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Rapid cooling of the in-plane motion of two-dimensional ion crystals in a Penning trap
to millikelvin temperatures

Wes Johnson ,1,* Athreya Shankar ,2 John Zaris ,1 John J. Bollinger ,3 and Scott E. Parker1,†

1Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
2Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India

3National Institute of Standards and Technology Boulder, Boulder, Colorado 80305, USA

(Received 21 November 2023; accepted 22 January 2024; published 27 February 2024)

We propose a highly feasible technique with no experimental overhead to rapidly cool the in-plane degrees of
freedom of large two-dimensional ion crystals in Penning traps. Through simulations, we demonstrate that our
approach enables the in-plane modes to cool down to a temperature of around 1 mK in less than 10 ms. Our
technique relies on near-resonant coupling of the poorly cooled in-plane motions and the efficiently cooled
out-of-plane motions, and is achieved without introducing additional potentials. The rapid cooling enabled
by our approach is in contrast to typical operating conditions, where our simulations of the laser cooling
dynamics suggest that the ion crystal’s in-plane motion cools very slowly on a timescale of several hundreds
of milliseconds, a rate likely slower than experimental heating rates. Our work sets the stage for sub-Doppler
laser cooling of the planar motion, and more robust and versatile quantum simulation and quantum sensing
experiments with two-dimensional crystals in Penning traps.

DOI: 10.1103/PhysRevA.109.L021102

Introduction. Identifying routes to control systems with a
large number of degrees of freedom is a crucial step in scaling
up quantum technologies. Penning traps offer the ability to
store and manipulate the electronic and motional states of
a large number of ions at the quantum level [1]. Several
efforts are underway to utilize two-dimensional crystals of
tens to several hundreds of ions stored in Penning traps for
quantum sensing and quantum information processing [2–9].
Researchers have designed protocols to simulate many-body
quantum systems [10–14], studied the spread of entangle-
ment in interacting systems [15,16], and demonstrated spin
squeezing and quantum-enhanced motion sensing protocols
[6,17–21]. These protocols are enabled by coupling the elec-
tronic states of the ions to their out-of-plane normal modes
of vibration—called the drumhead modes—using lasers. Al-
though the in-plane normal modes of the ions are typically
not utilized in these protocols, it was shown recently that
low-frequency planar modes can significantly broaden the
drumhead mode spectrum if they are not cooled well [22],
limiting the utility of the drumhead modes as a quantum
channel for mediating ion-ion interactions.

In this Letter, we numerically demonstrate that the Doppler
laser cooling of the low-frequency planar modes can be
greatly improved by resonantly enhancing their coupling to
the drumhead mode branch, which itself is already efficiently
laser cooled [23]. Through simulations, we show that this
technique can cool the low-frequency planar modes to around
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1 mK in less than 10 ms. In contrast, under typical exper-
imental conditions [6,20], our simulations reveal that these
modes are cooled very slowly on a timescale of hundreds
of milliseconds, which is impractical in an actual experiment
where extraneous heating effects will dominate. Furthermore,
we demonstrate how the efficient cooling leads to significant
improvement in the resolution of the drumhead mode spec-
trum. By comparing our results with a simulation that removes
the coupling between modes, we elucidate the role played
by the resonantly enhanced coupling between the planar and
drumhead modes in improving the cooling.

Setup and background. The setup we consider is shown in
Fig. 1. Ions are confined in a Penning trap using a strong mag-
netic field B = B0ẑ, and an electric quadrupole field generated
by trap electrodes (not shown). Cooling lasers are applied
along the x direction and the z direction to cool the planar
(⊥ B) and axial (‖ B) motions, respectively. The planar cool-
ing laser is offset from the trap center. Furthermore, the crystal
is rotating when viewed in the laboratory frame; the role of
this rotation in the laser cooling will be discussed in more
detail below. To make our work concrete, we choose trap and
laser cooling parameters relevant to the NIST Penning trap
[6]. Details of the simulation procedure are reported in the
Supplemental Material (SM) [24].

The nontrivial nature of the Doppler laser cooling in a
Penning trap can be illustrated with a single trapped ion. The
planar motion of a single ion is a superposition of cyclotron
and magnetron modes [25,26]. Since the total energy of the
magnetron mode is negative in the laboratory frame, reducing
the amplitude of these motions requires that the laser must
simultaneously add energy to the magnetron mode while re-
moving energy from the cyclotron mode. This results in a
fundamental cooling trade-off. The amplitude of both motions
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FIG. 1. Laser cooling setup. (a) The planar laser beam. The lab-
oratory frame coordinates are shown in gray, with the z axis chosen
along the magnetic field, B0 = 4.458 T, and the x axis chosen parallel
to the planar laser beam, depicted in red. The ion crystal is shown
in blue. A “rotating wall” potential precisely controls the rotation
frequency ωr of the ion crystal. The simulation assumes 9Be+ with
a cooling transition wavelength λ = 313 nm. The planar beam is
offset by y0 = 20 µm from the center of the trap so that the laser’s
peak intensity occurs where the ions are receding from the laser
source. The beam is assumed to have a Gaussian profile with a waist
of W0 = 30 µm and a saturation parameter S⊥ = 1. The saturation
is given as a function of position, S(y) = S⊥ exp[−2(y − y0 )2/W 2

