later incorporate an OCL specification for each CWE.

————

CWE-221:

<7 cwedss: INFORMATION CWE-199: CWE-19: DATA LEGEND
(INCORRECT LOSS OR INFORMATION HANDLING - - o
- = = > EOINTER SCALING,, “ OMMISSION MGMT. ERRORS CAN PRECEED PEEROF
7 Ccwe1s2 ™ - (RESEARCH VIEW) (RESEARCHVIEW)
[} INTEGER -——— .- -~
\ CcoERCION “ CWE-467: USE OF ™ \ CWE-118 IMPROPER ACCESS ! CWET88 ™] e
“ _ ERROR SIZEOF() ON A OF INDEXABLE RESOURCE CWE-20 IMPROPER \ UNCONTROLLED 1 CAN PRECEED
= ~ POINTERTYPE _ # (‘RANGE ERROR) ~ MEMORYALLOCATION «# | (DEVELOPMENT VIEW) CATEGORY
A DNTERTTE INPUT VALIDATION ~ e e - (DEVELORMAENT VIEW)
CWE-194:] - . -
UNEXPECTED - CHILD OF
SIGN g ‘C\I.V-E—Tza" ~ - = -~ . (RESEARCH VIEW) 4 A
™ EXTENSION / CWE- 682 WRAP- WE-130: IMPROPER . CWE-68! * \\ _——
~ - INCORRECT LY " SN INTEGER OVERFLOW .
- AROUND HANDLING OF A Y \ CHILD OF CATEGORY
R CALCULATION « ERROR _ R LENGTH SN TO BUFFER ! i (DEVELOPMENT VIEW) (RESEARCH VIEW)
- < -—== \ PARAMETER NN OVERFLOW _ ~ —
4 CWE-190 \ -———— . INCONSISTENCY N T = 1 - TWE tRUSEOE - ™ ~
INTEGER - . -
{ OVERFLOW OR CWE- 191 INTEGER \ N =~ f /\ DANDEROUS FUNCTIONS _, #
“ (UNDERFLOW (WRAP OR -~ " ’ ~ . e -
JVRAPAROUND « WRAPAROUND) o CWE20IMPROPER ~ \ =+ | = =~ -
_——— - - AY v .~ VALIDATION OF ARRAY r . owe-2rS “ ewe.2s1 N
T y CWE-119: FAILURE TO ‘ \\ oEx s 1 APl STRING MoMT. |
- -, -119: . - - « o ABUSE MISUSE
!’CWEJ”OFFV N e i — .. CONSTRAIN OPERATIONS PN === v h ".____a/
\ BYONEERROR 4 "~ = = =. _ WITHIN THE BOUNDS OF A 13 .4 -_————= 1 ————
- o temr=—— = MEMORY BUFFER # CWE-466 RETURNOF ~ « ' CWE-416 |~
~—- CWE-131 - (POINTER VALUE "'« USEAFTERFREE _ #
uﬂiﬁﬁmw — OUTSIDE OF EXPECTED 7 —_————
RANGE -
BUFFER SIZE S _TeE - -~ o
- . v - -
- S e i ===

d
ra CWE- 195 A Y

-

CWE-123 WRITE-
SIGNED TO CWE-788 ACCESS OF WHAT-WHERE
{ UNSIGNED MEMORY LOCATION CONDITION
\ Cowversion / AFTER END OF CWE- 786 ACCESS OF CWE- 125 OUT-OF-

~ ERROR 7/ BUFFER

MEMORY LOCATION
BEFORE START OF
BUFFER

7 CWE-1mM \
\ f UNCONTROLLED
* N\« FORMATsTRING _ /
\ -~ -
- -

BOUNDS READ ~——

-

CWE-787 OUT-
OF-BOUNDS
WRITE

CWE- 121 STACK-
BASED BUFFER
OVERFLOW

CWE- 127 BUFFER
CWE- 126 BUFFER UNDER-READ

OVER-READ

CWE- 122 HEAP-
BASED BUFFER

CWE-120 BUFFER COPY
CWE-124 BUFFER

—— - ———— WITHOUT CHECKING SIZE
OVERFLOW UNDERWRITE OF INPUT (‘CLASSIC
('BUFFER CWE- 786 BUFFER OVERFLOW')
UNDERFLOW)

USE OF PATH MANIPULATION
FUNCTION WITHOUT MAX-SIZE
BUFFER

Buffer Overflow-related CWEs Extracted in the Preparation and Collection Phase

(Figure 5 from Yan Wu’s dissertation)

.!l]

