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In living organisms, information is processed in interconnected symphonies
of ionic currents spiking through protein ion channels. As a result of
dynamically switching their conductive states, ion channels exhibit a vari-
ety of current-voltage nonlinearities and memory effects. Fueled by the
promise of computing architectures entirely different from von Neumann,
recent attempts to identify and harness similar phenomena in artificial
nanofluidic environments focused on demonstrating analog circuit ele-
ments with memory. Here we explore aqueous ionic transport through
two-dimensional (2D) membranes featuring arrays of ion-trapping crown-
ether-like pores. We demonstrate that for aqueous salts featuring ions with
different ion-pore binding affinities, memristive effects emerge through
coupling between the time-delayed state of the system and its transport
properties. We also demonstrate a nanopore array that behaves as a capac-
itor with a strain-tunable built-in barrier, yielding behaviors ranging from
current spiking to ohmic response. By focusing on the illustrative under-
lying mechanisms, we demonstrate that realistically observable memory
effects may be achieved in nanofluidic systems featuring crown-porous 2D
membranes.
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Although the first memory-enabled resistor, or memristor, was formally proposed
in 1971 [1], similar devices have been considered as interconnected building blocks
in artificial neural networks since at least the 1960s [2]. The search for practical
neuromorphic computing implementations has now evolved into a vast multidis-
ciplinary field that ranges from materials science [2–8] and physics of dynamic
systems [2, 5, 6, 8] to information processing algorithms [7, 9]. In the past five
years, numerous nanofluidic devices featuring memory effects in their current-voltage
response have been reported [10–16]. The memory effects have been shown to arise
from local time delays introduced by ion concentration polarization caused by high
electric fields [10], diffusivity-limited dynamics [11, 12, 16], the Wien effect [14, 15],
and adsorption-desorption processes in confined electrolytes [14, 16]. These mech-
anisms are of little surprise, resulting from the fundamental ubiquity of local time
delays built into the dynamic response of essentially any realistic system, as predicted
by the Kubo response theory [17] and conceptually detailed by Di Ventra and Per-
shin specifically for memory-featuring versions of the basic circuit elements such as
resistors, capacitors, and inductors [18]. In the context of nanofluidic systems, time
delays arising from mechanisms that can be broadly classified as diffusion-limited
and adsorption-desorption processes are required to build a realistic circuit element
featuring memory. At the same time, in systems involving water as the only solvent,
remembered states tend to dissipate rapidly, often within picoseconds. Therefore,
reducing memory volatility is a fundamental challenge for harnessing memory effects
in aqueous environments. Toward this goal, a clear understanding of the mechanisms
that yield distinct and measurable memory effects in nanofluidic systems is critical.

In this work, we use all-atom molecular dynamics (MD) simulations to describe
highly illustrative memory and spiking phenomena in dynamically biased nanofluidic
systems that do not rely on high-viscosity solvents, conical pore geometries, or 2D
confinement of aqueous electrolytes. We first describe memristive transport through
arrays of graphene-embedded crown pores in the presence of aqueous salt mixtures
and explain how dynamic sieving of two salts, neither of which individually yields
memory effects, can be a memristor through a straightforward coupling between the
state of the system and its transport properties. In addition, we demonstrate ion
current spiking dynamics in the case of a hexagonal boron nitride (hBN) monolayer
featuring an array of triangular nitrogen-terminated crown-like pores. Such a system
is shown to be essentially a capacitive element with a built-in chemical barrier. We
finally demonstrate that this barrier can be modulated by a tensile strain applied
to the membrane, causing a transition in dynamic transport response from spiking
to the tell-tale behavior of an RC-circuit. Our first example is a locally suspended
graphene monolayer featuring a 4 × 5 array of 18-crown-6 pores [19–22], immersed in
an aqueous salt bath and subject to a sinusoidal external bias along the Z-direction,
as sketched in Fig. 1a. The simulation details are provided in the Methods section
below. A key property of these sub-nm pores is that they selectively trap aqueous
K+ cations, in contrast with Na+, which permeate rapidly without being trapped. As
discussed in detail earlier [20, 21], this property of crown pores is in accord with the
selective binding between 18-crown-6 molecules and alkali cations [23], a hallmark
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Fig. 1 Dynamic current-voltage response of aqueous crown-porous graphene. Simulated
system with the PMF curves for Na+ and K+ ions (a), Lissajous curves for Na+ and K+ currents
in individual salt simulations of 1M NaCl and 0.25M KCl, respectively (b), Lissajous curve for Na+