0 ].
The laser is red-detuned from resonance with the 9Be+ laser cool-
ing transition by �0 = −40 MHz. (b) The axial laser beam. Two
counterpropagating beams are applied along the z axis to cool the
drumhead modes. Unlike in experiment, where only one beam is
applied, two beams are used in simulation to cancel each other’s
displacement of the ion crystal’s equilibrium, simplifying analysis.
See the SM for details. For these beams S‖ = 5 × 10−3 to achieve
axial cooling with minimal recoil heating in the planar direction. The
detuning is �‖ = −γ0/2, where γ0 = 2π × 18 MHz is the natural
linewidth of the 9Be+ laser cooling transition—this yields optimal
cooling.

can be reduced simultaneously with a laser beam tuned to
the red of the atomic ion cooling transition and an intensity
gradient applied across the center of the trap [27–29]. The typ-
ical experimental method is to apply a focused planar (⊥ B)
laser beam that is offset from the trap center, as is shown in
Fig. 1, such that its peak intensity occurs where the magnetron
motion is receding from the laser source. Measured cooling
times depend on the ion species and details of the cooling laser
configuration, but in Refs. [30,31], ranged from 10 to 200 ms
for the magnetron motion. The measured cyclotron cooling
was two to three orders of magnitude faster.

In the case of large multi-ion crystals with tens to hundreds
of ions, a complete theoretical treatment of the planar laser
cooling of the ion crystal is challenging. To investigate this
system, we therefore perform numerical simulations using a
full-dynamics integrator that includes a realistic laser cooling
model [23].

In contrast to a single ion, Doppler laser cooling of multi-
ion crystals in a Penning trap is complicated by the collective
rotation of the crystal as viewed in the laboratory frame (see

Fig. 1). This leads to coherent Doppler shifts across the ion
crystal and further limits the lowest attainable perpendicular
kinetic energy (KE⊥) [32]. Additionally, the focused laser
beam generates a torque on the ion crystal, and can change the
collective rotation frequency ωr of the ion crystal [29,33,34].
A rotating quadrupolar potential, called a “rotating wall,” is
applied to precisely control ωr in experiments [35]. Energy
exchange with the rotating wall potential allows for cooling
of KE⊥ to millikelvin temperatures [34]. We chose the offset
y0 and the laser detuning �0, shown in Fig. 1, to roughly
minimize the laser torque for the beam width of W0 = 30 µm,
and to maximize the cooling of KE⊥ as calculated by a simple
model presented in Ref. [34].

However, efficient cooling of KE⊥ does not necessarily
imply effective cooling of the potential energy fluctuations
(PE) that are associated with planar motions. The presence
of a strong trapping magnetic field B leads to unconventional
normal modes in the planar direction, which can be classified
into a low-frequency E × B branch dominated by PE and a
high-frequency cyclotron branch dominated by KE⊥ [22,36].
Simulations suggest that the E × B and cyclotron modes do
not equilibrate [37], allowing the possibility for large PE to
persist despite efficient cooling of KE⊥. This is in contrast
to the drumhead modes, whose total energy is, on average,
equally shared between axial kinetic energy (KE‖) and PE,
and hence cooling KE‖ leads to an equal reduction of the
PE. From our simulations, we find that the PE associated
with planar motion is not efficiently cooled under current
experimental conditions. Interestingly, as shown in Fig. 2(c),
our simulations suggest the potential and kinetic energies have
vastly different cooling rates. KE⊥ and KE‖ are cooled to
millikelvin temperatures in roughly 1 ms, whereas after a brief
cooling related to the reduction in KE‖, PE is not significantly
cooled.

Resonant mode coupling. In order to efficiently cool the
E × B modes, we investigate a method for sympathetically
cooling these modes by resonantly coupling them to the
drumhead mode branch, which itself is well cooled. For ex-
periments utilizing a rotating wall potential, our technique
is significant in that it requires no additional time-dependent
potentials to engineer couplings [25,38,39], nor a change to
current laser cooling setups. Instead, it relies on the obser-
vation that the frequency gap between the drumhead and
E × B mode branches can be tuned by changing the ion
crystal rotation frequency ωr , which is a precisely controlled
experimental parameter. In particular, this gap can be closed
through an appropriate choice of ωr , which leads to a resonant
enhancement of the interbranch coupling.

