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We present a complete calculation, fully accounting for quantum effects and for molecular flexibility, of the
first dielectric virial coefficient of water and its isotopologues. The contribution of the electronic polarizability
is computed from a state-of-the-art intramolecular potential and polarizability surface from the literature,
and its small temperature dependence is quantified. The dipolar polarizability is calculated in a similar
manner with an accurate literature dipole-moment surface; it differs from the classical result both due to the
different molecular geometries sampled at different temperatures and due to the quantization of rotation. We
calculate the dipolar contribution independently from spectroscopic information in the HITRAN2020 database
and find that the two methods yield consistent results. The resulting first dielectric virial coefficient provides
a complete description of the dielectric constant at low density that can be used in humidity metrology and
as a boundary condition for new formulations for the static dielectric constant of water and heavy water.

I. INTRODUCTION

Water is crucial in many scientific and industrial con-
texts. Measurement of the water content of a gas (i.e.,
humidity) is needed in studies of the atmosphere related
to weather and climate processes, but obtaining accu-
rate, fast, and reproducible measurements is challenging.
There are also industrial contexts where knowledge of
water content is important; an example is natural gas
transportation where water can freeze out as ice or form
hydrates, both of which are undesirable and potentially
dangerous.

One technology that has been proposed for humidity
metrology is measurement of the static dielectric con-
stant. Because the molecules in dry air (and, for the most
part, in natural gas) are nonpolar, the presence of highly
polar water molecules can have a significant effect on
the dielectric constant, even at low concentrations. After
some preliminary exploration of this approach at the Na-
tional Institute of Standards and Technology (NIST),1–3

more fully developed apparatus for measuring this effect
was described by Cuccaro et al.4 for water in air and ni-
trogen and by Gavioso et al.5 for water in methane and
natural gas. To apply such measurements in metrology,
it is necessary to have an accurate expression for the con-
tribution of water molecules to the static dielectric con-
stant.

The dielectric constant of pure water is of major scien-
tific importance in its own right; it plays a central role in
modeling aqueous electrolyte thermodynamics and elec-
trochemical reactions not only in the liquid phase but also
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at vapor and supercritical conditions with gas-like den-
sities. The International Association for the Properties
of Water and Steam (IAPWS) has developed a standard
formulation for the static dielectric constant of ordinary
water from zero to liquid-like densities,6 but several de-
ficiencies in this formulation have been noted,7 including
its behavior at low density. Better theoretical knowledge
of the dielectric behavior of low-density water would pro-
vide an important boundary condition for an improved
formulation.

Heavy water (D2O) is also used in studies of electrolyte
solutions, for example in comparison with light water to
elucidate the details of ion hydration or to study electro-
chemistry of species relevant to heavy-water reactors.8

Knowledge of the dielectric constant is again needed, but
efforts to develop a formulation for the static dielectric
constant of D2O are hampered by a lack of experimental
data.9 As with H2O, a low-density boundary condition
would aid these important modeling efforts.

For a low-density gas with a dipole moment, the well-
known classical relationship of the static dielectric con-
stant ε to the static isotropic electronic polarizability α
and the squared magnitude of the molecular dipole mo-
ment µ2 of the gas constituent is given by the Debye–
Langevin modification of the Clausius–Mossotti expres-
sion (CMDL):

ε − 1

ε + 2
= 4π

3
NAρ(α +

µ2

3kBT
) , (1)

where NA is the Avogadro constant, ρ is the molar den-
sity, and kB is the Boltzmann constant. The first dielec-
tric virial coefficient Aε is defined as the low-density limit
of the proportionality constant between the density and
the Clausius–Mossotti quotient:

Aε ≡ lim
ρ→0

1

ρ

ε − 1

ε + 2
. (2)
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For low-density gas mixtures, the left-hand side of Eq. (1)
is simply the sum of ρAε of each pure component.

One might think that Eq. (1) provides a simple route
to the calculation of Aε for water, and therefore to humid-
ity metrology. The isotropic electronic polarizability of
the water molecule in the ground rovibrational state has
been calculated by ab initio quantum mechanics,10 and
the result is in good agreement with extrapolation of gas-
phase refractivity measurements to the static limit.11,12

The dipole moment of the H2O molecule in the rovibra-
tional ground state has been measured to a relative un-
certainty of 5 × 10−5.13

There are, however, several ways in which the classical
Eq. (1) is oversimplified and slightly inaccurate. The
purpose of this paper is to provide a rigorous accounting
of all effects on Aε, all of which involve quantum mechan-
ics in one form or another.

First, the quantization of rotation means that the
classical expression is inexact. A first-order correction
for this quantum effect was first derived for rigid linear
molecules by MacRury and Steele,14 and was generalized
to rigid nonlinear molecules by Gray et al.15

Second, molecules are not rigid objects, and hence the
electronic polarizability has a small temperature depen-
dence. Only at 0 K does it assume the ground-state value;
at higher temperatures other rovibrational states are oc-
cupied, each of which has a slightly different electronic
polarizability.

Third, there is a similar effect for the dipole moment.
The excited rovibrational states populated at finite tem-
peratures have somewhat different dipole moments than
the ground-state value. Additionally, the proper quan-
tum mechanical derivation of the expression for the first
dielectric virial coefficient shows that the generalizaton
of Eq. (1) does not simply involve the average value of
the dipole moment.

In this paper, we will discuss in detail how Eq. (1)
is modified by quantum mechanical effects involving the
rovibrational states of the water molecule. Additionally,
we will provide the first fully quantum calculation of the
first dielectric coefficient Aε of Eq. (2), discussing in de-
tail the various quantum effects that one might expect for
H2O and its isotopologues due to their small moments of
inertia and molecular flexibility.

We are not aware of any application for our results
below the frost-point temperatures of gases with trace
humidity levels (perhaps ∼170 K). We perform computa-
tions down to 50 K for completeness, because the physical
effects are interesting, and because for some quantities an
alternative approach that has very low uncertainty below
about 150 K allows us to validate our calculations.

II. THE FIRST DIELECTRIC VIRIAL COEFFICIENT OF
A QUANTUM POLAR MOLECULE

The statistical derivation of the CMDL equation shows
that the dielectric constant of a gas depends on the

derivative of the polarization density P (F ) in an external
electric field F evaluated at zero field,15–17

ε − 1

ε + 2
= 4π

3

dP (F )
dF

∣
F=0

≃ Aερ =
4π

3

dp(F )
dF

∣
F=0

ρNA,

(3)
where in the right-hand side we have expanded P (F ) to
first order as a function of the molar density ρ,17 that is
P (F ) = ρNAp(F ) where p(F ) is the dipole moment of an
isolated molecule in the external field F . The quantity
Aε is the first dielectric virial coefficient.

The dipole moment of a molecule in thermodynamic
equilibrium at temperature T in an electric field is given
by the expectation value

p(F ) = Tr [(m ⋅ e + e ⋅α ⋅ eF ) exp (−βH(F ))]
Tr [e−βH(F )]

(4)

H(F ) =H0 − F m ⋅ e − F
2

2
e ⋅α ⋅ e, (5)

where H0 is the Hamiltonian of the free molecule, β =
(kBT )−1, e is a unit vector in the direction of the ex-
ternally applied electric field of magnitude F , α is the
molecular electronic polarizability tensor, and m is the
molecular dipole moment. Notice that, in general, both
the dipole moment m and the electronic polarizability
tensor α depend on the specific molecular orientation and
configuration which, in the case of water, is determined
by 6 degrees of freedom. Usually, these are given by three
Euler angles defining the relation between the molecule-
fixed and the the laboratory-fixed coordinate system,18

the lengths r1 and r2 of the two O–H bonds, and the
angle θ between their directions. The denominator in
Eq. (4) is the partition function of a single molecule, and
will be denoted by Q1(β,F ).