current obtained from a 1M NaCl + 0.25M KCl mixture (c), simulated Na+ current compared with
the prediction based on the pore occupancy by the K+ ions, along with the total (K+ and Na+)
cation current (d). The Lissajous curve for the K+ pore occupancy is shown in the bottom right panel
of (c). Inset in (d) shows the Lissajous curve for the total simulated system conductance, compared
with the analytical estimate based on the occupancy, as described in the text. The continuous curves
for simulated and predicted data are visual guides obtained from smoothing the corresponding raw
data points (triangles and squares, respectively). All figures correspond to a bias field oscillation
frequency of 5 MHz. Given the high density of the ionic current data presented here, the corresponding
uncertainty bars are omitted for clarity. The average numerical uncertainties for the Na+ and K+

currents reported in this figure are 0.098 nA and 0.052 nA, respectively.

example of selective affinity in the field of coordination chemistry. The correspond-
ing Gibbs free energy distributions in the form of potential of mean force (PMF)
curves are shown in Fig. 1a, indicating that in the absence of external bias K+ ions
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encounter a significant potential well at the center of the pore, while the Na+ ions
do not. As discussed below, this selective affinity will prove central to the mechanism
underlying memory phenomena in this case. Consider Fig. 1b, which shows the K+

and Na+ currents obtained from single-salt simulations of 0.25 M KCl and 1 M NaCl,
respectively. The currents are plotted as Lissajous curves, i.e., direct functions of the
sinusoidal bias voltage V (t) = V0cos(ωt), where in this case V0 = h × E0 = 0.6 V (h
≈ 6 nm, E0 = 0.1 V/nm) and ω

2π = 5 MHz. As shown, neither curve exhibits appre-
ciable hysteretic behavior. Let us now combine these salts, at the same individual
concentrations, into a binary mixture (0.25 M KCl + 1 M NaCl) and consider the
resulting Na+ current shown in Fig. 1c: hysteresis is now observed between the ion
current branches corresponding to the rising and falling edge of the sinusoidal bias,
indicative of broadly memristive transport. In order to understand why transport
of a mixture of two salts, neither of which individually yields ion current hysteresis,
exhibits memristive behavior, we must realize that crown pores conduct one ion at a
time in a mutually exclusive manner. In single-salt scenarios, the cations in question
permeate as sketched in the insets of Fig. 1b: K+ ions are trapped by the pores,
causing them to permeate slowly one ion at a time; in contrast, Na+ ions permeate
rapidly without trapping, while anions (not shown) are outright rejected due to
incompatible dipole electrostatics at the pore interior [20]. As demonstrated earlier
for binary mixtures [21], transport occurs as a mostly unidirectional competition
between Na+ and K+ ions. Recall that crown pores have a high selective affinity for
the K+ ions. Therefore, Na+ cations are statistically expected to permeate through
pores unoccupied by the trapped K+ ions, as sketched in the upper-left inset of Fig. 1c.
In contrast, K+ transport is not hampered by the presence of Na+, because the latter
permeate rapidly without being trapped. A reasonably detailed treatment based on
the modified Langmuir model [24] is possible for this competition, as presented in the
supplementary section S3 of our earlier work [21]. For the purpose of this discussion,
a more tacit argument is provided. Depending on the bias, the number of pores
clogged by the trapped K+ ions is a dynamic function that naturally carries delay
from the finite times it takes the K+ ions to cumulatively occupy or leave the pores,
as shown for sinusoidal bias in the bottom-right inset of Fig. 1c. Given that the time
taken by the K+ ions to populate the pore array is mainly determined by a diffusive
process [25], the corresponding time delay associated with memristive response is
expected to be tunable by the K+ concentration. The latter could be adjusted to
achieve memristive response at bias frequencies significantly lower than those consid-
ered here. It should then be clear that we selected a relatively low KCl concentration
of 0.25 M (compared with 1 M NaCl) in order to achieve an observable delay and
to reduce the K+ contribution to the overall cation transport, all while maintaining
robust data collection within microseconds of total simulated time. Neglecting the
ion-ion knock-on phenomena, the pore occupancy by the pore-clogging K+ ions is
thus the system state that governs Na+ transport in a mixture. Let us denote the
occupancy NK+(t) and point out a few noteworthy aspects. First, K+ permeation,
both as single salt or in a mixture involving Na+, does not depend on NK+(t) [21],
because the charge carriers and the pore-blocking ions are identical and thus essen-
tially all pores are available for K+ permeation. This is consistent with nearly the
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same non-hysteretic K+ current data in Figs. 1b and 1d. Second, NK+(t) is likely to
be directly observable in the form of electrical potential measured at the membrane,
as pointed out earlier for DC-bias [20]. This measurement of electrical potential is
expected to be significantly less affected by the bandwidth limitations associated
with, for example, ion current measurements. Finally, NK+(t) can be used as an
elementary coupling term to predict the Na+ current for the NaCl+KCl mixture. If
the total number of pores in the system is N0 = 20, only those unoccupied by K+