To understand this, we consider the potential energy of the
ions in a noninertial reference frame rotating with the crystal,
where the total Lagrangian is time independent. This potential
energy can be written as

Ur =
N∑

i=1

1

2
mω2

z

[
z2

i + (β + δ)x2
i + (β − δ)y2

i
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8πε0

1
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FIG. 2. Coupling of planar and drumhead modes via full simula-
tion. A N = 54 ion crystal is initialized with all modes at an amplitude
corresponding to a temperature of 10 mK. These simulations are
evolved with the full nonlinear Coulomb interaction and laser cool-
ing for different values of the rotating wall frequency ωr . (a) At
ωr/2π = 180 kHz, the E × B modes (left) are not resonant with the
drumhead modes (right). (b) Increasing ωr/2π to 204 kHz brings
the E × B modes into resonance with the drumhead modes. (c) At
ωr/2π = 180 kHz, the E × B modes are not cooled substantially
in 10 ms. (d) At ωr/2π = 204 kHz, the E × B modes couple with
the drumhead modes and are cooled to roughly 1 mK in 10 ms. (e)
Drumhead mode spectra show broadening due to uncooled E × B
modes. (f) Drumhead mode spectra show reduced broadening due to
improved cooling of E × B modes.

Here, β characterizes the relative strength of planar and axial
confinement and is given by

β = ωr (ωc − ωr )

ω2
z

− 1

2
, (2)

where ωc is the cyclotron frequency and ωz is the axial
trap frequency. The azimuthal asymmetry due to the rotating
wall potential, which is static in this corotating frame, is
parametrized by δ. In the rotating frame, the potential energy
of the ions is always positive. Potential energy fluctuations
are calculated as PE = �Ur , the increase in potential energy
from the crystal’s equilibrium configuration. The value of β

can be increased by increasing the rotating wall frequency.
At a critical value ωr,crit, where β = βcrit, the planar config-
uration becomes unstable, and the ion crystal transitions to
a three-dimensional configuration [40]. Near βcrit the lowest-
frequency drumhead mode approaches zero, which represents

an instability of the planar ion crystal to axial displacements.
In our simulations, we increase ωr to near, but less than, ωcrit,
such that the lowest-frequency drumhead modes are nearly
resonant with the highest-frequency E × B modes.

Results. In Fig. 2, we show the results of simulations
for an N = 54 ion crystal at a rotating wall frequency of
ωr/(2π ) = 180 kHz, typical of NIST work [6,20], and an
increased rotating wall frequency of ωr/(2π ) = 204 kHz. In
Figs. 2(a) and 2(b), the E × B and drumhead mode frequen-
cies are plotted as a function of mode number for the ion
crystal simulated at these two values of ωr . By increasing
ωr , the lowest-frequency drumhead modes are brought into
resonance with the E × B modes. Previous numerical studies
have shown that mode coupling between E × B modes leads
to rapid equilibration of these modes [37], thus suggesting that
coupling only a few E × B modes to drumhead modes may
be sufficient to sympathetically cool the entire E × B mode
branch. In Figs. 2(c) and 2(d), KE‖, KE⊥, and PE are plotted
as a function of time for the two cases. These energies are
calculated directly from the ion positions and velocities during
the evolution of the simulations. The energies are normalized
to the ion number and then converted to temperature units
via T = E/(NkB), where E ∈ {KE‖, KE⊥, PE}, and kB is the
Boltzmann constant. In these simulations, we initialize the ion
crystal with all mode amplitudes corresponding to 10 mK,
then a random phase is chosen for each mode. Details are
given in the SM. Cooling of the kinetic energies is similar
in both simulations; however, the cooling of the potential
energy is much faster when ωr/(2π ) = 204 kHz. From longer
simulations at ωr/(2π ) = 180 kHz, we found that PE does
cool, however, this cooling process takes hundreds of mil-
liseconds (see SM). In contrast, Fig. 2(d) shows that PE is
cooled to roughly 1 mK after 10 ms of laser cooling when
ωr/(2π ) = 204 kHz.

The improved cooling of the E × B modes, i.e., the PE
associated with planar motion, leads to reduced fluctuations
in ion positions. Consequently, the adverse impact of pla-
nar position fluctuations on the drumhead mode spectrum is
greatly reduced. In Figs. 2(e) and 2(f), we plot the power
spectrum of the drumhead motion for the two cases con-
sidered here, after the crystals have been laser cooled for
10 ms. For ωr/(2π ) = 180 kHz [Fig. 2(e)], the drumhead
modes are so strongly broadened that the spectrum appears
as a smooth continuum beyond the first few well-resolved
highest-frequency modes. In general, the sensitivity of the
drumhead modes to planar position fluctuations is stronger for
the lower-frequency modes. The spectrum shown in Fig. 2(e)
is consistent with Fig. 7(c) of Ref. [22], which shows the
broadening of the drumhead spectrum due to an in-plane
temperature of 10 mK. In contrast, when ωr/(2π ) = 204 kHz
[Fig. 2(f)], the drumhead spectrum shows resolved peaks near
the predicted drumhead mode frequencies over a much larger
range of mode frequencies. Improving the drumhead spectral
resolution could enable the use of more of these modes for
high-fidelity quantum information processing protocols. So
far, protocols have primarily utilized only the center-of-mass
mode, which is the highest-frequency drumhead mode and is
insensitive to planar position fluctuations.

