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To advance additive manufacturing (AM), a scalable architecture is needed to
structure, curate and access the data from AM R&D projects that are con-
ducted to evaluate new materials, processes and technologies. Effective project
metadata management enables the sharing of AM domain knowledge. This
work introduces an AM data modeling architecture to capture pedigree
information from AM projects which enables the traceability of the material.
This overall AM model includes five modules covering information about (1)
project management, (2) feedstock materials, (3) AM building and post pro-
cessing, (4) microstructure and properties measurements and (5) computer
simulations. The objective of this design is to ease the integration of the
heterogeneous datasets from different sources and allow for extensions, for
example, to incorporate sub-models from other efforts. As a proof of concept,
the material and process models defined in the paper capture the major
metadata elements for laser powder bed fusion AM. To demonstrate the
effectiveness of the architecture, the models are implemented using extensible
markup language and preliminarily tested using the project data from
America Makes. Additional data sub-models can be integrated in this archi-
tecture without affecting the existing structure.

INTRODUCTION

AM builds artifacts by large numbers of process-
ing steps from small- to high-length scale, and the
properties of the products may be sensitive to the
design and variability of the manufacturing pro-
cesses. A low technology readiness level (TRL) AM
project may introduce off-nominal processes to
explore the design space throughout the material
life cycle. In such an R&D project, a general
material life cycle starts from feedstock to processes
and ends at measurements to acquire data for the
optimization of the design parameters. This life
cycle is only a portion of other perspectives for
sustainable materials managements or a mass
production business. In a production procedure with
higher TRL, to control the process variations, such
as laser scanning path, acquires a large set of

information for the root-cause analyses. Effectively
managing and learning from complex datasets can
efficiently improve the TRL of the AM technology.

Focusing on different perspectives for R&D pro-
jects, the design of the database architecture has
unique features depending on the data flow and
project objectives. Data architecture refers to a
structure and interaction of the enterprise’s major
types and sources of data, logical data assets,
physical data assets and data management
resources.1 Some architectures, like basic formal
ontology (BFO)2 and industrial ontologies foundry
(IOF),3 are proposed to construct the domain inde-
pendent ontology for building up domain-specific
ones. Different types, classes, nodes and relation-
ships are proposed to construct objective-oriented
ontologies targeting materials chemistry, manufac-
turing steps, product properties or other engineer-
ing approaches.4–9 Efforts are also made to resolve
broader issues on the system engineering level for
different objectives and different users.10,11 These
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efforts may not be proposed to address the AM
issues, but the metadata and the data models can be
reused for other data model developments.

The data generated from R&D projects can be
complex for the project managements of the mate-
rial life cycle through different processing history.
The reuse of the existing data models needs an eco-
system in a generic data architecture to cost-effec-
tively build up a database. To mitigate some of these
gaps for general manufacturing processes, several
efforts, such as the Quality Information Frame-
work12,13 and MTConnect,14 are proposed by engi-
neering communities. The ASTM F42.08 working
group proposes the Common Data Dictionary, Com-
mon Data Model and Common Data Exchange
Formats to accelerate the development of the data
architecture across alliances.15 HyperThought,16

AMMD17 and AM Bench are the informatic systems
containing different data architectures for AM
projects. Learning from these, even the metrics to
evaluate AM processes are still not clear, and there
is high similarity of the data flows compared to the
conventional manufacturing technologies. It is valu-
able to develop a data warehouse that leverages the
existing efforts to address the materials life cycle for
R&D AM projects.

The design of AM operation conditions may
introduce different feedstock materials and tailor
processing steps accordingly to satisfy the project
objectives. The feedstock materials may be prepared
in different batches by different manufacturers for
the optimization of the processing steps. These
sequential processes include thermal and/or ther-
momechanical treatments applied under different
rates for certain durations. Of course, AM is one of
them. To evaluate the combination of the material
and processing history, measurements may inter-
rupt the manufacturing schedule and represent the
end of a material life cycle in an R&D project. These
AM-related activities are designed to develop the
knowledge base for optimizing the processing con-
ditions for a targeted material.