are available for Na+ transport. The Na+ current for a mixture is then estimated as

Imix
Na+(t) = INa+(t)

(
1− NK+ (t)

N0

)
, where INa+(t) is the non-hysteretic single-salt Na+

current response from Fig. 1b. The comparison between this estimate and that simu-
lated in an actual mixture (data also shown in Fig. 1c) is shown in Fig. 1d. An overall
reasonable agreement between the two Lissajous curves suggests that the observed
dynamic mixture sieving is an example of a system where the current-voltage response
is an illustratively simple linear function of the system state. For further qualitative
comparison, see the inset of Fig. 1d, where the total conductance G(t) = I(t)/V (t)
(including both K+ and Na+ contributions) simulated in the mixture is compared
with the analytical estimate given by Itot(t) = Imix

Na+(t) + IK+(t), where Imix
Na+(t) is as

defined above and IK+(t) is the non-hysteretic K+ contribution from the single-salt
data in Fig. 1b. Both curves are shown to qualitatively inherit the time dependence
of K+ occupancy as a function of time (see bottom right inset of Fig. 1c).

Fig. 2 Anion transport enhanced by trapped K+. The distinct anion transport states for the
simulated porous membrane are shown on the left. Anion conductance GCl− (t) = ICl− (t)/V (t) and
K+ occupancy are plotted on the right. The continuous Lissajous curve for GCl− (t) is a visual guide
obtained from smoothing the corresponding raw data points (squares). The data on the right was
simulated in a box with h = 9 nm and E0 = 0.075 V/nm at ω

2π
= 5 MHz. The estimated bias voltage

amplitude V0 = h × E0 = 0.675 V. The average numerical uncertainty for the Cl− ionic currents
underlying the data in this figure is 0.045 nA.

5



The state-transport coupling through direct blockage of conductive paths by
trapped ions is one example. A less direct coupling is demonstrated in Fig. 2, where
the system is similar to the one above, except the graphene membrane features a rel-
atively wide (d ≈ 1.5 nm) pore, closely surrounded by six crown-like pores. Here, K+

trapping results in a ring of temporarily immobile charge, which at sufficiently low ion
concentrations is expected to modulate anion transport [26–28] by attracting counte-
rions (Cl−) toward the large pore. This field-induced coupling is directly observable
here, because anions have no affinity for the crown pores, permeating only through
the wide pore. No cation mixture is required in this case and we use KCl at a con-
centration such that the corresponding Debye screening length is comparable to the
radius of the wide pore (0.15 M). Although less pronounced than in the case above,
memristive anion transport is indeed revealed in the right panel of Fig. 2, similar to
that in the inset of Fig. 1d, except here the hysteretic accumulation of trapped K+

enhances transport of another ionic species instead of hampering it.
Our second example is similar to those above, except the membrane is monolayer