To understand the role played by the mode coupling in
the improved cooling, we compared our results against a
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FIG. 3. Comparison of linearized and full simulations. Lin-
earized and full nonlinear simulations for a N = 54 ion crystal with
δ

β
= 0.25 and ωr/2π = 204 kHz are evolved with and without laser

cooling. (a) Linearized, without laser cooling, no change in mode
branch temperatures observed. (b) Nonlinear, without laser cooling,
rapid equilibration of E × B and drumhead modes observed. (c) Lin-
earized, with laser cooling, very modest reduction in E × B mode
temperature occurs. (d) Nonlinear, with laser cooling, E × B mode
temperature reduced to roughly 1 mK.

simulation where the Coulomb interaction, given by the last
term in Eq. (1), was expanded to second order in the dis-
placements of the ions from their equilibrium positions. The
expansion results in a Coulomb force that is linear in the dis-
placements of the ions. This linearization removes the mode
coupling due to higher-order terms, and allows for the direct
laser cooling to be isolated in simulations. The details of
the linearization procedure and the associated simulations are
provided in the SM.

Figure 3 compares the results of the linearized and the full-
dynamics (nonlinear) simulations for an N = 54 ion crystal
at a rotating wall frequency of ωr/(2π ) = 204 kHz in the
presence and absence of laser cooling. Furthermore, the mode
branch temperatures in Fig. 3 are calculated directly from the
amplitudes of the modes during evolution. These mode energy
averages, neglecting nonlinear corrections from the Coulomb
potential, provide an approximation of the system’s energy
at low temperatures. The mode initialization procedure and
calculation of the mode branch temperatures are discussed in
Ref. [37] and summarized in the SM.

In Figs. 3(a) and 3(b), we investigate the free evolution
of the crystal in the absence of the cooling lasers. The ion
crystal was initialized with E × B modes at 10 mK, cyclotron
modes at 1 mK, and drumhead modes at 0 mK. In Fig. 3(a),
mode branch temperatures are unchanged over 10 ms of free
evolution, since the linearization of the dynamics removes
the mode coupling and energy cannot be exchanged between

the different branches. In Fig. 3(b), the equilibration of the
E × B and drumhead modes occurs rapidly, in roughly 1 ms,
demonstrating the strong mode coupling arising from the full
nonlinear evolution. We note that the E × B temperatures
plotted in Figs. 3(b) and 3(d) exceed 10 mK due to nonlinear
corrections neglected in the mode energy calculation, partic-
ularly significant for low-frequency E × B modes at energies
around 10 mK.

In Figs. 3(c) and 3(d), the linearized and nonlinear sim-
ulations were integrated with laser cooling. The nonlinear
simulation shown in Fig. 3(d) is the same as the one shown in
Fig. 2(d), although in Fig. 3(d) mode branch temperatures are
plotted instead of KE‖, KE⊥, and PE. In the linearized case,
although there is a reduction in the E × B mode temperature
during the 10 ms of laser cooling, this temperature is still
many times larger than the cyclotron and drumhead mode
temperatures. In contrast, in the nonlinear simulation, the
E × B mode temperature is rapidly reduced to roughly 1 mK
after 10 ms of laser cooling. The difference between the lin-
ear and nonlinear simulations further illustrates that coupling
between the E × B and drumhead modes due to the nonlinear
Coulomb interaction is responsible for the accelerated cooling
of the E × B modes.

So far, we compared the cooling dynamics at two repre-
sentative values of ωr and demonstrated the role of the mode
coupling when ωr is close to ωcrit. To further investigate the
effect of mode coupling on the cooling of the E × B modes,
we studied the cooling dynamics and mode coupling as ωr

was scanned. In Fig. 4, an N = 100 ion crystal was initial-
ized and evolved for a range of rotating wall frequencies
between ωr/(2π ) = 180 kHz and ωr/(2π ) = 194 kHz. The
larger number of ions lowers the critical rotating wall fre-
quency to roughly ωcrit/(2π ) = 194.75 kHz.

In Fig. 4(a), the drumhead and E × B mode frequencies are
plotted as ωr is scanned, with the color gradient specifying
the ωr value. Notably, the lower-frequency drumhead modes
are rapidly brought into resonance with the higher end of the
E × B branch as ωr approaches within a few kHz of ωcrit. The
E × B mode frequencies, however, only change slightly as ωr

is increased.
In Fig. 4(b), we study the energy exchange between the

E × B and drumhead mode branches when the crystal is freely
evolved in the absence of cooling lasers for 10 ms. Here,
the E × B mode branch is initialized with a temperature of
10 mK while the other modes are initialized to 0 mK. We plot
the average KE‖ during the last 1 ms of the simulation as a
function of ωr . The linearized simulation shows no change in
KE‖, whereas the nonlinear simulation shows an increase in
the average KE‖ as ωr is increased. Near ωcrit, KE‖ increases
to roughly 2.5 mK, which is consistent with the drumhead
branch temperature being roughly 5 mK. This suggests that
the E × B and drumhead branches equilibrate within 10 ms
for ωr close to ωcrit. However, for lower ωr , KE‖ in both the
linear and nonlinear simulations is unchanged, indicating that
the coupling between branches only becomes significant near
ωcrit.

