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Modified entropy scaling is applied to shear viscosity, self-diffusion coefficient and thermal

conductivity of fluids consisting of spherical molecules. An extensive molecular dynamics

simulation series is performed to obtain these transport properties and the residual entropy

of three potential model classes with variable repulsive exponents: n,6 Mie (n = 9, 12, 15

and 18), Buckingham’s exponential-six (α = 12, 14, 18 and 30) and Tang-Toennies (αT

= 4.051, 4.275 and 4.600). A wide range of liquid and supercritical gas- and liquid-like

states is covered with a total of 1120 state points. Comparisons to equations of state, lit-

erature data and transport property correlations are made. Although the absolute transport

property values within a given potential model class may strongly depend on the repulsive

exponent, it is found that the repulsive steepness plays a negligible role when modified

entropy scaling is applied. Hence, the scaled transport properties of n,6 Mie, exponential-

six and Tang-Toennies fluids lie basically on one master curve, which closely corresponds

with entropy scaling correlations for the Lennard-Jones fluid. This trend is confirmed with

literature data of n,6 Mie and exponential-six fluids. Further, entropy scaling holds for

state points where the Pearson correlation coefficient R is well below 0.9. The condition

R > 0.9 for strongly correlating liquids is thus not necessary for the successful applica-

tion of entropy scaling, pointing out that isomorph theory may be a part of a more general

framework that is behind the success of entropy scaling. Density (or thermodynamic) scal-

ing is applied for the transport properties of these potential model classes as well, revealing

a strong influence of the repulsive exponent on this scaling approach.
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I. INTRODUCTION

The precise knowledge of thermophysical fluid behavior is vital for understanding natural pro-

cesses and designing engineering applications. Molecular modeling and simulation techniques

have become a key tool not only to predict the according properties but also to analyze the mi-

croscopic underpinnings giving rise to them. The success of these techniques depends on the

underlying models describing the intermolecular interactions.

The most widely used pair potential that implicitly accounts for many-body intermolecular in-

teractions, thus being an effective pair potential, was proposed by John E. Lennard-Jones (LJ)1. It

is simple and well suited for describing the interactions of non-polar fluids under moderate tem-

perature and pressure conditions2. Molecular models based on the LJ potential reasonably predict

the thermophysical properties of many pure fluids and mixtures3–11. For a comprehensive review

of thermophysical data of the LJ fluid, see Refs. 12,13. While the attractive term of the LJ potential

∝ r−6 has a sound theoretical basis, as shown by Fritz Wolfgang London in 193014, the repulsive

term ∝ r−12 is predominantly used due to computational convenience, despite the fact that the

structural properties of fluids are primarily influenced by the repulsive interactions15. Under su-

percritical conditions, those interactions are much softer than modeled with the LJ potential2,16,

which underscores the importance of correctly describing repulsion with pair potentials.

The repulsive exponent n within the two-parameter LJ potential (n = 12) can be varied, ef-

fectively transforming it into the more generalized three-parameter n,6 Mie potential. Extensive

studies on the phase equilibria and thermodynamic properties of n,6 Mie fluids17–23 have been

carried out, culminating in the development of SAFT-based24, molecular simulation-based25 and

physically-based26 equations of state (EoS). Recently, Fischer and Wendland27 delved into the

history of key empirical potentials since 1903.

A physically more appropriate alternative is to represent repulsion through an exponential

term16, as known from molecular beam scattering data or quantum chemical studies. This strategy

is reflected by Buckingham’s exponential-six (exp-6) and the Tang-Toennies (TT) potential. The

exp-6 potential may lead to improved vapor pressure28 or shear viscosity29 predictions than the LJ

potential so that EoS for exp-6 fluids30–32 exist.

The functional form of the TT potential is more complex and similar to the ab initio pair

potentials for argon33 or krypton34, which yield very accurate predictions for the thermophysical

properties of these noble gases. Next to exponential repulsion, it contains the second-order dipole-
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quadrupole contribution to dispersion and damping terms. Consequently, the TT potential was

used to accurately predict the equilibrium properties of argon35 or its bulk viscosity36.

The transport properties of fluids that are described with most of these potentials are much

less studied than those based on the LJ potential. About 15 years ago, Galliero and co-workers

investigated the influence of the repulsive exponent of n,6 Mie and exp-6 fluids on shear viscosity

and pressure37,38 as well as other thermophysical properties39. Transport properties of n-paraffins

modeled with the n,6 Mie potential were also studied17, but those of TT fluids have yet to undergo

similar investigations.