To cost-effectively assist the exploration of a
complex knowledge space, a design of data pedigree
for AM to handle the information can be challeng-
ing. Fortunately, many standards have yielded
results for the terminologies and registrations of
data. For example, ISO 8000 is a well-adopted
standard for data managements and data quality
assessments.18 For additive manufacturing, ASTM
F2792 provides and defines the terminologies on
AM technology and powder materials for metal
parts.19 This standard has been further developed
into data models and ontologies for managing and
exchanging both technical and non-technical data
from AM projects.15 Similar work can be found from
project AM Bench 2018 that contains models to save
metadata of several types of measurements.20 On
top of these efforts, plans for data registration are
needed, and ISO DIS 52953 guides data registration
procedures and methods to align in situ and ex situ

data for metal additive manufacturing.21 These
efforts resolve some of the challenges while building
a database; however, the top-level metadata of
project background and the integration of the sub-
models are still needed. This work proposes a
scalable data structure to integrate and bridge the
gaps among the domain-specific models for AM
projects.

DATA MODEL PEDIGREE

The development of the AM technology may often
evaluate a combination of different building strate-
gies and material processes. Different from mass
production workflows, the database architecture for
AM R&D projects needs to be scalable to accommo-
date new types of information without changing the
major database architecture. Fortunately, the
schedule pipeline of an AM process is similar to
other manufacturing technologies, and we can
leverage the published works for the development
of the data architecture. This work proposes five
data models to create a hierarchy, covering project
management, feedstock material, processing steps,
measurement and numerical simulation. These
models are connected by identifiers to enable the
traceability along the material history and support
the extensibility of the data structure. Each data
model contains multiple data classes that are built-
up by fundamental data types to organize the
information in different categories.

The proposed architecture is presented in Fig. 1.
The top layer is a Project model that contains a
unique ProjectID to label the following data hierar-
chy. The second layer of the architecture is a
Material model. Since a project may evaluate dif-
ferent materials from different batches or manufac-
tures, each material record not only inherits the
projectID, but also holds a sequential, integer ID to
initiate branches of the processing history. Different
from the independent material information, a man-
ufacturing history is a time series of processes. For
example, a simple AM experiment may include four
processing steps: powder blending, AM building,
stress relief and machining. Each is assigned a
sequential identifier to arrange the steps. When
considering the applications of process optimization,
this ProcessID is a high-dimensional array to
distinguish the branches of the processes. In this
proposed architecture, ProjectID needs to be unique
in a data system, but MaterialID and processID can
be sequential in a project dataset.

After manufacturing, measurements may be
scheduled in parallel to evaluate AM products that
generally include the structure characterizations
and property tests. The data hierarchy in Fig. 1 is
designed to save these two classes of measurements
separately. The overlapping information between
these classes are ProjectID, MaterialID and Pro-
cessID to create critical linkages among structure
and properties.
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Different from measurements, the scopes of the
computer simulations can be diverse to approach
different relationships of experimental results. A
data model for simulations needs to be flexible to
link the inputs and outputs from the measurement
records. The proposed data structure uses identi-
fiers pointing to the targeted physical quantities of
specific experimental records.

To demonstrate the architecture of the data
pedigree, Fig. 2 uses a project from America
Makes.22 The material record contains projectID
(4009), which links the project background infor-
mation. Two building tasks are accomplished using
the same material and two types of AM technolo-
gies. The details of each process are saved in one
record that includes the projectID and materialID.
The results from microstructure characterization
and property tests are saved separately but may
inherit the same identifiers of Project, Material and
Process according to the material history.

DOMAIN-SPECIFIC MODELS

The proposed data architecture contains 729
types and 55 classes for 5 data models to save the
details of an AM project. Due to the complexity of
the model details, this work only highlights the
connections of the data architecture. However, the
definitions of the fundamental types are imple-
mented using XML that can be found from the
attachments.

PROJECT MODEL

The top level of the project model is constructed
using the seven elements listed in Table I. Except
the ProjectTitle and ProjectID, the classification
level of the data security is the most important one
among all the information, and the ITARClassifica-
tion is an element to claim if the project deliverables

are controlled. Description is the abstract of the
project. ProjectSummary targets business focuses,
and this work follows the requirements from Amer-
ica Makes to save performance organization and
principal investigator, etc. It also requires the
ownership of the background intellectual proper-
ties. Keywords keep additional information for
enhancing the findability of the project records,
and attachments provide the in-depth information
for future applications.

It should be highlighted that the Attachment
Type is repeatedly reused in different models con-
necting metadata to raw or large tabular data. This
type requests an ID to count the number of attach-
ments, a string to describe the file and the location
of the file.

FEEDSTOCK MATERIAL

The metadata for feedstock material are similar
to those for other manufacturing technologies,
including the vendor information, composition and
certification. To summarize these metadata, a
Chemistry class is defined to accommodate the
material grade, composition and properties. The
Grade element enumerates strings of common
material names, such as IN718 and 17-4PH. Com-
position is a class to save chemical composition, and
the Property element is reserved to save the prop-
erties, like the physical and chemical properties, of
the feedstock material. Certificate is a space to keep
the certification of the material. A list of top-level
classes can be found in Table II.