In Fig. 4(c), the simulation was integrated with laser cool-
ing for 10 ms. The average total potential energy during the
last 1 ms of the simulation is plotted as a function of ωr .
The linearized simulation shows a modest reduction in PE
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FIG. 4. Rotating wall frequency scan. (a) The E × B and drumhead mode frequencies vs mode number colored by the rotating wall
frequency for a N = 100 ion crystal. (b) The axial kinetic energy averaged over the last millisecond of evolution vs rotating wall frequency for
a N = 100 ion crystal evolved for 10 ms without laser cooling (free evolution). The simulations are initialized with E × B mode branch
temperatures of 10 mK, and zero drumhead and cyclotron mode branch temperatures. (c) The potential energy averaged over the last
millisecond of evolution vs rotating wall frequency for a N = 100 ion crystal evolved for 10 ms with laser cooling. The simulations are
initialized with all mode amplitudes corresponding to a temperature of 10 mK.

as the ωr is increased, which may be due to the increased
fraction of KE⊥ contributing to the E × B mode energies.
However, in the nonlinear simulation, PE is rapidly reduced
as ωr approaches ωcrit. Near ωcrit, the average PE over the last
1 ms is roughly 1 mK.

Conclusion and outlook. We have demonstrated a tech-
nique to efficiently cool the low-frequency planar motion of
large two-dimensional (2D) ion crystals in Penning traps,
which has hitherto been challenging. Our technique has no
experimental overhead and can be used to rapidly initialize
(<10 ms) crystals with all motional degrees of freedom cooled
down to millikelvin temperatures. This achievement sets the
stage for sub-Doppler limit laser cooling studies encompass-
ing all 3N motional modes. Furthermore, we showed how the
improved planar cooling greatly reduced the spectral broad-
ening of the drumhead modes. The improved resolution of the
drumhead modes expands the scope of quantum information
protocols that can be performed with large 2D crystals stored
in Penning traps. As a result, it is immediately relevant for
several experiments aiming to use Penning traps for quantum
information processing [2,4,6].

We note that overlapping the bandwidth of the drumhead
modes with the E × B modes introduces low-frequency drum-
head modes. For a given temperature of the drumhead motion
this results in correspondingly larger Lamb-Dicke confine-
ment parameters, which can impact the fidelity of quantum
operations [41,42]. Ground-state cooling of the drumhead
modes can help [43–45], but experimental constraints may

dictate a lower bound on the drumhead mode frequencies
that is significantly higher than any of the E × B modes.
In this case it may be possible to use appropriate time-
dependent electric field configurations to couple the E × B
modes to either the drumhead modes or the cyclotron modes,
which are efficiently laser cooled. Techniques like this have
been investigated with single and small numbers of trapped
ions [25,38]. A notable example is the so-called axializa-
tion technique, which reduces the size of the magnetron
motion of a small number of ions in a Penning trap by
coupling the magnetron motion with the cyclotron motion
[7,39,46]. Alternately, there is the possibility of adiabati-
cally decreasing ωr or similarly increasing ωz after cooling
the E × B modes, which not only eliminates the nonlinear
coupling introduced, but would also increase the frequency
of the lowest-frequency drumhead modes. These possibil-
ities motivate interesting directions for future numerical
simulations.
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SI. NIST PENNING TRAP PARAMETERS AND SIMULATION

FIG. S1. N = 54 Ion Crystal Equilibria. Two planar ion crystal equilibrium configurations corresponding to different
rotating wall frequencies are shown in their respective rotating frames. The ratio of δ/β = 0.25 is fixed for both crystals, such
that the aspect ratios of the ion crystals being studied are the same. (a) With ωr = 2π× 180 kHz the ion crystal is less dense.
(b) With ωr = 2π × 204 kHz the ion crystal is noticeably smaller.

Our study uses a molecular dynamics-like simulation to study laser cooling of large ion crystals in the Penning trap.
The ions are treated as point particles with positions ri and velocities vi for i = 1, 2, . . . N , where N is the number
of ions. The equations of motion are evolved numerically in the lab frame using a time splitting algorithm equivalent
to the Buneman and Boris algorithms. The laser interaction is modeled stochastically by considering resonance
fluorescence of a simplified two-level atom. For each timestep and for each ion, the mean number of photons scattered
is calculated, n̄ = ṅ∆t, where ṅ is the scattering rate. For our choice of timestep, ∆t = 10−9, n̄ ≪ 1, meaning
scattering of multiple photons by a single ion in one timestep is rare. The number of photons scattered is generated
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from a Poisson distribution with mean n̄. The recoil from re-emission is assumed to be isotropic. The velocity of the
ion is updated based on the simulated net momentum kick from absorption and re-emission. Although ∆t = 10−9

for all simulation results presented in this study, we only save positions and velocities once every 1000 time steps, or
each microsecond. For the plotted energy values versus time, rather than being plotted every microsecond, each point
represents the average of 100 consecutive energy calculations. Details of our simulation framework are described in
Ref. [1].