Today, reliable predictive equations for transport properties are in heavy demand. Historically,

the development of such equations lags behind those used to obtain time-independent equilib-

rium properties40,41. Various models are employed to predict transport properties, often lacking

a solid physical foundation and sufficient experimental data for parameterization. These include

corresponding states approaches42, expanded fluid theory43 or scaling models44–46.

In 1977, Rosenfeld proposed that macroscopically reduced transport properties are solely a

function of the residual entropy sr of a given fluid44. This semi-quantitative model, now called

entropy scaling, was first revealed by molecular simulation of hard spheres, soft spheres and one-

component plasma and later confirmed experimentally47. Entropy scaling has a theoretical basis

in isomorph theory48, which indicates its applicability to strongly correlating liquids with a large

Pearson correlation coefficient R > 0.9. However, it has been shown that fluids with a Pearson

correlation coefficient well below the limiting value of R = 0.9 may still exhibit a univariate rela-

tionship between their scaled transport properties and residual entropy49.

Recent years have witnessed an increasing interest in entropy scaling. Numerous modifications

of the original Rosenfeld approach for liquids44 and dilute gases45 were proposed. To bridge

the gap between these two aggregation states, Bell et al.49 introduced the plus-scaled transport

variables with an entropy-dependent correction factor using the 2/3 exponent, i.e. (s+)2/3 =

(−sr/kB)
2/3, where kB is the Boltzmann constant. This modified entropy scaling approach was

successfully applied to many fluids and mixtures49–57. In other scaling procedures, the residual

entropy−sr/kB has been exchanged with a dimensionless entropy scaling variable XS = f (−sr/kB)

related to the entropy of the fluid at the critical point53–55,58,59 or the SAFT-related number of

segments60–62.

In 1975, another scaling approach to represent the macroscopically reduced transport proper-

ties over the ratio of density to temperature, where the density is raised to an exponent γ , was
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revealed by a non-equilibrium molecular dynamics study of the LJ fluid by Ashurst and Hoover63.

This approach, later known as density (or thermodynamic) scaling64, was extensively applied to

n,6 Mie model fluids and their mixtures with different repulsive exponents22,65, flexible Lennard-

Jones chain models66,67 real fluids and ionic liquids46,66,68. In contrast to entropy, temperature and

density are properties that can be measured experimentally, and hence, are more accessible than

the residual entropy for which elaborate EoS or molecular simulations are required. In this sense,

density scaling is more straightforwardly applicable than entropy scaling. However, the density

scaling exponent γ , is usually unknown a priori, and its suitable choice poses a challenge56,69.

Interestingly, a link between residual entropy and the density scaling exponent exists, connecting

these two scaling approaches56, so that density scaling can also be rationalized within the frame-

work of isomorph theory65,70,71.

The simple numerical handling of entropy scaling equations makes them compelling for the

development of predictive equations for transport properties, as proposed e.g. for the LJ fluid49.

Although not universally applicable, entropy scaling has been broadly applied for the prediction

of transport properties of pure fluids, mixtures and even active-matter systems51,62,72,73. Recently,

a correlation for the infinite dilution Fick coefficient of supercritical carbon dioxide mixtures was

proposed on the basis of the modified entropy scaling approach74. However, strongly associating

fluids sometimes invalidate the univariate behavior between the macroscopically reduced trans-

port properties and the residual entropy75, mostly due to anomalies that are related to hydrogen-

bonding networks. Still, a reference-quality correlation for the shear viscosity of krypton was

developed on the basis of entropy scaling57.

Studies on entropy scaling tend to focus on the results generated with it and not on the features

of the underlying pair potentials. This paper seeks to remedy this issue by analyzing model fluids

with differing repulsive interactions embodied by the repulsive exponent: n,6 Mie (n = 9, 12, 15

and 18), exp-6 (α = 12, 14, 18 and 30) and TT (αT = 4.051, 4.275 and 4.600). Monte Carlo (MC)

and molecular dynamics (MD) simulations were conducted out to obtain vapor-liquid equilibria,

residual entropy and transport properties of those 11 fluids. The latter were sampled over a wide

range of the fluid domain, including sub- and supercritical isotherms and low- to high-density

states. Subsequently, the modified entropy scaling approach was applied to present simulation and

literature data, comparing them to the plus-scaled transport property correlations for the LJ fluid

by Bell et al.49. Further, density scaling was applied to the present simulation data, highlighting

a larger impact of the repulsive exponent, which stands in contrast to the findings obtained for
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entropy scaling. Finally, a link between both scaling approaches was established via the residual

entropy.