!/

-

S _VALUES

-

~ 2

-

-

-~
~ CWE-415DOUBLE ™~

CWE- 456 N
MISSING INITIALIZATION _
—— - -
e ——
“CWE-231 IMPROPER -~
HANDELING OF EXTRA

-

-
CWE- 196 ~a
UNSIGNED TO SIGNED

-

=~ CONVERSIONERROR_, =~

—————

-
CWE- 170 IMPROPER
NULL TERMINATION

e

~

-

CWE-20 IMPROPER
INPUT VALIDATION

7

CWE- 124 BUFFER
UNDERWRITE
('BUFFER
UNDERFLOW’)

| L

CWE- 120 BUFFER COPY CWE-123 WRITEWHAT-

WHERE
WITHOUT CHECKING SIZE
OF INPUT ('CLASSIC s CONDITION
BUFFER OVERFLOW') =

CWE-119 Research View — Inheritance and Precedence Relationships

CWE-19: DATA
HANDLING

I

CWE-199: CWE-118 IMPROPER ACCESS CWEZ0
INFORMATION OF INDEXABLE RESOURCE IMPROPER
MGMT. ERRORS (RANGE ERROR)) INPUT

._‘, I VALIDATION

CWE-221: CWE-130: IMPROPER S
INFORMATION HANDLING OF : y cwe 12\3NHERE T
LOSS OR LENGTH — <
OMMISSION PARAMETER i 5 . : CONDMMTION
INCONSISTENCY
CWE- 788 ACCESS OF CWE-787 OUTOF- CWE- 786 ACCESS OF CWE- 125 OUT- CWE- 120 BUFFER COPY
- MEMORY LOCATION BOUNDS MEMORY LOCATION OFBOUNDS e WITHOUT CHECKING SIZE
| AFTER END OF BUFFER WRITE BEFORE START READ OF INPUT ('CLASSIC
I A T L[_ T BUFFER OVERFLOW')
CWE- 124 BUFFER
CWE- 121 STACKBASED CWE- 122 HEAPBASED gy CWE- 126 B CWE- 785
BUFFER BUFFER . BUFFER fisiea ik USE OF PATH MANIPULATION
OVERFLOW OVERFLOW (BUFFE OVER-READ FUNCTION WITHOUT MAX-SIZE
UNDERFLOW’) BUFFER

CWE-119 Development View — Inheritance Relationships

INCORRECT
CALCULATION OF

CWE- 131
BUFFER SIZE

CWE-119 Development View — Precedence Relationships

CWE-119 Mental Model

CWE-744: CERT C Secure
CWE-875: CERT C+ + Secure : S : CWE-693: Protection | CWE-633: Weaknesses 744
Coding Section 07 - g eoNy || | Mechanism Failure | thatAffect Memory b S
£ il CWE-118: Improper LE 2o oA R
CWE-752: 2009 Top 25 - pron Top Ten 2004 AP
Risky Resource L1 CWE-20: Improper Access of Indexable | Category A5 - Buffer
CWE-876: CERT C++ Secure MR AAGRIE Input Validation Resource (Range Emor) | |~ Sl CWE-742: CERT C Secure
Manacent IMEM), CWE-874: CERT C++ Secure CWE-740: CERT C Secure —~ Memory Management
Coding Section 06 - Arrays |-} ~[~ Coding Section 06 - ~(MEM)
CWE-877: CERT C+ + Secure and the STL (ARR) Arrays (ARR)
Coding Section 09 -Input -} CWE-743: CERT C Secure
Output (FIO)] | Coding Section 09 -
Input Qutput (FIO)
CWE-878: CERT C++ Secure —
Coding Section 10 - J CWE-970: SFP Secondary Cluster:
Environment (ENV) Faulty Buffer Access
] {

CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

CWE-119 Relationships - not complete yet
(extracted from CWE database XML representation)

CWEs Formal Specification (Step 2)

Second Research Step :

« CWEs formalization in Z notation
- will remove ambiguities in their definitions
- can lead to CWEs reclassification.

« Conversion of these Z notations in OCL specifications.

- UML representations — could be source to industry tools for code
verification and tests generation (RSA, MS Visio).

« However, humans will not be able to use efficiently OCL, because
of its complexity.

« Formalization in Z notation — open to theorem solvers and
eventually to analyzers (e.g Alloy Analyzer).

« Z Word can be used for specification purposes and Z/Eves for
verification.

CWE-128 in Z notation

CWE-128: Wrap-around Error: “Wrap around errors occur whenever a value
is incremented past the maximum value for its type and therefore "wraps
around" to a very small, negative, or undefined value.”

MAX_INT: 7.
MIN_INT:Z.
INT=={i: Z | MIN_INT<i A i< MAX_INT}

BAD_INT:Z

BAD_INT < MIN_INTV MAX_INT < BAD_INT

add, mul: INT x INT = INT U {BAD_INT}

Vi, j: INT « add(i, j) = if i+j > MAX_INT then BAD_INT else i+j
Vi, j: INT « mul(i, j) = if i*j > MAX_INT then BAD_INT else i*;

CWE-119 in Z notation

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:
“The software performs operations on a memory buffer, but it can read from or write to
a memory location that is outside of the intended boundary of the buffer.”