One example of planar ion crystals used in Penning trap experiments is from the Ion Storage Group at the National
Institute of Standards and Technology (NIST), which routinely manipulates planar ion crystals consisting of hundreds
of ions in quantum sensing and simulation experiments [2–4]. Our simulation parameters are chosen to reflect those
of the NIST experiment. The NIST Penning trap magnet is a superconducting high-field magnet with a strength
near the trap center of roughly 4.46 T. Typically, 9Be+ ions are trapped in this device. The 9Be+ ions are an
attractive ion species for quantum protocols. Their hyperfine Zeeman levels can serve as the qubit in quantum
information experiments, and their 2S1/2 →2 P3/2 transition allows for an efficient Doppler laser cooling cycle. The

bare cyclotron frequency of a single 9Be+ ion in the NIST trap is ωc ≈ 2π × 7.60 MHz, reflected by the magnetic
field strength of B = 4.4588 T chosen for simulations. The axial trap frequency is ωz = 2π × 1.58 MHz, chosen
from experiments. To control the collective rotation frequency of the 9Be+ ion crystal, a rotating wall potential is
applied at a precisely controlled frequency. In recent NIST Penning trap experiments [4, 5] a rotating wall frequency
of roughly ωr = 2π × 180 kHz has been applied. In simulations, we consider a range of ωr that is accessible to the
NIST Penning trap experiment.

The ions stored in the NIST Penning trap are laser cooled via a combination of axial and planar laser beams.
The 9Be+ laser cooling transition has a wavelength of λ = 313 nm and natural linewidth γ0 = 2π × 18 MHz, which
correspond to the 2S1/2 →2 P3/2 transition. The axial beam width is much larger than the planar extent of the ion
crystal and its intensity can be considered uniform for the purposes of our simulations. Only one axial laser beam is
used in the experiment, but in our simulations we use two counter-propagating axial laser beams. This ensures that
there is no unbalanced force shifting the ion crystal’s equilibrium position in simulation. In the experiment, the axial
laser beam is adiabatically turned off to avoid exciting the axial center of mass motion as the radiation pressure from
the axial laser beam is removed. The laser cooling dynamics proceeds similarly in both cases, however, the two beams
in the simulation simplify the analysis of the ion crystal’s motion. These beams have a weak saturation, chosen in
our simulations to be Sz = 5 × 10−3. The axial laser beams have a detuning from resonance with the laser cooling
transition of 9Be+ equal to ∆z = −γ0/2. This red detuning is chosen to minimize the Doppler cooling limit of a single
ion’s axial motion [6]. In the NIST experiment, Doppler laser cooling of axial modes can achieve temperatures near
the Doppler cooling limit of TD = 0.43 mK [7].

Laser cooling of ion clouds in a Penning trap can generate crystalline structures [8]. Although the ions can never
be motionless due to the velocity dependent nature of the confining magnetic force, the rotating frame, defined by the
collective rotation of the ion crystal and controlled by the rotating wall potential, offers a unique reference frame for
describing the ion crystal. After laser cooling the ions’ motion, the ions self-organize into a two dimensional triangular
crystalline lattice in the rotating frame [9]. By minimizing their external trapping and Coulombic potential energies,
given in Eq. (1) of the main text, we can calculate equilibrium positions of the ions. These equilibria are depicted
in Fig. S1 for the case of N = 54 ions at two different values of ωr. The two rotating wall frequencies chosen are
ωr/(2π) = 180 kHz for Fig. S1(a) and ωr/(2π) = 204 kHz for Fig. S1(b). Note that the ion crystal in Fig. S1(b)
is smaller than the one in Fig. S1(a) due to an increase in the velocity dependent planar confinement parameter β.
The rotation frequency of ωr/(2π) = 204 kHz is near ωcrit., the rotation frequency at which the planar ion crystal
transitions to a 3D ion crystal. The value of ωcrit. for an N = 54 ion is roughly ωr/(2π) ≈ 204.57 kHz. The transition
arises from the increased planar confinement parameter β as ωr increases. An ion crystal with a three dimensional
equilibrium configuration is generated beyond the critical rotating wall frequency ωcrit.. The value of ωcrit. can be
calculated numerically. The calculation can be done by minimizing the potential energy in the rotating frame for
different values of ωr until a transition from a planar to 3D equilibrium is observed. The value of ωcrit. decreases as
the number of ions in the crystal increases, and may also change with different rotating wall strengths.