II. METHODS

A. Model fluids

The present work considers spherical molecules with pairwise interactions defined by the n,6

Mie potential

uMie(r) =
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or the TT potential

uT T (r) = Aexp(−αT r)− f6(r)
C6

r6 − f8(r)
C8

r8 . (3)

Therein, ε is the depth of the potential well, rm the value of the intermolecular distance r where

the potential function has its minimum and the steepness of repulsion is determined by n, α or

αT , respectively, cf. Fig 1. Only the TT potential contains damping functions for the dispersive

interactions

fn(r) = 1− exp(−br)
l

∑
k=0

(br)k

k!
. (4)

A special case of the three-parameter n,6 Mie potential is the two-parameter LJ potential (n =

12), whereas the exp-6 potential has three (ε , rm and α) and the TT potential has five adjustable

parameters (A,αT ,b, C6 and C8). The reduced form of the intermolecular potentials (1) to (3) is

given in Eqs. (S7) to (S9) of the Supporting Information (SI). An almost exact representation of

the exp-6 potential with the TT potential is possible (see SI), while the representation of the exp-6

with the Mie potential is approximate76,77.

5



FIG. 1: Interaction energy u/ε over distance r/rm of selected n,6 Mie (black lines), exp-6 (blue

lines) and TT (red lines) fluids with different repulsive exponents.

B. Molecular simulations

Present simulations were carried out in reduced units (see Table S1) with the open-source

software ms278 that allows for simultaneous sampling of equilibrium and transport properties.

Initially, MC simulations of the vapor-liquid equilibria were conducted with the grand equilib-

rium method79 and the N pT +SVC method80 to clarify where the aggregation states are located.

MD simulations in the canonical (NV T ) ensemble were performed to sample transport properties,

residual entropy and Pearson correlation coefficient. At a given pair of temperature T and density

ρ , simulation provided the residual, i.e. potential, energy ur and the residual pressure pr, while the

residual chemical potential µr was obtained by Widom’s insertion method81. The residual entropy

sr was calculated from sr =−(µr−ur− pr/ρ)/T .

NV T simulations of the n,6 Mie and exp-6 fluids with different repulsive exponents were car-

ried out along four isotherms T/Tc ≈ 0.8,1.1,2.0 and 4.0 for up to 36 densities ranging from

ρ/ρc ≈ 0.083 to 3. The subcritical isotherm T/Tc ≈ 0.8 was simulated at about 11 densities rang-
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ing from ρ/ρc ≈ 2 to 3. A total of 11 potential models with different repulsive exponents of n,6

Mie (n = 9, 12, 15 and 18), exp-6 (α = 12, 14, 18 and 30) and TT (αT = 4.051, 4.275 and 4.600)

fluids was considered, cf. Fig. 1. Simulations for the TT fluids were conducted along three su-

percritical isotherms kBT/ε ≈ 1.9, 3.0 and 6.0 at about 21 densities ranging from ρ/ρc ≈ 0.05 to

3.2. Simulations that turned out to be in the solid state were identified by visual inspection of the

mean squared displacement and the non-Gaussian parameter on the basis of the approach given by

Mausbach et al.82, which is outlined in Fig. S1. Those simulations were discarded from further

analyses. Exemplarily, the sampled state points of the exp-6 potential with α = 30 are depicted in

Fig. 2.

FIG. 2: Residual entropy of the exp-6 fluid (α = 30) from present simulations in the considered

state space. The solid line depicts the vapor-liquid equilibrium curve calculated with the EoS

from Kataoka30 using the open-source library teqp83.
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C. Entropy scaling

Rosenfeld44 postulated that a univariate relationship between a macroscopically reduced trans-

port property ψ̃ and the dimensionless residual entropy sr of the form ψ̃ ∝ exp(−sr/kB) exists. It

should be noted that the term "excess-entropy", which is the difference of mixture behavior from

that of an ideal solution, is often used in the physics community instead of the more suitable term

residual entropy. The residual entropy sr is the difference between the total entropy s and the ideal

gas contribution sid at the same temperature and density, i.e. sr(T,ρ) ≡ s(T,ρ)− sid(T,ρ). The

residual entropy is negative, characterizes the number of accessible microstates84 and is thus a

measure for the microscopic structure of the fluid.