A. Classical and semiclassical limit for rigid rotors

The evaluation of the derivative at zero external field
appearing in equations (3), (4), and (5) can be performed
explicitly. Its derivation is reported in the Supplementary
Material and it shows that, in general, the first dielectric
virial coefficient has two contributions,

Aε =
4π

3
NA (αel + αdip) , (6)

where the first depends on the electronic polarizabil-
ity surface α, while the second depends on the dipole-
moment surface m. In the classical limit, one recovers
Eq. (1)

A(cl)
ε = 4π

3
NA ⟨αel +

β∣m∣2

3
⟩ , (7)

where the average ⟨⋯⟩ is over the internal configurations
of the molecule; this is the result quoted in Ref. 14 and
shows how to interpret the quantities α and µ2 in Eq. (1),
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which are the values of the electronic polarizability and
the squared magnitude of the dipole moment at the as-
sumed rigid configuration of water. In a simple classical
rigid model of water (e.g., when the bond lengths r1 and
r2 and the angle θ are fixed at their ground-state val-
ues19), the contribution to Aε from the dipole moment

is A
(dip,cl)
ε ∼ 70.2 cm3/mol at T = 300 K, whereas that

from the electronic polarizability tensor is on the order

of A
(el,cl)
ε ∼ 3.7 cm3/mol.

Semiclassical corrections to the dipolar contribution in
Eq. (7) have been derived in Ref. 15, and are given by

∆A
(dip,semi)
ε

A
(dip,cl)
ε

=

− βh̵2

12∣m∣2
(
m2
y +m2

z

Ix
+ m

2
z +m2

x

Iy
+
m2
x +m2

y

Iz
) , (8)

where Ii are the principal moments of inertia of the
molecule and mi are the components of the dipole mo-
ment along the principal axis. For water at 300 K,

the semiclassical correction of Eq. (8) is A
(semi)
ε =

−2.0 cm3/mol, which in relative terms is roughly 3% of
the dipolar contribution.

B. Quantum statistics

In the general case, one has to be careful in performing
the derivative with respect to F in Eq. (3), due to the
presence of non-commuting operators. Denoting by ∣i⟩ a
complete set of molecular rovibrational quantum states
and by Ei the corresponding energies, the fully quantum
expressions for the two terms in Eq. (6) are (see the Sup-
plementary Material for the derivation)

αel(T ) = 1

Q1(β,0)
∑
i

⟨i∣Tr(α)∣i⟩
3

e−βEi , (9)

αdip(T ) = 1

Q1(β,0)
∑
i≠j

∣⟨i∣m ⋅ e∣j⟩∣2 e−βEi − e−βEj

Ej −Ei
.(10)

The quantum mechanical formula for αdip was first de-
rived by Illinger and Smyth.20 In general, a molecular
eigenstate ∣i⟩ is characterized by a set of rotational and
vibrational quantum numbers and hence one can split
the sum in Eq. (10) into two contributions: the first cor-
responds to those i↔ j transitions where the vibrational
state changes, resulting in the so-called vibrational polar-
izability. The sum over the remaining transitions, which
have the same vibrational quantum numbers, is called
the rotational polarizability.21

In the T → 0 limit, the electronic polarizability (9)
becomes just an average over the ground rovibrational
state ∣0⟩, that is

α0
el =

1

3
⟨0∣Tr(α)∣0⟩, (11)

whereas the dipolar polarizability becomes21

α0
dip = 2∑

j≠0

∣⟨0∣m ⋅ e∣j⟩∣2

Ej −E0
= 2

3
∑
j≠0

∣⟨0∣m∣j⟩∣2

Ej −E0
, (12)

where we have used rotational invariance to substitute
e ⋅α ⋅ e = Tr(α)/3 and ∣⟨i∣m ⋅ e∣j⟩∣2 = ∣⟨i∣m∣j⟩∣2/3.

In the high-temperature (classical) limit, T → ∞, one
can write

e−βEi − e−βEj ≃ e−βEiβ(Ej −Ei), (13)

and Eq. (10) becomes

αclass
dip (T ) = β

3

∑i⟨i∣∣m∣2∣i⟩e−βEi
Q1(β,0)

, (14)

which can be seen as a generalization of the classical ex-
pression (7) where the square of the permanent dipole is
replaced by its quantum thermal average, which depends
only on the diagonal matrix elements of the correspond-
ing operator. In general, however, the dipolar contribu-
tion to the first dielectric virial coefficient depends on all
the matrix elements of the dipole moment, as evidenced
by Eq. (10).

III. DIPOLAR POLARIZABILITY FROM
SPECTROSCOPY

The dipolar polarizability (10) depends on the squared
matrix elements of the dipole operator m, which is the
same operator that determines the Einstein coefficient
associated with an electromagnetic transition between
states of energy Ei and Ej .

22 These coefficients, or equiv-
alently the line intensities, of several thousands of tran-
sitions are available in the HITRAN2020 database23 for
many water isotopologues, as well as other molecules.
This paves the way to an experimental determination of
the dipolar polarizability from spectroscopic data.

To this end, let us rewrite Eq. (10) according to the
following considerations: first of all, we notice that the
quantity to be summed is invariant under the exchange
i↔ j. Hence, the dipolar polarizability is given by twice
the sum performed over those states for which Ej > Ei.
Second, there might be degeneracies among the energy
levels, so let us denote by di the number of states having
energy Ei; in the case of water di = (2J + 1)gi where J is
the angular momentum of state i and gi is its nuclear-spin
degeneracy. A general state ∣i⟩ can then be labeled by its
energy Ei and an integer ξ running between 1 and di.
Finally, let us define the average dipole matrix element
squared between levels with energy Ei and Ej as

Mij =
1

didj

di

∑
ξ=1

dj

∑
η=1

∣⟨Ei, ξ∣m ⋅ e∣Ej , η⟩∣2, (15)

and the transition frequency ωij = (Ej − Ei)/h̵. With
these definitions, we can write the dipolar polarizability
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as

αdip(T ) = 2

Q1(β)
∑

Ej>Ei

didjMij

h̵ωij
e−βEi (1 − e−βh̵ωij) .

(16)
On the other hand, the spectral line intensities Sij for

the transitions between molecular levels of energy Ei and
Ej reported in the HITRAN2020 database are given by
(in our notation)24,25

Sij =
2π

h̵c
IAωijdidjMij

e−βREi(1 − e−βRh̵ωij)
Q1(βR)

, (17)

where c is the speed of light, IA is the isotopic abundance
of the species under consideration, βR = (kBTR)−1, and
TR = 296 K is a reference temperature. Consequently,
one can write

αdip(T ) = c

π IA
∑

Ej>Ei

Sij

ω2
ij

Q1(βR)
e−βREi(1 − e−βRh̵ωij)

×

e−βEi(1 − e−βh̵ωij)
Q1(β)

, (18)

which enables the calculation of the dipolar polarizabil-
ity based on the quantities Sij , ωij , Ei, Q1(β), that are
all reported the HITRAN2020 database. Since the HI-
TRAN2020 database also reports quantum numbers for
the upper and lower states of the transitions, the calcula-
tion of the vibrational and rotational contributions to the
dipolar polarizability using Eq. (18) is straightforward.

The HITRAN2020 database also reports the uncer-
tainty associated with the line intensities Sij ; we have
used this information to propagate it to the uncertainty

of A
(dip)
ε using Eq. (18). In those cases where HI-

TRAN2020 reported a range for the uncertainty, we made
the conservative choice of taking the highest value and
considering it to be a standard uncertainty.

We note that any errors in the HITRAN-calculated val-
ues will be highly correlated, because the same data for
lines and intensities are used at each temperature (just
weighted differently). This makes the scatter of the re-
sults calculated from HITRAN2020 much less than the
uncertainties of those results.