The planar ion crystals in Fig. S1 have roughly the same aspect ratio. This is achieved by fixing the ratio of the
anisotropy from the rotating wall potential (rotating wall strength), δ, and the planar confinement parameter, β. In
our simulations, δ/β = 0.25. For the N = 54 ion crystal, it has been empirically observed in simulations that this
choice of parameters gives robustness against reorganization events in the plane. The robustness may be attributed
to the apparent bilateral symmetry for the crystal shown in Fig. S1, since reorganization events have commonly been
observed to be transitions between degenerate potential energy configurations that are reflections of each other about
the x or y axis. In the absence of reorganization, the planar mode amplitudes during the evolution of the system
can be calculated from displacements from equilibrium, see Fig. 3 of the main text. In general, however, planar
reorganization events prevent the calculation of mode amplitudes from displacements, and we default to calculating
PE ,KE⊥, and KE∥ during the evolution of the system. A notable exception is the linearized simulation, which
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removes the possibility of the reorganization events.

SII. LINEARIZATION

To isolate the effect of mode coupling between the axial and E×B mode branches from the laser cooling dynamics,
we implemented a linearized simulation of the ion crystal’s evolution. This consists of calculating the linear force
response of the ions to displacements from equilibrium, and using this force to update the velocities and positions
of the ions. Since the external trapping potentials are quadratic in the displacements of ions from equilibrium, the
Coulomb force is the only source of non-linearity in the system’s evolution. Therefore, all other force calculations
remain the same in the linearized simulation, save the linearized Coulomb force calculation discussed below. The
Coulomb potential is given in Eq. (S1) below:

UC =
e2

8πϵ0

N∑
i=1

∑
j ̸=i

1

|xi − xj |
. (S1)

The expansion up to second order in terms of displacements from the equilibrium positions x0
i , i = 1, 2, . . . , 3N is

given by

UC = UC,0 +

3N∑
i=1

Jiqi +
1

2

3N∑
i,j

Hijqiqj , q = x− x0,
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∂UC

∂xi

∣∣∣∣
x0

, Hij =
∂2UC

∂xi∂xj

∣∣∣∣
x0

,
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where UC,0 is the Coulomb potential energy at equilibrium, and Ji and Hij are respectively the Jacobian and Hessian
of the Coulomb potential energy evaluated at the equilibrium configuration. Note that at equilibrium, Ji is exactly
canceled by the the Jacobian arising from the external trapping potential. The dynamical matrix for the system can
be constructed from the second derivatives of the total potential (external trapping and Coulomb repulsion), and
describes the linear evolution of the system’s eigenmodes [10, 11]. The Coulomb potential is the only component of
the total potential with nonzero third order and higher derivatives. Higher order derivatives encapsulate nonlinear
processes that will change the mode amplitudes over time, such as mode coupling for example, which can allow
for energy redistribution between modes. Mode coupling between the planar modes has been studied numerically
previously [12]. Here however, we calculate the linear force response of the ion crystal due to small displacements
from equilibrium, which will neglect nonlinear effects. To calculate the linearized force on the ions, we take the
gradient of the potential energy in Eq. (S2) with respect to displacements qi. The components of the linearized
Coulomb force on the ions are given by

Fi = −Ji −
3N∑
j=1

Hijqj (S3)

To calculate this force and update the linearized simulation, we first rotate the lab frame coordinates into the
rotating frame, then calculate the displacements from equilibrium, qi. Next, we calculate the components of the
linearized Coulomb force acting on the ions using Eq. (S3), and rotate this force back into the lab frame. The
coordinate rotations can be done using the rotation matrix in Eq. (S4), and changing the sign of ωr correspondingly.
Finally, we update the velocities and positions of the ions using the linearized force in place of the full Coulomb force,
whereas all other force calculations remain the same.

One convenient feature of the linearized evolution is that it does not allow for the planar reorganization of the ion
crystal. This means the mode amplitudes can be calculated directly from the positions and velocities of the ions, which
may not always be the case for the full Coulomb evolution where reorganization is possible, and especially common
for lower rotating wall frequencies. At lower rotating wall frequencies, the E×B modes have lower frequencies, and
possess correspondingly larger excursions from equilibrium, making reorganization of the ion crystal more likely.

SIII. MODE INITIALIZATION AND AMPLITUDE CALCULATION

In our simulations, we can individually initialize all 3N modes of the ion crystal. This consists of prescribing the
initial mode amplitudes and phases. Typically, we assign all modes belonging to a particular branch of the mode
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spectrum the same initial amplitude, which corresponds to a preset mode branch temperature. The phases of all
modes are then chosen randomly from a uniform distribution. A detailed description of this process is given in the
appendix of Ref. [12].

It is important to note that our mode initialization procedure may realize ion crystals with slightly different initial
energies KE⊥,KE∥, and PE than anticipated, as it relies on the assumption that the mode amplitudes are small, and
the linear approximation is valid. For all mode amplitudes initialized to correspond to a temperature of 10 mK, we
find that the difference from the expected energy for KE⊥,KE∥ and PE and their values calculated after initialization,
are typically no more than 1 mK. The biggest discrepancies are seen for PE, which arise from nonlinear corrections in
the energy from the Coulomb interaction between the ions. We note that for a given temperature, the E×B modes
will exhibit the largest amplitude excursions because of their low frequencies. Therefore the linear approximation will
breakdown first for the E×B modes.