Macroscopically reduced shear viscosity η̃ , self-diffusion coefficient D̃ and thermal conductiv-

ity λ̃ following Rosenfeld44,45 are given by

η̃ = η · ρ−2/3

(mkBT )1/2 , (5)

D̃ = (ρD) · ρ−2/3

(kBT/m)1/2 , (6)

λ̃ = λ · ρ−2/3

kB(kBT/m)1/2 , (7)

where ρ is the number density and m the mass of one molecule. These macroscopically reduced

properties are sometimes referred to as Rosenfeld-scaled properties. However, they diverge in the

zero-density limit.

Bell et al.49 proposed a modified entropy scaling approach of the form ψ+ = ψ̃ ·(s+)2/3, where

ψ̃ is the macroscopically reduced transport property44 and s+ = −sr/kB. Hence, the following

scaled transport properties arise from this approach

η
+ = η̃ · (s+)2/3, (8)

D+ = D̃ · (s+)2/3, (9)

λ
+ = λ̃ · (s+)2/3. (10)
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These scaled transport properties are commonly referred to as the plus-scaled, novel-scaled or

Bell-scaled properties. They were proposed to smoothly connect the distinct gas-phase and liquid-

phase entropy scaling approaches proposed by Rosenfeld44,45. For the transport properties of the

LJ fluid, Bell et al.49 developed correlations on the basis of a fitting procedure for the residual

entropy range 1≤ s+ ≤ 3

η
+
LJ = 0.2163 · exp(1.068 · s+), (11)

D+
LJ = 0.494 · exp(−0.402 · s+), (12)

λ
+
LJ = 1.377 · exp(0.839 · s+). (13)

Bell’s modified entropy scaling approach is suitable for the construction of engineering corre-

lations for transport properties based on the zero-density, residual and critical contribution ψ+ =

ψ
+
ρ→0(T )+ψr+(sr)+ψ+

c , cf. Refs. 49,50,57.

In the zero-density limit, the thermodynamic contribution of the plus-scaled transport properties

can be expressed in terms of the second virial coefficient B by limρ→0(s+/ρ) = B+T ·dB/dT as

described in Ref. 50. Making that substitution yields the scaled variables in the zero-density limit

of

lim
ρ→0

η
+ =

ηρ→0

(mkBT )1/2

[
B+T

(
dB
dT

)]2/3

(14)

lim
ρ→0

D+ =
(ρD)ρ→0

(kBT/m)1/2

[
B+T

(
dB
dT

)]2/3

(15)

lim
ρ→0

λ
+ =

λρ→0

kB(kBT/m)1/2

[
B+T

(
dB
dT

)]2/3

(16)

The second virial coefficient contribution can either be obtained from integration of the

potential50 or closed form solutions85,86, while ηρ→0, (ρD)ρ→0 and λρ→0 with correlations for

the collision integrals87,88.
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D. Density scaling

Density scaling has the advantage that it does not require the rather elusive entropy56 and is

based on the observation relaxation times and other dynamic properties of high-density fluids are

mainly governed by the repulsive part of the interaction potential46. Hence, if the potential is

given by an inverse power law (IPL) of the form u(r) ∝ r−n, its macroscopically reduced transport

properties are strictly a function of temperature and density of the form ψ̃ ∝ ργ/T , where γ = nds/3

is a fluid-specific parameter89,90. Fluids consisting solely of repulsive IPL potentials lead to exact

isomorphs, i.e. lines of constant structure and dynamics along which the density scaling variable

ργ/T , i.e. the density scaling exponent nds, is constant91. Density scaling is only approximately

obeyed by fluids with both attractive and repulsive molecular interactions, e.g. model fluids and

their mixtures22,65–67 as well as real fluids and ionic liquids46,66,68. Density scaling suffers from the

thermodynamic state-dependence of the density scaling exponent γ , as confirmed by experiments92

and molecular simulations93. Further, it was shown that the use of a constant density scaling

exponent γ = nds/3 can transform the unique variable of density scaling into an univariate function

of residual entropy56. Nonethless, the determination of this coefficient poses a major challenge for

the applicability of density scaling.