[Bytel
‘maxAddress: N

_Memory
contents: seq Byte

fcontents = maxAddress + 1

_read
EMemory
i?: N
r!: Byte

i? € dom contents
r! = contents(i?+1)

_write
AMemory
i?: N

w?: Byte

i? € dom contents
contents' = (1..1i?) < contents ~ (w?) = ((i?+2)..#contents) < contents

_Program
Memory
m, n: N

BufferSpace: P N

m £ n £ maxAddress
BufferSpace = m..n

_badRun
AProgram

m?, n?: N

m=m? AN n = n-
di: N o i &€ BufferSpace A
((3r: Byte e readl[i/i?, r/r']) V (3w: Byte e writel[i/i?, w/w?]))

CVE/ CAPECs Formal Specification
(Step 3)

Third Research Step:

« CVEs/CAPECs specification in CSP.

« CVEs/CAPECs specification in UML activity diagrams or BPPMN diagrams
-~ will remove ambiguities in CVEs definitions

- can lead to CWEs reclassification

- CAPECs could be assembled on higher levels.

« Humans accept UML and BPMN diagrams better

* But UML and BPMN diagrams could be not too precise,
as they are open to many platforms and programming languages.

« UML activity diagrams with OCL or to BPMN diagrams can be used for
tests code generation.

- Zmnotation and CSP specifications can be used in theorem solvers for
verification of dynamic software properties.

CVE-2014-160/CAPEC-540 in CSP

channel network 2;
payload, validPayload, invalidPayload};

enum {payloadLength,
Attacker () = network!payloadLength -> network!payload -
network?payloadResponse->Attacker () ;

>
CWE 126 () = network?payloadLength -> network?payload->
(payvloadLengthIsEqualTopa loadSize—}networkIvalidPayload—>CWE_126()
loadLengthIsNotEqualTopayloadSize->network!invalidPayload ->

[] pa
CWE 126());

System() = Attacker() ||| CWE 126();

CVE-160/ CAPEC 540 SCP Simulation

etwork?validPayload

network!payloadLength

7

network!payload

network?payloadLength

etwork!validPayload

yloadSize

CVE 160/CAPEC 540 in UML & OCL

First, the two signals for a “heart beat” are
defined in a class diagram.

“esmSign:b «Signal»
iRequesiMesane | ResponseMessage
payload_length iz ettt
| | _payload

The attribute types are not defined, because nowhere in corresponding
CWEs or CVEs and CAPECs is mentioned anything about their types. They
have to be C types as follows, independently of the attacker software:

prayload length: short;
payload: string;

Malicicus Message
{context RequestMessage inv;

payload.length < (payload_length &&

payload_length <= 65536}

|" @ Create AskMessage |

||
: RequestMessage

: Requesw essage

& Request

4 Receive RequestMessage

-2' Receive ResponseMessage

: ResponseMessage

L

| & Process Sensitive information '

|
: RequestMessage

o

Copy to
ResponseMessage
payload the buffered
&3 RequestMessage
payload using
RequestMessage
payload_length

L

: ResponseMessage

«target»
: ResponseMessage
Jugle

k& Response

Final Notes

» Pending;:

» Explore how OCL specifications can be used to connect the CWE Z-
specification to the UML class diagram and the UML activity diagrams.
—> converting Z specifications into OCL.

« Demonstrate how chains of CWEs can be specified with CAPECs in UML.

- There are industry efforts on legacy code reengineering. Their target
are UML code representation for reuse and integration. UML is the
point where CWEs, CVEs and CAPECs specifications can meet.

	Default Section
	Slide 1: Formalizing Software Bugs
	Slide 2: Software Bugs
	Slide 3
	Slide 4: Problems with CWE, CVE, & CAPEC
	Slide 5: Problems CWE, CVE, & CAPEC (cont.)
	Slide 6: Problems CWE, CVE, & CAPEC (cont.)
	Slide 7: Need For
	Slide 8: CAPEC 540 – CAPEC 47
	Slide 9: Previous Related Work
	Slide 10
	Slide 11: Previous Related Work
	Slide 12: Formalization of CWE, CVE & CAPEC
	Slide 13: Considered Notations
	Slide 14: CWEs “Mental Models” (Step 1)
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: CWE-119 Mental Model
	Slide 20: CWEs Formal Specification (Step 2)
	Slide 21: CWE-128 in Z notation
	Slide 22: CWE-119 in Z notation
	Slide 23
	Slide 24: CVE/ CAPECs Formal Specification (Step 3)
	Slide 25: CVE-2014-160/CAPEC-540 in CSP
	Slide 26: CVE-160/ CAPEC 540 SCP Simulation
	Slide 27: CVE 160/CAPEC 540 in UML & OCL
	Slide 28
	Slide 29: Final Notes