IV. AB INITIO CALCULATION OF THE FIRST
DIELECTRIC VIRIAL COEFFICIENT

The quantities αel(T ) and αdip(T ) can be computed
from the knowledge of the intramolecular potential, the
trace of the polarizability α(X) = Tr(α), and the dipole
moment m(X), where X denotes a set of intramolecular
coordinates (e.g., the two bond lengths and the HOH an-
gle). All of these quantities are available from ab initio
electronic structure calculations. In particular, we used
the recent PES15K26 potential-energy surface to com-
pute the intramolecular potential, the dipole-moment
surface m(X) CKAPTEN from Ref. 27, and the isotropic

electronic polarizability α(X) from Ref. 10. In Ref. 10,
the authors provide a fitting function based on exten-
sive calculations of the polarizability for many molecular
configurations (the DPS-H2O-3K database), solving the
electronic structure at the CCSDT/daTZ level of the-
ory. In addition, they perfomed a few evaluations of the
polarizability surface at a more accurate level of theory
(CCSDT/daQZ + ∆αbasis + ∆αcore). The values ob-
tained in this case are much more accurate for configu-
rations close to the equilibrium configuration of water.
Therefore, we slightly changed their parametrization of
the polarizability surface (from their Table II10) in or-
der to obtain more accurate values around the equilib-
rium geometry. In practice, we changed the first line of
their Table II (corresponding to (ijk) = (000)) to the
values reported in their Table III, that is αxx = 9.8744,
αyy = 9.2233, and αzz = 9.5190 (in atomic units). This
corresponds to a rigid shift of the isotropic part of the
CKAPTEN polarizability surface by ∆αiso = −0.039133
atomic units, which in relative terms is approximately
0.4%.

There are two main ways to compute the first dielectric
virial coefficient for water. The first is to diagonalize the
Schrödinger equation for the nuclear motion of the water
molecule, compute the temperature-dependent electronic
polarizability of Eq. (9) and the dipolar polarizability of
Eq. (10), and obtain the first dielectic virial coefficient
from Eq. (6). Although there are efficient approaches to
solve the quantum-mechanical three-body problem and
obtain the rovibrational eigenstates of water molecules,
a complete diagonalization of the intramolecular Hamil-
tonian becomes progressively more difficult for molecules
with a larger number of atoms. We will show in the fol-
lowing how the two temperature-dependent contributions
to Aε(T ) can be obtained from a path-integral approach,
which has a much more favorable computational scaling
for polyatomic molecules.

A. The discrete variable representation approach

In the case of water or other triatomic molecules, it is
convenient to use the form of the three-body Hamilto-
nian in the molecule-fixed frame derived by Sutcliffe and
Tennyson using Jacobi coordinates.28 In this approach,
one obtains, for each value of the total molecular an-
gular momentum J , a vibrational Hamiltonian that de-
pends on three coordinates: the moduli of the two Jacobi
vectors, R1 and R2, and the value of the angle between
them, Θ. The full rovibrational spectrum of water can
be obtained by diagonalizing the vibrational Hamiltonian
for progressively larger values of the molecular angular
momentum J . The Hamiltonian is conveniently writ-
ten using the so-called Discrete Variable Representation
(DVR),29–31 which has been used in many investigations
of water properties.32,33

In practice, the rovibrational wavefunction is written



5

as

ΨJνmI(q,Ω, I) =
√

2J + 1

8π2

J

∑
k=−J

ψJν(q, k)DJ
mk(Ω)χ(IJν , I), (19)

where q = (R1,R2,Θ) denotes the molecular vibrational
coordinates, ψJν(q, k) are the eigenfunctions of the rovi-
brational Hamiltonian in the molecule-fixed frame for a
given value of J , DJ

mk(Ω) are Wigner rotation matrices
from the molecule-fixed to the laboratory-fixed frames,
and χ(IJν , I) denotes the wavefunction of nuclear spins,
with total spin IJν and projection I along the labora-
tory Z axis. In the case of water molecules with two
identical hydrogen isotopes, the overall wavefunction in
Eq. (19) must have a specific symmetry upon exchange
of the two hydrogens, reflecting their fermionic (H or T,
antisymmetric wavefunction) or bosonic (D, symmetric
wavefunction) nature. The need of a well-defined ex-
change symmetry for the total wavefunction implies that
the nuclear-spin state of the two hydrogens depends on
exchange symmetry of the rovibrational state ψJν .

In the case of two hydrogen atoms (with nuclear spin
1/2), molecular configurations have either IJν = 0 (para-
water) or IJν = 1 (ortho-water), with multiplicities
gpara = 1 and gortho = 3, respectively. In the case of two
deuterium atoms (with nuclear spin 1), the ortho spin
isomer has total spin I which is either 0 or 2 (that is,
degeneracy gortho = 6) or total spin 1, with degeneracy
gpara = 3. For the sake of completeness, we recall that
nuclear spin degeneracies can also come from the oxygen
spin, although in this case they do not depend on the
rovibrational state. This is particularly relevant for the
17O oxygen isotope, which has I = 5/2. The other oxygen
isotopes have I = 0.

Notice that the energy levels on the molecular Hamil-
tonian depend only on the quantum numbers J (the total
angular momentum), k (the projection of the angular mo-
mentum in the molecule-fixed z axis), and ν (that labels
the vibrational states obtained for given values of J and
k). Rotational invariance implies a 2J + 1 degeneracy on
the label m in Eq. (19).

Evaluating the symmetry upon exchange of the wave-
functions ψJνk(q), and hence the degeneracy, is a non-
trivial procedure,34 but this information is already in-
cluded in the HITRAN2020 database. Given the accu-
racy of our calculated energy levels (see details of the
calculations in section V B 2), we assigned degeneracies
by looking at that of the closest energy level, for a given
J , among the states present in HITRAN2020. Using the
DVR approach, one can compute the electronic and dipo-
lar contribution to the polarizability directly from the
quantum mechanical expressions of Eqs. (9) and (10),

respectively. In the first case, one obtains

αel(T ) =∑
Jν

gJν(2J + 1)e−βEJν
3 Q1(β,0)

⟨ψJν ∣Tr(α)∣ψJν⟩ , (20)

where gJν is the degeneracy of the given rovibrational
state and, in the DVR representation, one has

⟨ψJν ∣Tr(α)∣ψJν⟩ =∑
q,k

∣ψJνk(q)∣2 Tr(α(q)), (21)

since the trace of the polarizability tensor α(q) is a scalar
quantity and a diagonal operator in the DVR represen-
tation. Notice that in the case of a rigid model of water,
the electronic polarizability (20) does not depend on tem-
perature.

The quantum mechanical expression for αdip(T ) is
more complicated, because one needs to evaluate the ma-
trix element of the components of the dipole moment m
in the laboratory-fixed frame using wavefunctions defined
in the molecule-fixed frame.18,32,35 Its derivation is dis-
cussed in Appendix A, for both rigid and flexible molec-
ular models.

B. The path-integral approach

A first-principles evaluation of the first dielectric virial
coefficient from Eqs. (3)–(5) can also be performed us-
ing the path-integral formulation of quantum statistical
mechanics.36 The main advantage of this method is that
it works directly in the Cartesian coordinates of all the
atoms, and hence one does not need the analytically com-
plicated procedure of separating the center-of-mass, rota-
tional, and vibrational motion as needed for solving the
Schrödinger equation.

1. Quantum rigid rotors

In the case of a rigid rotor, αel is a constant and hence
easily evaluated. Taking the derivative with respect to F
of the first term in Eq. (3) requires some care, because
the dipole moment direction in the laboratory reference
frame, m ⋅ e (which will be denoted by mZ in the fol-
lowing), does not commute with H0 which, in this case,
is the Hamiltonian of a quantum asymmetric rigid rotor.
It is convenient to specialize the trace as an integration
over all possible orientations of the molecule – which will
be denoted by Ω1 – and at the same time use Trotter’s
identity to write

e−βH0+βm⋅eF ∼ (e−βH0/P eβ(m⋅e)F /P )
P
, (22)

which becomes an equality for a sufficiently large P . In-
serting P − 1 completeness relations of the form

1 = ∫ ∣Ωk⟩⟨Ωk ∣ dΩk,

between the P products in Eq. (22), one ends up with
the expression
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Aε =
4π

3
αel +

4π

3Q1

∂

∂F
∫ mZ(Ω1)

P

∏
k=1

⟨Ωk ∣e−βH0/P ∣Ωk+1⟩ eβmZ(Ωk+1)F /P
P

∏
k=1

dΩk (23)

= 4π

3
αel +

4π

3Q1
∫ mZ(Ω1)

P

∏
k=1

⟨Ωk ∣e−βH0/P ∣Ωk+1⟩ [ β
P

P

∑
k=1

mZ(Ωk)]
P

∏
k=1

dΩk (24)

= 4π

3
αel +

4πβ

3Q1
∫

P

∏
k=1

⟨Ωk ∣e−βH0/P ∣Ωk+1⟩ [ 1

P

P

∑
k=1

mZ(Ωk)]
2 P

∏
k=1

dΩk, (25)

= 4π

3
αel +

4πβ

9
⟨∣m∣2⟩ , (26)

where we have defined m = ∑km(Ωk)/P . In passing
from (24) to (25), we have used the fact that singling out
mZ(Ω1) in (23) is an arbitrary choice that we have aver-
aged upon. Notice also that we have defined ΩP+1 = Ω1.
The evaluation of the matrix elements ⟨Ωk ∣e−βH0/P ∣Ωk+1⟩
for a rigid-rotor molecule is discussed in Refs. 37 and 38.