Based on molecular simulation data of LJ fluids and nine different CO2 potential models, the

density scaling exponent was found to be related to the maximum of the effective hardness of a

fluid in the dilute gas limit56. The effective hardness neff expresses the effective repulsive inter-

action between molecules and is a function of the ensemble averages that can be sampled with

molecular simulation and the Lustig formalism78,94,95

γeff =
neff

3
=

1
ρcr

v

(
∂ pr

∂T

)
ρ

(17)

where pr is the residual pressure and cr
v is the residual isochoric capacity. In the zero-density limit,

the effective hardness can be calculated with the second virial coefficient B85,96

lim
ρ→0

neff =−3 ·
T dB

dT +B

2T dB
dT +T 2 d2B

dT 2

. (18)

.
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III. RESULTS

A. Vapor-liquid equilibria

Fig. 3 depicts the vapor-liquid equilibria of the studied n,6 Mie, exp-6 and TT fluids obtained

with molecular simulation and literature EoS. Present simulation data are in excellent agreement

with the Mie EoS from Pohl et al.25 and Reimer et al.26, where the latter was obtained with

the FeOs package97. More comparisons with literature data are given in the SI, cf. Fig. S2.

Guggenheim-type correlations were employed to determine the critical point of the exp-6 and TT

fluids. Because the TT fluid with αT = 4.2751 resembles argon35, it agrees excellently with the

according reference EoS by Tegeler et al.98. Additional representations of these phase equilibria

in pressure-temperature diagrams are given in Figs. S3 to S5.

B. Entropy scaling

The modified entropy scaling approach was applied to 1120 state points for which the shear

viscosity, self-diffusion coefficient, thermal conductivity and residual entropy were sampled in

this work. Fig. 4 shows the plus-scaled shear viscosity over the residual entropy for the entire

present dataset for n,6 Mie, exp-6 and TT fluids. Remarkably, the plus-scaled shear viscosity of

those fluids with a wide range of repulsive exponents falls onto the same master curve as the LJ

correlation.

To further validate this finding, the modified entropy scaling approach was applied to 385

additional shear viscosity data points from non-equilibrium MD for n,6 Mie and exp-6 fluids with

variable repulsive parameters published by Galliero et al.37,38, see Table S4 and Fig. S6. These

data were supplemented with residual entropy values obtained either by present simulations or the

EoS of Pohl et al.25. The literature non-equilibrium MD data by Galliero et al.37,38 also agree

excellently with the plus-scaled shear viscosity correlation for the LJ fluid. This approach was

also applied to a very recent and comprehensive database on self-diffusion coefficient (17212 data

points), shear viscosity (14288 data points) and thermal conductivity (13099 data points) of n,6

Mie fluids (n = 7 to 34) by Chaparro and Müller99, cf. Figs. S7 to S9. These authors used

the Einstein relations to compute the transport properties and studied the n,6 Mie fluids over a

significantly larger repulsive exponent range. Their data are in excellent agreement with present

simulations, confirming that the repulsive exponent plays a negligible role for the modified entropy
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FIG. 3: Vapor-liquid equilibria of n,6 Mie (top), exp-6 (center) and TT (bottom) fluids. Open

circles: present simulation data for different repulsive exponents n, α and αT from blue (n = 9, α

= 12 and αT = 4.051) to red (n = 18, α = 30 and αT = 4.600). Solid lines: empirical n,6 Mie EoS

from Pohl et al.25 and present Guggenheim-type correlations for the exp-6 and TT fluids (see

Table S3). Dashed lines: physically-based n,6 Mie EoS from Reimer et al.26 obtained with the

FeOs package97 and the reference EoS for argon from Tegeler et al.98 for the TT fluid with

αT = 4.275.
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scaling approach.

FIG. 4: Plus-scaled shear viscosity η+ over residual entropy s+ from the entire present

simulation dataset: n,6 Mie (triangles), exp-6 (circles) and TT (squares). The blue solid line

depicts the correlation for the LJ fluid49.