After the simulation is complete, and assuming that reconfiguration of the ion crystal has not occurred, we can
calculate the mode amplitudes directly from the positions and velocities of the ions. If a reconfiguration of the ion
crystal has occurred, then the displacements from the equilibrium positions of the original configuration will lead to
erroneously large mode amplitudes, and the analysis fails.

The mode amplitude calculation is used to directly calculate Tcyc,Taxl, and TExB in Fig. 3 of the main text. To
calculate the mode amplitudes, the ion crystal’s position and velocity coordinates in the lab frame are transformed to
the rotating frame. The transformation of the planar position coordinates can be done by applying a rotation matrix
to the x and y coordinates of the ions, i.e.,[

x′

y′

]
=

[
cos(ωrt) − sin(ωrt)
sin(ωrt) cos(ωrt)

] [
x
y

]
, (S4)

where x′ and y′ are the rotating frame coordinates, and x and y are the lab frame coordinates. By making the
coordinate transformation to the rotating frame, displacements from equilibrium can be calculated. The velocity
coordinates are similarly transformed into the rotating frame. With the rotating frame displacements and velocities,
the mode amplitudes can be calculated by projecting the displacements and velocities onto the mode eigenvectors.
This yields a corresponding set of mode amplitudes for the set of mode eigenvectors. Finally, the energy of each mode
can be calculated from the mode amplitudes as described in Eq. (11) of Ref. [10].

However, it is essential to note, that even in the absence of crystal reorganization, the mode branch temperatures
calculated exhibit errors indicative of the underlying linear approximation employed. For example, we observe in
Fig. 3 of the main text that the nonlinear simulations show variations and spikes in TExB near t = 0, which are
almost certainly due to a breakdown of the linear approximation at T = 10 mK. In Fig. 3(d), these errors diminish
as TExB decreases, aligning with the expectation that the linear approximation gains increased accuracy at lower
temperatures.

SIV. LONG TIME LASER COOLING SIMULATIONS

In this section, we describe long time laser cooling simulations (> 10 ms). The results are shown in Fig. S2. We
initialize the same ion crystals discussed in Fig. 2 of the main text. The ion crystals’ equilibrium configurations are
shown in Fig. S1. These ion crystals are evolved for 200 ms with the same laser cooling parameters described in Fig. 1
of the main text.

First we consider the long time evolution of the crystal simulated in Fig. 2(c) of the main text, shown here in
Fig. S2(a). The kinetic energies, KE⊥ and KE∥, are nearly instantaneously cooled on this long timescale, however,
PE cools on a timescale of hundreds of milliseconds. After a period of 150 ms, PE achieves a value of roughly 4 mK.
This is much higher than the mean values of roughly 2 mK for KE⊥ and 0.5 mK for KE∥. For the remainder of the
laser cooling simulation (> 150 ms) , PE appears to fluctuate around a value of 4 mK.

Next we consider the long time evolution of the crystal described in Fig. 2(d) of the main text and shown here in
Fig. S2(b). As described in the main text, for this value of ωr, many of the lower frequency drumhead modes are
near resonant with the E × B modes. Cooling of the kinetic energies, KE⊥ and KE∥, occurs rapidly. However, PE
cooling also occurs on a very short timescale compared to the full integration time of 200 ms. After the initial several
milliseconds of cooling, all energies fluctuate around a mean value for the remainder of the laser cooling process. This
suggests that, with ωr near ωcrit., all energies can be rapidly cooled. Furthermore, the cooling appears to achieve
a lower steady-state energy for PE of about 1 mK as compared to the 4 mK observed for the crystal rotating at
ωr/(2π) = 180 kHz, shown in Fig. 2(a).

In real experiments, the slow cooling of PE shown in Fig. S2(a) may not be sufficient to overcome external heating
rates. Therefore, to guarantee sufficient cooling of in-plane motions, it may be vital to couple axial and planar motions
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FIG. S2. Long Time Evolution of the Planar Ion Crystal. Two planar ion crystals with different rotating wall frequencies
are shown. Both are initialized with all mode amplitudes corresponding to T = 10 mK, and laser cooled for 200 ms. (a) Time
evolution of energies for the ion crystal rotating at ωr/(2π)180 kHz. The laser cooling simulation shows a slow decrease in PE
over roughly 150 ms, after which PE achieves a minimum value around 4 mK. The other energies, KE⊥ and KE∥, cool near
instantaneously on this long timescale. The initial rapid cooling of PE is due to a decrease in drumhead axial mode energies.
This decrease in PE corresponds to the decrease seen in KE∥ during the start of the simulation. (b) Time evolution of energies
for the ion crystal with rotating wall frequency near ωcrit., ωr = 2π × 204 kHz. The laser cooling simulation shows a rapid
decrease in PE which stabilizes to roughly PE ∼ 1 mK for the remainder of the evolution. The cooling of KE⊥ and KE∥ appears
near-identical in both simulations, suggesting that changing ωr strongly affects the cooling dynamics of PE in particular.

by increasing ωr, as done in Fig. 2(b). With this technique, the lowest attainable steady-state energy for PE also
seems to be lower.
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