2. Quantum flexible molecules

In dealing with flexible models of water, it is conve-
nient to denote by X the set of all the coordinates of the
three atoms. In this case, Aε is still given by Eq. (3)
where the Hamiltonian H0 includes the kinetic energy
of the three atoms, K, and the intramolecular poten-
tial Vint(X). Note that both the dipole moment m and
the electronic polarizability tensor α depend on X. The
path-integral evaluation of quantities related to flexible
molecules has been described in detail in Ref. 39. The
main result is that one can map the quantum partition
function to a classical partition function where each atom
is represented by a ring polymer with P beads. This ap-
proach provides an explicit expression of the interaction
between consecutive beads (that turns out to be an har-
monic potential) and the interaction among the ring poly-
mers, which depends on Vint(X). In the case of H2O or
D2O, one has to consider the indistinguishability between
the hydrogen or deuterium atoms within a molecule. Al-
though this can be done in the path-integral approach,
it can be shown that exchange effects are important only
for temperatures T ≲ 50 K39 and therefore they will be
neglected in this paper.

With a derivation analogous to that performed in the
case of rigid rotors, the path-integral expression for Aε

in the case of a flexible model turns out to be

Aε =
4π

3
∫ (αel +

β

3
∣m∣2) ×

P(X1, . . . ,XP )
P

∏
k=1

dXk (27)

αel =
1

P

P

∑
k=1

αel(Xk) (28)

m = 1

P

P

∑
k=1

m(Xk) (29)

P(X1, . . . ,XP ) = 1

Q1

P

∏
k=1

⟨Xk ∣e−βT ∣Xk+1⟩ ×

exp(− β
P

P

∑
k=1

Vint(Xk)) , (30)

where P(⋯) is the probability of finding a specific molec-
ular configuration in the path-integral representation.

The first term in Eq. (27) is the path-integral repre-
sentation of the electronic contribution to the electronic
polarizability of Eq. (9),21,40 whereas the second term
corresponds to the temperature-dependent dipolar po-
larizability, Eq. (10).

V. NUMERICAL IMPLEMENTATION

A. Quantum rigid rotors

1. Path-integral Monte Carlo

In the case of quantum rigid rotors, our path-integral
Monte Carlo (PIMC) simulation followed the procedure
outlined in Refs. 37 and 38. We considered the under-
lying rigid model of water by using the ground-state ge-
ometric parameters in Ref. 19 (r1 = r2 = 0.97565 Å and
θ = 104.43○ for H2O; r1 = r2 = 0.97077 Å and θ = 104.408○
for D2O), and those developed in Ref. 41 for HD16O
(r1 = 0.97126 Å, r2 = 0.96947 Å, θ = 104.01○), where
r1 and r2 are the two bondlengths and θ is the bending
angle of the water molecule.

We found convergence of the values of the dipolar po-
larizability using P = nint(5 + 700 K/T ), where T is the
temperature and nint(x) denotes the nearest integer to
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the number x. We performed 100000 Monte Carlo moves
(corresponding to an attempted rotation of a molecule in
one of the imaginary-time slices) for equilibration, and we
then averaged the values of the dipole moment on 256 in-
dependent runs each one sampling 1000 configurations,
separated by 50 Monte Carlo moves.

2. Hamiltonian diagonalization

In the case of a rigid water model, the coordinates q in
Eq. (19) are fixed, and the wavefunctions are given by

ΨJνmI(Ω, I) =
√

2J + 1

8π2

J

∑
k=−J

ψJνkD
J
mk(Ω)χ(IJν , I). (31)

The quantities ψJνk can be obtained by diagonaliza-
tion of the rigid-rotor Hamiltonian in the molecule-fixed
frame, that is

HR = h̵
2

2
(J

2
a

Ia
+
J2
b

Ib
+ J

2
c

Ic
) , (32)

where Ji are the angular momentum operators in the
molecular frame, and Ia ≤ Ib ≤ Ic are the principal inertia
moments of the molecule.18 The index ν of the rigid-
rotor eigenfunction labels the rotational states of HR for
a given total angular momentum J and therefore is an
integer between −J and J (inclusive).

In the case of rigid asymmetric rotors, such as water,
the eigenfunctions for a given total angular momentum
J are usually labeled with the notation JKaKc where Ka

and Kc denote the absolute value of the projection K
of the angular momentum in the molecular frame in the
limits Ib → Ia < Ic (oblate symmetrical top) and Ia < Ib →
Ic (prolate symmetrical top). In both of these limits, K is
a good quantum number and states with the same value
of ∣K ∣ are degenerate. The nuclear-spin degeneracy is
related to the value of Ka +Kc: for H2

16O one has that
gJν = 1 if Ka +Kc is even (para-H2

16O), and gJν = 3 if
Ka +Kc is odd (ortho-H2

16O), while for D2
16O one has

that gJν = 6 if Ka+Kc is even (ortho-D2
16O), and gJν = 3

if Ka +Kc is odd (para-D2
16O).

We performed rigid-model calculations by numerical
diagonalization of the Hamiltonian of Eq. (32) up to J =
40.

B. Quantum flexible molecules

1. Path-integral Monte Carlo

We checked convergence of various components of the
first dielectric virial coefficient with the number of beads
P , and we found that it was reached using P = 70 +
nint(10000 K/T ) for every possible isotopologue. In or-
der to perform PIMC calculations, we developed code

based on the hybrid Monte Carlo method42 to sample
molecular configurations according to the probability of
Eq. (30). We used 200000 steps for equilibration and then
evaluated average values using at least 512 independent
runs of 600000 steps, sampling observables every 1000
steps.

2. Discrete Variable Representation

We developed a DVR code in house. Nr = 28 and
Nθ = 28 basis set points for the radial and angular co-
ordinates, respectively, were sufficient to obtain rovibra-
tional energies within one part in 106 from the reference
values calculated in Ref. 26 for J = 0. Limitations in
memory and CPU time available prevented us from com-
puting rovibrational states at angular momenta higher
than J = 19. Comparison between the partition func-
tions obtained with our approach and the reference ones
available in the HITRAN2020 database23 showed that
this limitation results in a systematic uncertainty of at
most 0.6% for H2O at the highest temperature at which
we have used this approach, T = 500 K. As a further
check of our implementation, we computed the average
values of the O–H bond-length and H-O-H angle for H2O
and D2O in the J = 0 subspace, and they were found to
agree with the results of Ref. 19 to within one part in
105.

VI. RESULTS AND DISCUSSION FOR H2
16O

In this section, we will discuss in detail our results rela-
tive to the most common water isotopologue, H2

16O. The
results for two other isotopologues, HD16O and D2

16O,
are reported in the Supplementary Material.