The variation of the repulsive exponent has a strong influence on the absolute value of the shear

viscosity of a given fluid class. For a consistent comparison between fluids with different repulsive

exponents, the same temperature and density pairs, which are reduced by their critical values, were

taken as a reference. For instance, the shear viscosity values of the exp-6 (α = 12) fluid and exp-6

(α = 30) fluid at these reference pairs differ on average by 32% with a maximum deviation of

167%. This difference largely vanishes when entropy scaling is applied. The absolute average

relative deviation between the plus-scaled shear viscosity of those two exp-6 fluids at state points

with a similar residual entropy is only 5.5%, which is in the same order of magnitude as statistical

uncertainties.

In contrast to the shear viscosity, self-diffusion coefficient and thermal conductivity in their

plus-scaled form show more pronounced discrepancies with the LJ correlation 49 when the entire
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residual entropy range is considered, see Figs. S10 and S11. However, within the residual entropy

range 1≤ s+ ≤ 3, the consistency between these scaled properties and the LJ correlations remains

strong. It deteriorates in the zero-density limit (s+→ 0) and at high density (s+→ 4). Both the

plus-scaled self-diffusion coefficient and thermal conductivity of the exp-6 and n,6 Mie fluids yield

absolute average relative deviations that are significantly larger than those of the shear viscosity

with about 11.3% and 16.4%, respectively.

For a more accurate description of the present simulation data, new empirical correlations for

the plus-scaled self-diffusion coefficient and thermal conductivity were fitted over the residual

entropy range 0≤ s+ ≤ 4

D+ = 0.0602 · (s++2)2.3901 · exp(−0.9843 · s+), (19)

λ
+ = 4 ·10−5 · (s++4)7.1869 · exp(−0.38883 · s+). (20)

Because these correlations have a more complex form, they result in absolute average relative

deviations for the plus-scaled self-diffusion coefficient and thermal conductivity that are reduced

to 2.3 % and 5.8 %, respectively, in comparison to the LJ correlations. A similar assessment of

the simulation database of Chaparro and Müller99 indicates a reduction in the absolute average

relative deviations for the plus-scaled self-diffusion coefficient are reduced from 14.2% to 5.8%

and for plus-scaled thermal conductivity from 12.1% to 9% by using present correlations instead

of the LJ correlations.

Fig. 5 depicts the plus-scaled shear viscosity, self-diffusion coefficient and thermal conductivity

of n,6 Mie fluids with different repulsive exponent α compared with the LJ correlation for η+ and

the present correlations (19) and (20) for D+ and λ+. The plus-scaled transport properties of

the n,6 Mie fluids agree excellently with the LJ correlation and present correlations, respectively.

A similar behavior of the scaled transport properties is observed for the exp-6 and TT fluids, cf.

Fig. 6 and Fig. 7. The inclusion of the physically more sound repulsive term in the exp-6 potential

and the attractive term in the TT potential does not significantly affect the entropy scaling behavior

in comparison to the n,6 Mie fluids. A statistical comparison of all sampled transport properties

against the LJ and present empirical correlations is given in the SI, cf. Figs. S12 and S17.

The classical Rosenfeld scaling approach was also applied to the present simulation data, cf.

Figs. S18 to S20. The main drawback of this approach is the divergence of all three transport

properties in the zero-density limit, which does not occur for the plus-scaled transport properties.

Further, the modified entropy scaling has a clearly defined limit at zero density and maintains the
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macroscopic scaling throughout all fluid states. Hence, it can be confirmed that modified entropy

scaling is more appropriate.

FIG. 5: Plus-scaled shear viscosity (top), self-diffusion coefficient (center) and thermal

conductivity (bottom) of n,6 Mie fluids with different repulsive exponents n = 9 (light grey

circles), 12 (grey triangles), 15 (dark grey squares) and 18 (black diamonds). Solid lines:

plus-scaled shear viscosity correlation for the LJ fluid49 (blue) and present correlations for the

plus-scaled self-diffusion coefficient and thermal conductivity (red).

To build reference correlations for the shear viscosity, often additional terms, like the zero-

density limit contribution, have to be included. Fig. 8 compares the scaled residual shear viscosity

of the sampled n,6 Mie fluids to the polynomial correlation for the scaled residual shear viscosity

of the LJ fluid49. The same comparison was made for the exp-6 fluids with α = 12 and 14, cf.