hBN featuring a 3 × 3 array of nitrogen-terminated triangular pores, one of which
is shown at the top of Fig. 3a. For these sub-nm pores, the dipolar pore edge with
partial negative charges carried by the nitrogen atoms at the perimeter [29] generally
yields crown-like properties which include cation trapping and broad anion rejection,
thus making the phenomena described above generally expected here as well. On this
occasion, however, we wish to explore a pore impermeable to a selected ionic species,
resulting in a qualitatively different scenario. Our salt choice is 1 M RbCl and the
corresponding PMF curve for the Rb+ ion is provided in Fig. 3a. In addition to being
impermeable due to a large peak at the pore’s geometric mid-line, the pore features
two relatively weak binding sites ≈ 0.16 nm above and below the mid-line. Note that
ion-ion Coulomb repulsion causes the two bound states to be mutually exclusive, i.e.,
only one ion at a time can bind on either side.

The Rb+ current as a function of time in response to a sinusoidal bias with V0 =
0.45 V and ω

2π = 10 MHz is shown at the bottom of Fig. 3a, alongside V (t) and the

ideal capacitive current (∝ dV
dt ) provided as references. In contrast with the grad-

ual discharge of an ideal capacitor, we see bidirectional ≈15 ns-wide current spikes
near V = 0 crossings, all attributed to rapid release of ions, depending on the bias
polarity in relation to the current charging state. The corresponding Lissajous curve
is shown in Fig. 3b. The spiking dynamics here is due to the presence of a chemical
barrier built into this capacitor and a simple ”state diagram” in Fig. 3c is provided to
describe the switching cycle and explain the presence of elementary directional mem-
ory. Overall, this system can be viewed as a simple spiking NOT-gate with polarity
awareness: zero bias voltage (input) results in a current (output) up-spike if the pre-
vious input was negative and vice versa. We note that the charge/discharge curves
(in the form of pore occupancies) “above” and “below” shown in the inset of Fig. 3b
are indicative of an accompanying memcapacitive effect, resulting from time delays
caused by the mechanisms similar to those discussed above. The “firing” dynamics of
the ionic currents should be tunable in terms of the peak height and width/phase, as
determined by the total pore count and the barrier shape, respectively. We also note
that reduced binding (while maintaining pore impermeability) would bring the peaks
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Fig. 3 Spiking capacitive Rb+ currents through sub-nm-porous hBN. Pore structure, the
corresponding PMF curve for Rb+ ions, and the simulated ionic current as a function of simulated
time (a), along with the the corresponding Lissajous curve (b); a sketch of the system state dynamics
(c), Lissajous curves for Rb+ currents through pores with the corresponding PMF curves shown in
the inset (d). The inset in (b) shows the Lissajous curves of the ion occupancy above and below the
membrane’s geometric mid-line. All figures correspond to a bias field oscillation frequency of 10 MHz.
The average numerical uncertainty for the ionic currents reported in this figure is 0.025 nA.

of the two Lissajous branches in Fig. 3b closer to zero-voltage and also widen them
toward semi-circles, essentially approaching the dynamic response of an ideal capac-
itor. While testing these behaviors would be beyond the scope of this work, here we
can briefly explore a change in transport response as we tune the ion-pore interactions
by applying isotropic strain to the hBN membrane. The Lissajous curves for the Rb+

currents, along with the corresponding PMF data, are shown in Fig. 3d. It is clear that
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by applying membrane strain and dilating the pores, the central barrier is reduced,
causing ion permeation and thus a transition from capacitive to RC-circuit behavior,
which at even higher strains we expect to approach ohmic response. Once again, the
simplicity here is illustrative, suggesting nanofluidic ”gates” with dynamic transport
response tuned by strain or an auxiliary electrostatic bias, possibly dynamically.

To summarize, we have demonstrated memristive effects and spiking behavior of
dynamically biased aqueous ion transport through 2D materials featuring arrays of
crown-like sub-nm pores. The mechanisms are shown to include competitive sieving of
ion mixtures, resulting in a coupling between the time-delayed state of the system and
its transport properties, as well as capacitive charging and discharging in the presence
of built-in chemical barriers. The phenomena described above are highly illustrative
and suggest that nanofluidic systems based on subnanoporous 2D materials may be
an intriguing choice for achieving analog-digital hybrids usable in artificial neural
networks, especially if aimed at dynamics in the range of tens to hundreds of kHz
to MHz. By focusing on the mechanisms rather than specific applications, our hope
is to elucidate the physics of realistically observable dynamic effects in nanofluidic
ion transport and further stimulate ongoing experimental efforts. First and foremost,
this includes fabrication of predictable, chemically stable pore structures with various
degrees of affinity to aqueous solutes.