A. Electronic polarizability

Let us begin our discussion by considering the elec-
tronic polarizability contribution to the first virial co-
efficient, that is αel(T ) defined in Eq. (9). As a first
approximation, e.g., by using a classical rigid model for
the water molecule, it can be calculated as the value of
the electronic polarizability surface at the average geo-
metric parameters (distances and angles) of the molec-
ular ground state;19 in this case one obtains the value

A
(el)
ε = 3.659 cm3/mol. However, one should in fact av-

erage the value of the electronic polarizability surface
over the distribution of configurations sampled by the
ground state of the water molecule. This procedure, per-
formed using the DVR ground-state wavefunction, pro-

vides A
(el)
ε = 3.678 cm3/mol and shows that a simple clas-

sical model underestimates the actual value by −0.5% in
the T → 0 limit. Comparing the ground-state averaged
value of the electronic polarizability with its value at the
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FIG. 1. The electronic polarizability contribution to Aε, A
(el)
ε ,

of H2
16O as a function of temperature, obtained from com-

puter simulations. The blue line is the result of our DVR
calculations, together with an estimated uncertainty coming
from the limited number of angular momenta that have been
considered, reported as a blue area. Filled circles are the re-
sults of the path-integral simulations and the diamond is the
experimental result of Ref. 12, adjusted to zero frequency us-
ing the dipole oscillator strength sums of Zeiss and Meath.43

All uncertainties are reported at the k = 2 coverage value and
do not include the propagation of the unknown uncertainty
of the water electronic polarizability surface.

geometry where the intramolecular potential has its mini-
mum (r1 = r2 = 0.9579 Å and θ = 104.512○, corresponding

to A
(el,min)
ε = 3.566 cm3/mol), one immediately obtains

an estimate of the so-called vibrational contribution to
the isotropic electronic polarizability, which is due to the
zero-point (ZP) motion of the water molecule. In our case
we obtain αZP

el = 0.2986 a.u., in very good agreement with
analogous calculations in the literature.10,44

The actual values for the electronic polarizability con-
tribution to the first virial coefficient of water are re-
ported in Table I and Fig. 1. We notice that our two
calculation methods, PIMC and DVR, agree within mu-
tual uncertainties at all the temperatures investigated in
the present work. The PIMC approach is relatively noisy,
but the DVR calculations clearly show that the electronic
polarizability is a slightly increasing function of the tem-
perature, exceeding its ground-state value by ∼ 0.04%
at T = 100 K. Unfortunately, we are not aware of any
characterization of the uncertainty associated with the
electronic polarizability surface10 and hence we cannot
provide a precise quantitative assessment of the uncer-

tainty of A
(el)
ε .

These results for A
(el)
ε can be compared to optical mea-

surements of the refractivity of water vapor. The two
most precise studies of this quantity were performed by
Schödel et al.11 and by Egan.12 In order to compare with

our static values of A
(el)
ε , the results must be adjusted

to zero frequency; this can be done with the dipole os-
cillator strength sums of Zeiss and Meath.43 The result-

TABLE I. The values of the electronic polarizability contribu-
tion to Aε for H2

16O. All of the uncertainties are reported at
k = 2 coverage and do not include the propagation of the un-
known uncertainty of the water electronic polarizability sur-
face.

Temperature A
(el)
ε (path-integral) A

(el)
ε (DVR)

(K) (cm3/mol) (cm3/mol)
1 – 3.67777 ± 0.00001

10 – 3.67786 ± 0.00007
25 – 3.67814 ± 0.00016
50 3.677 ± 0.001 3.67845 ± 0.00014
75 3.678 ± 0.001 3.67880 ± 0.00013

100 3.678 ± 0.001 3.67915 ± 0.00002
125 3.678 ± 0.001 3.6795 ± 0.0010
150 3.679 ± 0.002 3.680 ± 0.002
175 3.680 ± 0.002 3.680 ± 0.005
200 3.680 ± 0.003 3.681 ± 0.008
225 3.680 ± 0.003 3.681 ± 0.012
250 3.681 ± 0.003 3.681 ± 0.016
273.16 3.682 ± 0.004 3.68 ± 0.02
293.15 3.683 ± 0.004 3.68 ± 0.02
300 3.682 ± 0.004 3.68 ± 0.02
325 3.682 ± 0.004 3.68 ± 0.02
350 3.682 ± 0.005 3.68 ± 0.03
375 3.681 ± 0.006 3.68 ± 0.03
400 3.683 ± 0.007 3.68 ± 0.04
450 3.688 ± 0.007 3.68 ± 0.04
500 3.685 ± 0.007 3.69 ± 0.04
550 3.688 ± 0.008 –
600 3.68 ± 0.01 –
650 3.69 ± 0.01 –
700 3.69 ± 0.01 –
750 3.69 ± 0.01 –
800 3.69 ± 0.02 –
900 3.69 ± 0.02 –

1000 3.70 ± 0.02 –
1250 3.70 ± 0.03 –
1500 3.72 ± 0.04 –
1750 3.71 ± 0.04 –
2000 3.74 ± 0.06 –

ing values (at 293.15 K in both cases) are approximately
3.67 cm3/mol, with expanded uncertainties on the order
of 0.5%. This is in reasonable agreement with the values
calculated here, although the comparison suggests that
the polarizability surface of Lao et al.10 may yield polar-
izabilities that are slightly too large (another possibility
is inaccuracy in the dipole oscillator strengths of Ref. 43).

We also developed a correlation for A
(el)
ε by fitting the

numerical data using a function of the form

A(el)
ε (T ) = a1 +

a2T

1 + exp [−(T − a3)/T0]
. (33)

The values of the fitted parameters ai in Eq. (33) for the
water isotopologues reported in this study are reported
in Table II. The correlation reproduces the values re-
ported in Table I within the assigned uncertainties in the
temperature range between 1 and 2000 K.
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TABLE II. Values of the parameters in Eq. (33) for the water
isotopologues studied in this paper. The parameter T0 has
been set to 1 K.

Isotopologue a1 a2/10−5 a3
(cm3/(mol K)) (cm3/(mol K)) (K)

H2
16O 3.67777 1.38466 8.84684

HD16O 3.66227 1.3733 9.63151

D2
16O 3.6466 1.39401 5.3719

B. Dipolar polarizability

In order to discuss the dipolar contribution to the first
dielectric virial coefficient, which is reported in Table III
for various water models, let us begin by considering a
classical rigid model (cf. Eq. (7)). The most striking dif-
ference with respect to the electronic polarizability con-
tribution is the explicit appearance of a dependence on
the inverse of the temperature. As a consequence, the

values of A
(dip)
ε cover a significantly larger range than

those of A
(el)
ε . Therefore, we will plot the product of

A
(dip)
ε and the temperature T .
Using the same water geometry as before,19 the dipole

moment evaluated using the latest surface10 would pro-
vide a value µ = 1.860 D (1 D ≈ 3.33564 × 10−30 C m);
the square root of the average value of the dipole moment

squared on the ground state of water is
√

⟨∣m∣2⟩ = 1.857 D
using the same model. However, the smallness of the
moments of inertia of water makes quantum rotational
effects sizable; these can be investigated either with the
semiclassical correction of Eq. (8) or with the more ac-
curate path-integral simulation for rigid rotors described
in Sec. IV B 1.

We report in Fig. 2 and Table III the values of the
dipolar contribution to Aε for several water models. The
semiclassical approach and quantum rigid approach are
in very good agreement for temperatures T ≳ 100 K. Ad-
ditionally, quantum rotational effects are already appre-
ciable at room temperature, where they contribute to a
reduction of the dielectric virial coefficient by ∼ 3% with
respect to a classical value. Quantum rotational effects
become progressively more important at lower temper-
atures, resulting in a reduction of ∼ 10% at 100 K and
∼ 20% at 50 K. The results of rigid-model PIMC calcula-
tions are in perfect agreement with the results obtained
by diagonalization of the Hamiltonian of Eq. (32).