Fig. S21. Plus-scaled transport properties in the zero-density limit were obtained from Eqs. (14)
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FIG. 6: Plus-scaled shear viscosity (top), self-diffusion coefficient (center) and thermal

conductivity (bottom) of exp-6 fluids with different repulsive exponents α = 12 (light grey

circles), 14 (grey triangles), 18 (dark grey squares) and 30 (black diamonds). Solid lines:

plus-scaled shear viscosity correlation for the LJ fluid49 (blue) and present correlations for the

plus-scaled self-diffusion coefficient and thermal conductivity (red).

to (16), cf. Figs. S22 and S23. An offset value of unity was added to the scaled residual viscosity

facilitating semi-log plotting49. Here too, an excellent agreement between the scaled simulation

data and the correlation is found almost over the entire residual entropy range. Both approaches

capture the zero-density limit well, whereas the deviations increase for s+ > 3, because the LJ

correlation was not fitted to data in that range.
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FIG. 7: Plus-scaled shear viscosity (top), self-diffusion coefficient (center) and thermal

conductivity (bottom) of TT fluids with different repulsive exponents αT = 4.051 (light grey

circles), 4.275 (grey triangles) and 4.600 (black diamonds). Solid lines: plus-scaled shear

viscosity correlation for the LJ fluid49 (blue) and present correlations for the plus-scaled

self-diffusion coefficient and thermal conductivity (red).

C. Pearson correlation coefficient

Isomorph theory applies to "strongly correlating systems", or "Roskilde (R)-simple fluids".

These systems have a large Pearson correlation coefficient R > 0.9 and their phase diagram fea-

tures isomorphs, representing lines of constant residual entropy. For R-simple fluids along iso-

morphs, structure and dynamics in macroscopically reduced units are invariant91. In other words,

entropy scaling means that microscopic dynamics at state points with the same residual entropy,
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FIG. 8: Plus-scaled residual shear viscosity of n,6 Mie fluids with different repulsive exponents n

= 9 (circles), 12 (triangles), 15 (squares) and 18 (diamonds). The zero-density contribution to the

shear viscosity in first-order approximation was calculated with the approach from Ref. 50. The

blue solid line represents the correlation for the LJ fluid49.

although at different temperature and density, is approximately the same47. This condition was

shown to be only sufficient for the applicability of entropy scaling49, thus promoting the need

to further understand the theoretical basis behind the success of the entropy scaling approach.

Density scaling, like entropy scaling, strictly holds for (R)-simple fluids.

The Pearson correlation coefficient R is given by70,100

R =
〈∆U∆W 〉√

〈(∆U)2〉〈(∆W )2〉
, (21)

where ∆U and ∆W are the fluctuations of the instantaneous values of potential energy and virial

from their average values, respectively. The Pearson correlation coefficient R can also be evaluated

from experimental data using some approximations70.

Fig. 9 shows the Pearson correlation coefficient R over residual entropy s+ for the considered

n,6 Mie fluids. Similar plots for the exp-6 and TT fluids are given in the SI, cf. Figs. S24 and S25.
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FIG. 9: Pearson correlation coefficient R over residual entropy s+ and varying temperature kBT/ε

for n,6 Mie fluids with different repulsive exponents n = 9 (circles), 12 (triangles), 15 (squares)

and 18 (diamonds). The dashed line depicts R = 0.9, above which the potential energy and virial

fluctuations are strongly correlated.

As expected, state points at both high temperature and high density exhibit a strong correlation

between the potential energy and virial fluctuations, i.e. R > 0.9. The Pearson correlation coeffi-

cient increases with temperature, and thus, entropy scaling becomes more successful. Moreover,

lower repulsive exponents n at the same temperature and density yield a higher Pearson correlation

coefficient R. Although a total of 568 state points from all 11 fluids exhibit R > 0.9, the number of

state points deviating less than 6 % from the shear viscosity correlation for the LJ fluid is notably

higher at 824, surpassing the former by about 50 %. Consequently, the condition R > 0.9 from

isomorph theory is sufficient, but not indispensable for the successful application of the entropy

scaling approach.
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FIG. 10: Residual entropy s+ (top) and plus-scaled shear viscosity (bottom) over density scaling

variable Γ1/3.3 for the entire present simulation dataset of n,6 Mie (dark grey), exp-6 (black) and

TT (brown) fluids. Symbols: n = 9 (triangles down), n = 12 (triangles right), n = 15 (triangles

left), n = 18 (triangles up), α = 12 (circles), α = 14 (squares), α = 18 (pentagons), αT = 4.051