Methods

All MD simulations were performed using GPU-accelerated GROMACS v. 2023.2
within the OPLS-AA [30] framework. Each simulation of ion transport was carried
out in a nearly cubic box with a side of ≈ 6 nm, periodic in XY Z and containing a
porous monolayer of graphene or hBN, TIP4P [31] water, and dissociated salts at con-
centrations stated in the main text. The membranes were kept in place by harmonic
restraints applied at the perimeter. Previously established models for crown-porous
graphene [20, 21] and hBN [32] were used within the OPLS-AA forcefield. The partial
charges of nitrogen atoms lining the triangular pore edges in hBN were set to 2/3 of
those for bulk nitrogen atoms, ensuring charge neutrality of the pore structures. Elec-
trostatic interactions were resolved using the particle-particle—particle-mesh scheme
with a short-range interaction cut-off radius of 1.0 nm and 1.2 nm for the simulations
involving graphene and hBN, respectively. Prior to the production simulations, all sys-
tems underwent static energy minimization, 5 ns of semi-isotropic (constant in-plane
cell dimensions) NPT relaxation at T = 300 K and P = 0.1 MPa with a time-step
of 1 fs. Each production simulation was performed in the NVT ensemble with a time
step of 2 fs under sinusoidal external field E(t) = E0cos(ωt), preceded by a 10-ns-long
pre-relaxation at a constant field E0 to reduce any spurious oscillations from the ini-
tial impulse (Et=0 = E0). The simulated times were set to ensure 8-10 full periods of
external field variation. For example, for ω

2π = 5 MHz, the total simulated time was
2 µs, corresponding to ten 200-ns-long periods. Unless stated otherwise, E0 was set
to 0.075 V/nm, roughly corresponding to an effective maximum voltage of E0 × h =
0.45 V (h ≈ 6 nm is the box height in the Z-direction). The E0 values were selected
to ensure that the crown pores are depopulated by the K+ ions at maximum bias [20].
All ion current data was obtained from numerical differentiation of the cumulative
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ionic fluxes, performed using finite differences at the 8th order of accuracy. Numerical
differentiation is a noise-amplifying procedure and therefore prior to differentiation
all flux data had to be filtered without introducing purely numerical memory arti-
facts, which was achieved through careful use of bidirectional filtering (see details in
section S1 of the Supplementary Material). The raw flux and occupancy data was
output every 10 ps, corresponding to a maximum resolvable frequency of 50 GHz.
Given that in this work the external bias oscillated at 5-10 MHz, low-pass cutoffs were
typically set to the order of 200 MHz to provide ample bandwidth for capturing the
dynamics of interest. The ion currents used for constructing the Lissajous curves were
obtained from averaging between all simulated periods of external field oscillation and
the statements regarding uncertainties refer to the corresponding standard deviations.
For further detail on data processing used in this work, refer to the section S1 of Sup-
plementary Material. All PMF calculations were carried out similarly to our previous
work [20, 21, 33], utilizing the Weighted Histogram Analysis Method [34] applied to
a total of 60 0.05-nm-spaced ionic configurations relative to the pore location along
the Z-direction. The umbrella sampling of each configuration of the target ion was
performed for 10 ns.
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S1 Data processing