Figure 2 also shows the effect of molecular flexibility in

determining A
(dip)
ε , as well as presenting the experimen-

tal values derived from the HITRAN2020 database. In
general, the addition of flexibility results in a reduction
of the dipolar contribution to the first dielectric virial co-
efficient, which is particularly evident at T ≤ 150 K. The
path-integral calculations are in very good agreement
with values derived from spectroscopy, falling well within
the estimated experimental uncertainty. We emphasize
that we are not aware of any uncertainty estimates for
the electronic-polarizability or dipole-moment surfaces,
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3
/m

ol
)

DVR

Semiclassical

HITRAN

PIMC rigid
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FIG. 2. The dipolar contribution to Aε, A
(dip)
ε , multiplied

by the temperature T of H2
16O as a function of tempera-

ture. Red circles: values and uncertainties obtained from
HITRAN2020 data. Green squares: values obtained using
a rigid quantum mechanical model. Blue triangles: values
obtained using a flexible quantum mechanical model solved
using PIMC. Dashed orange line: values obtained using a
flexible quantum mechanical model, solved using DVR (the
discrepancies for T > 300 K are due to insufficient conver-
gence in the calculation of angular momentum states). Solid
gold line: semiclassical values from Eq. (8). All theoretical
uncertainties are reported at the k = 2 coverage value and do
not include the propagation of the unknown uncertainty of
the water dipole-moment surface. The lines joining the sym-
bols are a guide to the eye. Error bars smaller than symbol
sizes are not shown.

so we cannot provide a rigorous uncertainty analysis on
Aε at present and only its statistical contribution is re-
ported. For the sake of a meaningful comparison, we
collected enough statistics in the Monte Carlo calcula-
tions to make the statistical uncertainty smaller than the
experimental one. The average values of our simulations
and those computed from HITRAN2020 are in very good
agreement at all the temperatures studied.

The computed and experimental values of A
(dip)
ε be-

gin to differ at high temperature; this is evident for
T ≥ 1500 K in the case of H2

16O and at even smaller tem-
peratures for other isotopologues (as shown in Figures 2
and 5 of the Supplementary Material). We think that this
discrepancy is due to the limited coverage of high-energy
rovibrational states in the HITRAN2020 database, which

limits the accuracy of the deduced values of A
(dip)
ε at high

temperatures.

Figure 2 also reports the calculation of A
(dip)
ε per-

formed using the DVR approach. The agreement with
the path-integral calculation and with HITRAN2020
data is very good at temperatures T ≲ 300 K. For higher
temperatures, the DVR approach suffers from the limited
number of angular momentum states J that we have been
able to compute, and therefore the DVR values diverge
from those obtained using PIMC. We note in passing that
state-of-the-art rovibrational calculations of water up to
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TABLE III. The values of the dipolar contribution to Aε for H2
16O using various models, and its total value (last column)

from path-integral simulations. All of the uncertainties are reported at k = 2 coverage and do not include the propagation of
the unknown uncertainty of the water dipole-moment surface and potential-energy surface. A breakdown of the rotational and

vibrational contributions to A
(dip)
ε for H2O is reported in Table I of the Supplementary Material.

Temperature A
(dip)
ε (semiclassical) A

(dip)
ε (HITRAN2020) A

(dip)
ε (rigid) A

(dip)
ε (flexible) Aε (flexible)

(K) (cm3/mol) (cm3/mol) (cm3/mol) (cm3/mol) (cm3/mol)
50 349.494 350 ± 12 356.2 ± 0.4 350 ± 6 353 ± 6
75 248.944 248 ± 9 251.18 ± 0.12 248 ± 2 252 ± 2

100 192.688 191 ± 7 193.62 ± 0.07 191.1 ± 1.3 194.8 ± 1.3
125 157.021 155 ± 5 157.54 ± 0.05 156.1 ± 1.0 159.7 ± 1.0
150 132.445 131 ± 5 132.75 ± 0.03 131.5 ± 0.7 135.2 ± 0.7
175 114.501 114 ± 4 114.70 ± 0.02 113.3 ± 0.6 117.0 ± 0.6
200 100.829 100 ± 4 100.985 ± 0.015 100.1 ± 0.6 103.8 ± 0.6
225 90.069 89 ± 3 90.173 ± 0.013 89.4 ± 0.6 93.1 ± 0.6
250 81.381 81 ± 3 81.482 ± 0.010 81.0 ± 0.6 84.7 ± 0.6
273.16 74.704 74 ± 3 74.779 ± 0.009 74.3 ± 0.6 78.0 ± 0.6
293.15 69.763 69 ± 2 69.833 ± 0.008 69.1 ± 0.6 72.8 ± 0.6
300 68.216 68 ± 2 68.290 ± 0.007 67.6 ± 0.6 71.3 ± 0.6
325 63.110 63 ± 2 63.162 ± 0.006 62.8 ± 0.6 66.5 ± 0.6
350 58.715 58 ± 2 58.761 ± 0.005 58.5 ± 0.6 62.2 ± 0.6
375 54.892 55 ± 2 54.931 ± 0.005 54.5 ± 0.6 58.2 ± 0.6
400 51.536 51 ± 2 51.575 ± 0.004 51.2 ± 0.6 54.9 ± 0.6
450 45.920 46 ± 2 45.951 ± 0.003 45.8 ± 0.5 49.5 ± 0.5
500 41.408 41.3 ± 1.4 41.431 ± 0.003 41.4 ± 0.7 45.1 ± 0.7
550 37.703 37.6 ± 1.3 37.726 ± 0.002 37.3 ± 0.6 41.0 ± 0.6
600 34.606 34.5 ± 1.2 34.6220 ± 0.0018 34.5 ± 0.7 38.2 ± 0.7
650 31.980 31.9 ± 1.1 31.9963 ± 0.0016 32.1 ± 0.8 35.8 ± 0.8
700 29.724 29.7 ± 1.0 29.7340 ± 0.0014 29.6 ± 0.7 33.3 ± 0.7
750 27.765 27.7 ± 1.0 27.7743 ± 0.0011 27.7 ± 0.6 31.4 ± 0.6
800 26.048 26.0 ± 0.9 26.0568 ± 0.0010 26.0 ± 0.7 29.7 ± 0.7
900 23.182 23.1 ± 0.8 23.1874 ± 0.0008 23.1 ± 0.7 26.9 ± 0.7

1000 20.884 20.8 ± 0.8 20.8891 ± 0.0006 20.6 ± 0.6 24.3 ± 0.6
1250 16.736 16.5 ± 0.7 16.7398 ± 0.0004 16.5 ± 0.7 20.2 ± 0.7
1500 13.962 13.5 ± 0.7 13.9650 ± 0.0003 13.9 ± 0.6 17.6 ± 0.6
1750 11.977 11.1 ± 0.6 11.9789 ± 0.0002 11.8 ± 0.5 15.6 ± 0.5
2000 10.487 9.2 ± 0.6 10.48780 ± 0.00016 10.4 ± 0.6 14.1 ± 0.6

J = 72 are available,45 and therefore the DVR approach
could be extended to higher temperatures.

The last column of Table III reports our theoretical
estimate for the first dielectric virial coefficient of water,
which has been obtained by summing the value of the
dipolar contribution obtained using a flexible model of
water (next-to-last column of the same table) and the
electronic contribution reported in Table I.

Finally, we have also fitted the values of A
(dip)
ε (T ) com-

puted using PIMC to a correlation of the form

A(dip)
ε (T ) = b1(1 + b4/T )/T

1 + exp [−(T − b2)/b3]
. (34)

Values of the parameters bi in Eq. (34) are reported in
Table IV. The correlation reproduces the values reported
in Table III within the assigned uncertainties in the tem-
perature range between 50 and 2000 K.

C. Vibrational polarizability

Because the HITRAN2020 database allows us to dis-
tinguish between vibrational transitions and those in
which only the rotational quantum numbers change, we

can separate the calculated A
(dip)
ε into vibrational and

rotational parts. The detailed results for H2
16O, HD16O,

and D2
16O are given in the Supplementary Material. The

rotational contribution (A(dip,rot)
ε ) is larger than the vi-

brational contribution (A(dip,vib)
ε ) by roughly a factor of

600 at 300 K; our computed A
(dip,vib)
ε have a small tem-

perature dependence and for H2
16O have values slightly

above 0.10 cm3/mol at typical temperatures of experi-
mental interest (see Fig. 3).