The most unique feature of the feedstocks for AM is
that the material can be prepared for different
shapes, such as wire, powder and sheet, etc., for
different AM processes. This feature leads to the
development of the MaterialForm class, shown in
Table III. MaterialForm consists of Form, Status and

Fig. 1. A schematic data pedigree is designed to save additive manufacturing related data.
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Fig. 2. The workflow of project 4009 from America Makes demonstrates the data pedigree.

Table I. The top-level elements are defined in the project model

Element Type Number of occurrences Note

ProjectTitle String 1
ProjectID String 1
ITARClassification String 1 Yes/no
Description String 1
ProjectSummary Class 1 Organization defined
KeyWords String 1
Attachment AttachmentType 0-unbounded

Table II. The elements are defined in the material model

Element Type
Number of
occurrences Note

ProjectID String 1
MaterialID String 1
VendorInfo Class 1 Save information of feedstock vendor
Chemistry Class 1 Includes the sub-models for composition and intrinsic

properties.
MaterialForm Class 1 Refer to Table III
Certificate Class 1 Certifications of feedstock
Attachment AttachmentType 0-unbounded
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Dimension; it is designed to describe the feedstock
material. Form is a type of string enumerating a list
of descriptions for user selection. Status is recorded if
the material is recycled from previous processes. The
Dimension class is proposed to save the geometry of
the feedstock. The direction is a string type that can
be X Y or Z for defining a Cartesian coordinate
system or size distribution for powder depending on
the applications. With the value and unit, the
Dimension type covers simple shapes of feedstock.

PROCESSING

Process model sits on the third level of the pedigree,
which inherits ProjectID and MaterialID to identify
the relationships of the records. MachineSetup is a
preliminary data class requiring high-level informa-
tion about the service provider, type of AM technology,
machine information, operation software, laser sys-
tem, recoater, in situ monitoring system and attach-
ment. The type of AM technology is an enumeration of
process category that is defined by ASTM, including
Binder Jetting, Directed Energy Deposition, Powder
Bed Fusion, Sheet Lamination, Material Extrusion,
Material Jetting and Vat Photo Polymerization.23

Following machine setup is the AM building that
includes the design of part, scanning strategy and
in situ monitoring signals. The machine and building
classes are intentionally designed to accommodate
different types of AM technology.

After AM building, PostBuildingProcess is a class
designed to save the processing history. Because the
thermal and thermomechanical treatments are
commonly aligned after AM building, PostBuild-
ingProcess provides an example to handle different

designs of the treatments at different temperature,
time, applied forces and their rates. Each processing
step is labeled by a sequential ID. As shown in
Fig. 1, the processing history contains a two-dimen-
sional array to label the sequence of the treatments.
Other types of processes such as machining and
surface treatment can be recorded using this model
as well (Tables IV and V).

MEASUREMENT

Containing the IDs of project, material and
process, Measurement is a record in the end of the
data pedigree saving the raw data from microstruc-
ture characterizations or properties tests. The loca-
tion on build and size of specimen are the generic
information for different types of measurements,
and Specimen is a class describing this background
information. Because many types of measurements
are destructive, the microstructure features from
characterization may not be representative of but
highly correlated to the specimens for properties
tests. Direct comparison among a measurement of
microstructure character and tested property may
be misleading. An example is often seen where a
witness coupon and a tensile coupon are built in the
same process. The former is built for microstructure
characterization and the latter is for tensile prop-
erties. The process variability at different locations
on a build plate can increase the uncertainty when
identifying the relationships between these mea-
surements. To avoid the confusion for future anal-
yses, each measurement record only saves a set of
either microstructure or property data.

Table IV. The top-level elements are defined in the processing model

Element Type
Number of
occurrences Note

ProjectID String 1
MaterialID String 1
MachineSetup Class 1 Details about facilities, including AM machine
AMBuilding Class 1 Building strategy for AM process
PostBuildingProcess Class 0-unbounded The history of thermal or thermomechanical treat-

ments
Attachment AttachmentType 0-unbounded

Table III. The description of the MaterialFrom class

Level 1 Level 2 Level 3 Note

MaterialForm Form An enumeration of powder, wire, sheet, bar, plate and liquid
Status A selection from strings including Virgin and Recycled

Dimension Direction A string type to describe the following size value
Value Size of the material
Unit Unit of the dimension

Uncertainty Optional uncertainty class
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The location-specific properties are of interest to
many AM projects, and a definition of a measurement
‘‘sample’’ needs both a location on the plate and a
location of the part along with the preparation
history. In this work, a part is defined as an AM-
fabricated object and a specimen is extracted from a
part for specific measurements. For example, a spec-
imen is cut from an interested location of a part before
polishing and etching for microstructure characteri-
zation. The locations, preparation history and opera-
tion parameters are important metadata for
measurements. This work adopts the definitions and
data models from AM Bench 2018 and AMMD.17,20

More details can be found from attachments.