(crosses), αT = 4.275 (pluses) and αT = 4.600 (hexagons). The density scaling exponent γ was

chosen to maximize the Spearman correlation between Γ and s+ for state points with R < 0.5.
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D. Density scaling

Fig. 10 shows the residual entropy s+ and the plus-scaled shear viscosity η over the density

scaling variable Γ = (ρr3
m)

γ/(kBT/ε) for the 11 model fluids sampled in this work. Following

density scaling, the exponent γ = nds/3 was held constant in the entire phase diagram of each

fluid56. Here, nds was optimized to increase the Spearman rank correlation coefficient56 between

Γ = (ρr3
m)

γ/(kBT/ε) and s+ to a value greater than 0.999 for state points that have R > 0.5, cf.

Table S5. Further, following Ref. 56, to achieve a linear relationship between the residual entropy

and density scaling variable, the latter was scaled with the exponent 1/3.3.

Fig. 10 shows an almost linear relationship between s+ and Γ as well as log(η+) and Γ for each

individual fluid. Two plots therein look similar, which is mirrored by a linear relationship between

η+ and s+ in the semi-log plot of Fig. 4, connecting density scaling and entropy scaling. Hence,

as expected, the repulsive exponent plays a major role in density scaling, making it less effective

than entropy scaling. For the former approach, the data set of one fluid corresponds to one curve

in the diagram, whereas in the latter, all fluids virtually fall onto the same master curve. These

trends are further validated by the plus-scaled self-diffusion coefficient and thermal conductivity,

cf. Figs. S26 and S27. Further, the nearly linear relationship between s+ and Γ, as well as log(η+)

and Γ, is valid even for state points with a low Pearson correlation coefficient R� 0.9.

Density scaling has the major advantage that the variables temperature and density are more

accessible than the residual entropy. Still, an a priori choice of a constant density scaling exponent

remains a challenge, as the effective hardness neff significantly depends on the state point, cf. Figs.

S28 to S30. To address this issue, the effective hardness in the zero-density limit can be used

instead. For the studied n,6 Mie fluids, the solution of Eq. (18) with second virial coefficient data

by Sadus85,86 yields neff = 12.25,15.06,17.93 and 20.83, cf. Fig. S28. These values do not differ

much from the optimized values of nds = 12.9,16.15,18.66 and 22.03, cf. Table S5.

IV. CONCLUSIONS

This work shows that modified entropy scaling is largerly insensitive to the pair potential type,

which accounts for both attractive and repulsive interactions. Hence, the variation of the repulsive

exponent has generally a negligible influence on the univariate relationship between the plus-

scaled transport properties and the residual entropy. This insight result from an extensive molecu-
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lar simulation study of 11 model fluids with different repulsive exponent and from the assessment

of literature data for the n,6 Mie (n = 9 to 34) and exp-6 (α = 11 to 22) fluids. Consequently, the

correlation developed for the LJ fluid by Bell et al.49 captures the plus-scaled shear viscosity of

n,6 Mie, exp-6 and TT fluids in the residual entropy range 1≤ s+ ≤ 3 excellently. Further, empir-

ical correlations for the plus-scaled self-diffusion coefficient and thermal conductivity of n,6 Mie,

exp-6 and TT fluids were proposed on the basis of present simulation data for 0 ≤ s+ ≤ 4, These

three correlations can be used as an orientation for the development of practical entropy scaling

correlations.

Further, entropy scaling can indeed be applied to state points in the supercritical gas phase,

where the Pearson correlation coefficient R is well below 0.9. This confirms that R > 0.9 is a

sufficient, but not a necessary condition for the successful application of entropy scaling. In other

words, there seems to be a more general framework to explain the success of entropy scaling than

isomorph theory from which the condition R > 0.9 condition stems.

On the other hand, density scaling is significantly influenced by the repulsive exponent of a

given pair potential. The major advantage of density scaling lies in its more accessible parameters

temperature and density, but the density scaling exponent is mostly unknown a priori. Density

scaling and entropy scaling can be connected via the residual entropy for one specific repulsive

exponent within a given model class.

These findings are poised to make a significant contribution to the field of entropy and density

scaling. In summary, they underscore the necessity for uncovering the underlying reasons behind

the remarkable success of the entropy scaling methodology in numerous practical engineering

applications. We hope for this research to advance our comprehension in this area and facilitate the

development of practical and effective transport property correlations for real fluids and mixtures.
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