The vibrational contribution to A
(dip)
ε can be related

to the molecule’s vibrational polarizability, αvib, by

A(dip,vib)
ε = 4π

3
NAαvib. (35)

Our calculations produce αvib whose magnitude is
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TABLE IV. Values of the parameters in Eqs. (34) and (37) for the water isotopologues studied in this paper.

Isotopologue b1 b2 b3 b4
(K cm3/mol) (K) (K) (K2 cm3/mol)

H2
16O 20945.9 −693.079 184.074 −7.46202

HD16O 21950.5 −11979.3 4072.31 −6.30806
D2

16O 23949.4 −17378.8 9154.42 −4.5188
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FIG. 3. The vibrational polarizability contribution to Aε,

A
(dip,vib)
ε , of H2

16O as a function of temperature, com-
puted from spectroscopic information in the HITRAN2020
database.23 The blue dashed line is the value 0.093 cm3/mol
calculated from a more crude use of spectroscopic data by
Bishop and Cheung.46 The orange dot-dashed line is the value
0.113 cm3/mol from the ab initio calculations of Ruud et al.47

roughly 3% of the magnitude of the electronic polariz-
ability; this is often considered an additional contribution
when compiling the static polarizabilities of molecules.48

The vibrational polarizability has been a subject of
some study, allowing comparison to previous estimates.
Bishop and Cheung46 estimated αvib for H2O and HDO
based on the positions and integrated intensities of the
three primary vibrational bands of the ground state. This
can be thought of as an approximation to Eq. (25) in
which each vibrational band is lumped into one line.
Ruud et al.47 estimated αvib from ab initio calculations
of a perturbation expansion of each normal vibration.

The values of A
(dip,vib)
ε derived from Refs. 46 and 47 for

H2O are 0.093 cm3/mol and 0.113 cm3/mol, respectively.
These literature estimates are in reasonable agreement
with our results, as shown in Fig. 3.

Bishop and Cheung made a similar estimate for the

HDO molecule, producing A
(dip,vib)
ε = 0.107 cm3/mol,

which underestimates the vibrational polarizability (see
Table IV in the Supplementary Material) by an amount
somewhat less than that shown in Fig. 3 for H2O.
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FIG. 4. The average dipole moment of H2
16O from our DVR

(solid line) and PIMC (points) calculations. The shaded area
denotes an estimate of the uncertainty of the DVR calcula-
tion. The PIMC error bars represent the expanded (k = 2)
statistical uncertainty of the Monte Carlo calculation. The
dashed line reports the experimental ground-state value of
1.85498 D from Ref. 13.

D. Dipole moment

We also computed the temperature-dependent value of
the average dipole moment, defined as

µ(T ) =

¿
ÁÁÀ∑

Jν

gJν(2J + 1)e−βEJν
Q1(β,0)

⟨ψJν ∣∣m∣2∣ψJν⟩, (36)

where, as above, J and ν are the total angular momentum
and vibrational quantum numbers of the water molecule
and gJν is the degeneracy of these states. The results are
reported in Fig. 4, where we also plot the experimental
ground-state value of µ.13 Similarly to what has been ob-
served above, the PIMC calculations are rather noisy, but
agree with the DVR results up to the highest temperature
that we have investigated. We also report an estimate of
the uncertainty of our DVR calculations, which is mainly
due to the finite number of angular momentum states J
considered in this work. A slight increase of the dipole
moment with temperature is apparent in both cases (on
the order of 0.2% from 0 K to 500 K), although the trend
is probably clearer from the DVR results.

The value of the dipole moment at 0 K is that in the
ground rovibrational state. The DVR calculations yield
a dipole moment of 1.8574 D for H2

16O, which is about
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0.13% larger than the highly accurate ground-state value
of 1.85498(9) D measured by Shostak et al.13 A simi-
lar calculation for D2

16O yields a ground-state dipole
moment of 1.8565 D, which exceeds by approximately
0.11% the experimental value of 1.8545(4) D measured by
Dyke and Muenter.49 These two comparisons with high-
accuracy experimental results suggest that the dipole-
moment surface we used,27 which was designed more for
spectroscopic applications than for accurate values of the
dipole moment itself, is slightly biased toward high val-
ues.

E. Rescaled dipolar polarizability

The slightly too large dipole moments discussed in
the previous section will result in a slightly overesti-
mated dipolar polarizability. This can, however, be cor-
rected in a straightforward manner because all contri-
butions to the dipolar polarizability are proportional to
the square of the dipole moment. We can therefore pro-
duce an improved estimate of the dipolar polarizability
by multiplying Eq. (34) by the square of the ratio of
the true ground-state dipole moment to that obtained
here; for that purpose we use the H2O value since it
is the most accurately measured, producing a factor of
(1.85498/1.8574)2 ≈ 0.9974. The rescaled dipolar polar-
izability is therefore given by

A(dip,r)
ε (T ) = 0.9974

b1(1 + b4/T )/T
1 + exp [−(T − b2)/b3]

, (37)

with the parameters bi given in Table IV. Equation (37)
is valid in the temperature range between 50 and 2000 K.
At all temperatures, the magnitude of this correction is
smaller than the standard statistical uncertainty of the

calculation of A
(dip)
ε .

VII. CONCLUSIONS

This work has presented the first complete theoretical
calculation of water’s first dielectric virial coefficient, Aε,
taking into account the flexibility of the water molecule
and state-of-the-art descriptions of the variation of the
electronic polarizability and the dipole moment with
molecular geometry. The path-integral method, and in
some cases the DVR approach to the three-body Hamil-
tonian, are used to perform the calculations with full ac-
counting for quantum effects.

The contribution of the electronic polarizability to Aε
is not constant as is typically assumed, but increases
slightly with temperature due to the different polariz-
abilities of states other than the rovibrational ground
state. Our results are consistent with the best experi-
mental values for this quantity, which are obtained from
measurements of the refractive index.11,12

TABLE V. The values of the average dipole moment µ(T ) of
H2

16O (Debye) from Eq. (36) The PIMC uncertainties repre-
sent the expanded (k = 2) statistical uncertainty of the Monte
Carlo calculation. Uncertainties do not include the propaga-
tion of the unknown uncertainty of the water dipole-moment
surface.

Temperature µ(T ) (PIMC) µ(T ) (DVR)
(K) (D) (D)
1 – 1.85737 ± 0.00001

10 – 1.85734 ± 0.00002
25 – 1.85749 ± 0.00004
50 1.858 ± 0.001 1.85774 ± 0.00003
75 1.858 ± 0.001 1.85794 ± 0.00003

100 1.857 ± 0.001 1.85813 ± 0.00010
125 1.859 ± 0.001 1.8583 ± 0.0003
150 1.859 ± 0.002 1.8585 ± 0.0005
175 1.858 ± 0.003 1.8587 ± 0.0010
200 1.860 ± 0.003 1.859 ± 0.002
225 1.858 ± 0.003 1.859 ± 0.003
250 1.860 ± 0.003 1.859 ± 0.004
273.16 1.862 ± 0.004 1.859 ± 0.005
293.15 1.864 ± 0.004 1.860 ± 0.005
300 1.859 ± 0.004 1.860 ± 0.006
325 1.860 ± 0.004 1.860 ± 0.006
350 1.859 ± 0.004 1.860 ± 0.007
375 1.860 ± 0.005 1.860 ± 0.008
400 1.858 ± 0.005 1.860 ± 0.008
450 1.865 ± 0.006 1.860 ± 0.009
500 1.861 ± 0.008 1.861 ± 0.010
600 1.858 ± 0.009 –
650 1.855 ± 0.009 –
700 1.873 ± 0.011 –
750 1.861 ± 0.012 –
800 1.858 ± 0.013 –
900 1.864 ± 0.013 –

1000 1.868 ± 0.014 –
1250 1.863 ± 0.017 –
1500 1.870 ± 0.020 –
1750 1.868 ± 0.021 –
2000 1.870 ± 0.025 –

The contribution of the dipolar polarizability also dif-

fers somewhat from the classical µ2

3kBT
functional form,

both because values of the dipole moment other than the
ground-state value are sampled at finite temperature and
because of the quantization of rotation. The latter effect
reduces the dipolar contribution to Aε by roughly 3% at
room temperature. The calculated dipolar contribution
to Aε also agrees well with estimates using line positions
and intensities in the HITRAN2020 database.