SIMULATIONS

The Simulations model is constructed by 12
elements that are listed in Table VI. ProjectID is a
unique identifier connecting this simulation record
with the data pedigree. Background is a class of

elements containing CodeTitle, Objective, Version
and ProgrammingLanguage to save the information
of a simulation code. The Developer element holds a
space to save the organization, name, and email of
the code developer. TrainingTime and TrainingData
save the model training history if there is any.
SourceCode is an element designed for open-source
software that the schema users can keep and share
the code as attachments. ModelInputs and
ModelOutputs are the I/O to the simulation that
need the information about the name, value, unit
and uncertainty of each I/O variable as the
ModelIOType defined in Table VII. Additional file
or note can be kept with this record using the
Attachment and Note elements.

USE CASE

To demonstrate the complex connections of this
data architecture, a set of project deliverables from
America Makes is presented using XML. This

Table V. The elements are defined in the data model for measurement

Element Type Number of occurrences Note

ProjectID String 1
MaterialID String 1
ProcessID String 1
Specimen Class 1 Location and size of the testing specimen
Characterization Class 0–1 Experimental setups and outcomes of structure characterization
PropertyTest Class 0–1 Experimental setups and outcomes of properties measurements

Table VI. The elements are defined in the data model for simulation

Element Type Number of occurrences Note

ProjectID String 1
Background Class 1
Developer Class 0-unbounded Information about the developer of the software
TrainingTime dateTime 0–1 Time stamp of model calibration
TrainingData string 0-unbounded The dataset used to calibrate data
SourceCode AttachmentType 0-unbounded Optional, a location to access source code
ModelInputs ModelIOType 1-unbounded Inputs to the simulation
ModelOutputs ModelIOType 1-unbounded Outputs of the simulation
ModelParameters String 0-unbounded Inputs-independent variables to the simulation
ModelUncertainty Class 0-unbounded Uncertainty from model training
Attachment AttachmentType 0-unbounded
Note String 0–1

Table VII. The definition of the ModelIOType

Element Type
Number of
occurrences Function

Variable String 1 Technical term of the I/O variable
Value Double 1 The value of the I/O variable
Unit String 1 The unit of the I/O variable
Uncertainty Class 0–1 Includes a string to define uncertainty type and a double value to save the

quantity of the uncertainty
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selected project builds coupons using IN625, IN718
and IN718plus for the measurements of melt pool
geometry and tensile properties at various temper-
atures. The thermal properties, such as heat

capacity, thermal conductivity and solidus temper-
ature, etc., are assessed using differential scanning
calorimetry. The experimental data are the inputs
to the models for simulating the distortion of the as-

Fig. 3. Portion of three material records demonstrates the different tasks of a project from America Makes.

Fig. 4. Process records save the information of the machines and scan strategies of three tasks.

Fig. 5. The records save the software packages used in project ID 4026.
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built parts, which is validated with the experimen-
tal results. This use case addresses the key connec-
tions for building up a data architecture.

Inheriting the project ID, three records, with
sequential material IDs in Fig. 3, are created for the
materials data. These records contain material
grade, alloy composition and material formats,
etc., that lead the preparation of the processing
records. Figure 4 presents a comparison among
building plans, which are designed for the AM
machines. After AM building, the same procedures
are applied to all the coupons from different builds,
and the experimental data are used to validate the
simulations. A sample data file for simulations is
presented in Fig. 5. This use case demonstrates the
traceability and scalability of a data warehouse that
enables strict data acquisitions for such an early
R&D project. More importantly, this data architec-
ture can accommodate the additional data models
for future developments.

CONCLUSION

This work proposes a data architecture focusing
on the metadata for the AM practitioners from
materials engineering. It leverages the domain-
specific data models from public databases to record
the material life cycle from project planning and
processing to measurements that are generic to AM
technologies. The future development will include
community efforts, such as ASTM AM-CDD and
AM-CDM, to standardize the data architecture for
the management of AM data.
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