A three-step data processing procedure was used to obtain the transport data pre-
sented in the main text, as shown in Fig. S1. The first step is low-pass filtering of the
raw ionic flux data (Fig. S1ab), followed by numerical differentiation to obtain the
corresponding currents (Fig. S1c), and finally displaying the current in the form of a
Lissajous IV curve (Fig. S1d). Similarly to the previous experimental works reporting
memristive devices cited in the main text, the Lissajous curve was based on a repre-
sentative average period calculated from multiple periods in Fig. S1c. This averaged
data is shown in the inset of Fig. S1d.
First, low-pass filtering was applied to the raw flux data to remove high-frequency
noise. This processing step preceded numerical differentiation (see below), a noise-
amplifying calculation, making low-pass filtering critical in reducing spurious thermal
noise while keeping the useful data within the frequency range of interest (5-10 MHz)
reasonably intact. The low-pass cutoff was set as follows. For electrostatic biases in
this work (in the 5-10 MHz range), the effective bandwidth of the filter was set
to the order of 200 MHz, as stated in the Methods section of the main text. We
used several filters (third-order Chebyshev finite impulse response (FIR) filter, as
well as an infinite impulse response (IIR) filter) independently to ensure nearly iden-
tical final results. As an example, the IIR filter used in this work was given by
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Fig. S1 Data processing scheme used in this work: ion flux filtering (a,b), followed by numerical
differentiation of the filtered flux data to obtain the currents (c) and calculating an averaged (over
multiple cycles) single period in the time domain, as well as in the form of a Lissajous curve (d).
The inset in (d) is shows the averaged periods of ion current oscillation with the yellow box outlining
the Na+ current range of interest reported in the (d) panel. The raw data used to obtain Fig. 1 in
the main text is used here as an example. The complete dataset for this simulation was 2-µs-long,
corresponding to a total of ten 200-ns-long periods; for clarity, only 600 ns are shown.

y(n) = αy(n− 1) + 1−α
N

∑k=N−1
k=0 x(n− k), where x(n), y(n), and N = 6 are the raw

data, filtered data, and the running average input width, respectively, while 1 − α
directly set the cutoff. For instance, our raw flux data points were spaced by τ=10
ps, which corresponds to an effective Nyquist frequency of f0 = 1

2τ = 50 GHz. To
achieve a desired effective bandwidth of fc = 200 MHz, the corresponding filter set-
ting is α = 1− fc

f0
= 0.996. We found the Lissajous curves to be similar between α =

0.993 and α = 0.997, as shown in Fig. S2. One must keep in mind that the presented
parameterization is specific to the particular filter described above and various filters
with appropriate low-pass cutoffs can be used to achieve similar results.
It is critically important to note that all low-pass filtering is guaranteed to introduce
a purely numerical phase shift between the raw and filtered data. To eliminate this
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shift, flux data was filtered bidirectionally, i.e., the filter described above was applied
twice: first, starting at the beginning of the raw flux dataset and moving forward in
time and second, starting at the end of the dataset and moving backward in time. The
production filtered flux data (in Fig. S1ab) was calculated as an average between the
forward- and backward-filtered sequences, ensuring no phase shifting at the numerical
level (see Fig. S1b, for example). Alternatively, one can employ Python’s filtfilt pro-
cedure [1] to achieve a similar shift-free filtering outcome.

Fig. S2 Low-pass cut-off parameter sweep for the Lissajous curve corresponding to Na+ transport.

Once filtered flux data was obtained, a 9-point (accurate to 8th order) finite differ-
ence [2] was used to calculate the ion currents as q df

dt , where q is the ion charge and
f(t) is filtered flux (Fig. S1a). The corresponding raw currents (Fig. S1c) were then
used to obtain a representative single-period (inset of Fig. S1d) as an average between
all periods. This averaged single-period data (inset of Fig. S1d) was finally used to
generate the corresponding Lissajous curves (Fig. S1d), in which the simulated time
along the abscissa is merely replaced by the bias V (t) = V0cos(ωt).
The numerical uncertainties reported in the main text are not error bar equivalents
for the specific data of interest. They are the per-point standard deviations between
the entire averaged period and the ten periods used to obtain it. Such uncertainties
represent the all-encompassing data variability, including the noisiest regions near the
sinusoidal extrema (see Fig. S1c), which are not part of the Lissajous curves of interest
in Fig. S1d. As expected, this uncertainty depends on the filter cut-off: for the curves
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in Fig. S2 it ranges between 0.067 nA and 0.11 nA at α = 0.997 (smaller bandwidth)
and α = 0.993 (larger bandwidth), respectively.
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