In addition to the dominant isotopologue H2
16O, we

performed calculations for D2
16O and HD16O. The data

are presented in the Supplementary Material, but we note
here that there is nothing surprising in the results. The

electronic polarizability (and therefore A
(el)
ε ) is smaller

by amounts on the order of 0.5% for HD16O and 1% for
D2

16O. This probably reflects the shorter average length
of O–D bonds compared to O–H bonds. The dipole mo-
ment is slightly reduced by D substitution, in agreement
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with the experimental result for D2
16O.49 The dipolar

contribution A
(dip)
ε is not affected (within the uncertainty

of our calculations) by D substitution at high tempera-
tures. However, below about 500 K, D substitution no-

ticeably increases A
(dip)
ε . This is because the substitution

increases the moment of inertia, reducing the magnitude

of the (negative) correction to A
(dip)
ε due to the quanti-

zation of rotation [expressed semiclassically by Eq. (8)].

Our results for Aε provide accurate, temperature-
dependent data that can be used to describe the effect
of water on the static dielectric constant of gases for hu-
midity metrology. They can also serve as a low-density
boundary condition for future comprehensive formula-
tions for the static dielectric constant of H2O and D2O.
We note that the current international standard formula-
tion for the dielectric constant of H2O6,7 does not account
for the quantum effects studied in this work; it also uses a
dipole moment that is roughly 1% smaller than the best
experimental value,13 which in our terminology produces

a value of A
(dip)
ε that is roughly 2% too small. Our re-

sults for A
(el)
ε could also be used to improve the standard

formulation for the refractive index of water,7,50 although
this would require a dispersion correction from our static
values to optical frequencies.

Our recommended formula for Aε(T ) is given by

Aε(T ) = A(el)
ε (T ) +A(dip,r)

ε (T ), (38)

where the electronic polarizability contribution A
(el)
ε is

given by Eq. (33) and the (rescaled) dipolar contribu-

tion A
(dip,r)
ε is given by Eq. (37). Similarly to Eq. (37),

Eq. (38) is valid in the temperature range 50 − 2000 K.

Extension beyond the low-density limit would require
the second dielectric virial coefficient, Bε. Bε can be
computed in a straightforward way for noble gases,17 but
the calculation is much more difficult for a molecule like
water. The largest effect would likely come from the cor-
relation of molecular dipoles due to the pair potential;
this would be relatively straightforward for a rigid, non-
polarizable model and Yang et al.51 performed such a
calculation for a simple water model. A complete calcu-
lation of Bε would require a multidimensional surface for
the nonadditive electronic polarizability and for changes
in multipole moments as the molecules mutually polarize
each other. Incorporating the flexibility of the molecules
would greatly increase the complexity, and is likely im-
practical at present. A classical calculation of Bε with
a rigid, polarizable water model was performed by Stone
et al.;52 thus far the result has not been confirmed by in-
dependent calculations and unfortunately there seem to
be no reliable experimental determinations of Bε. Addi-
tional rigorous calculations of Bε for water would there-
fore be desirable.

VIII. SUPPLEMENTARY MATERIAL

The Supplementary Material includes the following:
derivation of Eqs. (9) and (10), a table with the break-
down of the vibrational and rotational contributions to
A
(dip)
ε for H2O. Tables and figures reporting A

(el)
ε and

dipole moments of HDO and D2O. Tables and figures re-

porting the computed A
(dip)
ε for HDO and D2O, their di-

vision into vibrational and rotational contributions, and
their derivation from HITRAN2020 data
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Appendix A: Wavefunction expression for αdip(T )

1. Flexible models

The derivation of the expression of αdip(T ) starts from
the general formula of Eq. (10) and the representation of
the molecular quantum states of Eq. (19). In fact, the
indices i and j in Eq. (10) stand for all the quantum
numbers needed to describe a given molecular state, that
is i ≡ JνmI. Correspondingly, we will indicate the quan-
tum numbers corresponding to the index j with primed
quantities, i.e., j ≡ J ′ν′m′I ′. Since energies depend only
on the quantum numbers J and ν, and since the matrix
element of the dipole moment operator does not act on
the nuclear spins, one can perform the sum over I and I ′
obtaining

∑
I,I′

∣χ∗(IJν , I)χ(IJ ′ν′ , I ′)∣
2 = gJνδgJν ,gJ′ν′ , (A1)

that is, the sum over the nuclear spin states allows only
ortho-ortho or para-para transitions, and provides the
corresponding degeneracy factor.
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Additionally, particular care must be taken to evaluate
the matrix element of m ⋅ e, where we will assume, with-
out loss of generality, that we are considering e aligned
along the Z axis in the laboratory frame. However, the
DVR procedure writes the wavefunction with coordinates
q that are defined in the so-called molecular frame, where
the orientation of the molecule is fixed. In order to eval-
uate the matrix elements of mZ , one has to recall that it
transforms as the 0-th component of a vector operator,
which means that it is given by18,32,35

mL
0 =

1

∑
K=1

mM
K(q)D1∗

0K(Ω), (A2)

where the superscript ‘L’ denotes the spherical compo-

nents of the operator in the laboratory-fixed frame, and
the superscript ‘M’ denotes spherical components in the
molecule-fixed frame. Using the identities

∫ DJ1
m1k1

(Ω)DJ2
m2k2

(Ω)DJ3
m3k3

(Ω)dΩ =

8π2 ( J1 J2 J3

m1 m2 m3
)( J1 J2 J3

k1 k2 k3
) (A3)

∑
mm′

( J ′ 1 J
m′ 0 m

) = 1

3
(A4)

one arrives from Eq. (10) to

αdip(T ) = ∑
J′ν′,Jν

(2J ′ + 1)(2J + 1)
3

RRRRRRRRRRR

k+1,∞

∑
k′=k−1,k

⟨ψJ′ν′k′ ∣mM
k′−k ∣ψJνk⟩ (−1)k

′

( J ′ 1 J
−k′ k′ − k k

)
RRRRRRRRRRR

2

gJνδgJν ,gJ′ν′
e−βEJ′ν′ − e−βEJν

EJν −EJ′ν′
,

(A5)

where, in the DVR approach, one has

⟨ψJ ′ν′k′ ∣mM
k′−k ∣ψJνk⟩ =∑

q

ψJ ′ν′k′(q)mM
k′−k(q)ψJνk(q)

(A6)
since the spherical components of the dipole-moment
operator are diagonal in the molecule-fixed frame. In

Eq. (A5), the quantity ( J ′ 1 J
−k′ k′ − k k

) is a Wigner

3j-symbol. The diagonalization procedure outlined in
Sec. IV A provides, for any given angular momentum J ,
the energies EJν and the wavefunctions ψJνk(q) (as the
eigenvalues and eigenvectors of the three-body Hamilto-
nian in the molecule-fixed frame, respectively), enabling
a straightforward evaluation of the dipolar polarizability
using Eqs. (A6) and (A5). In this paper, we obtained the
degeneracy factors gJν from the HITRAN2020 database.

2. Rigid models

Equation (A5) is valid also in the case of rigid molec-
ular models of water. In this case, the eigenfunctions do
not depend on the coordinates q describing the molecu-
lar vibrations, so that the matrix element of Eq. (A6) is
replaced by

⟨ψJ ′ν′k′ ∣mM
k′−k ∣ψJνk⟩ = ψJ ′ν′k′mM

k′−kψJνk (A7)

where now ψJνk are the eigenfunctions of the rigid-rotor
Hamiltonian (see Sec. V A 2). In the case of a rigid
molecule, the matrix elements of the spherical compo-
nents of the dipole-moment operator, mM

k′−k, are con-
stants.
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