
A Simulation-Based Approach to Assess Condition
Monitoring-Enabled Maintenance in Manufacturing

Mehdi Dadfarnia*
Communications Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

mehdi.dadfarnia@nist.gov
*Corresponding author

Serghei Drozdov
Communications Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

serghei.drozdov@nist.gov

Michael E. Sharp
Communications Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

michael.sharp@nist.gov

Jeffrey W. Herrmann
Department of Mechanical Engineering

Catholic University of America
Washington, DC, USA

herrmannj@cua.edu

Abstract—Industrial Condition Monitoring Systems (CMSs)
collect and evaluate system and equipment operations to support
control and decision-making. Despite their usefulness, under-
standing the full implications of their impact presents unique
and unexpected challenges, especially on new manufacturing
systems. System configuration and operational procedures have
significant impact on CMS capability and performance. Thus,
evaluating a CMS in context of the application is essential both
prior to and during deployment. We developed a discrete-event
simulator to analyze scenarios with arbitrary manufacturing
system configurations and typical operation policies to address
this need. This paper describes the results of a study that uses
our simulation model to assess the benefits and risks of a CMS
selection. We evaluated CMSs with various manufacturing system
configurations and maintenance policies to observe how the CMS
affected manufacturing system performance. We also discuss the
selection of metrics, focusing on the alignment between CMS
performance metrics and manufacturing performance indicators.

Index Terms—condition monitoring, manufacturing systems,
maintenance, performance metrics

I. INTRODUCTION

Modern manufacturers rely on both digital and physical
devices collectively known as Condition Monitoring Systems
(CMSs) to inform operations, planning, maintenance, and
decision-support across a facility. However, many manufactur-
ing firms are reluctant to incorporate these technologies into
their maintenance practices despite their potential usefulness
[1]. This reluctance follows from the significant resource
needs, as well as difficulties assessing their return on invest-
ment [2]. In cases where companies have invested in CMS
technology, some are faced with buyer’s remorse when the
system does not perform as expected, or fails to show clear
benefits in relevant time scales. Although many factors can
contribute to this, many enterprises simply do not have the
resources or knowledge base to address these issues.

Previous work demonstrated assessing a CMS’s impact in
terms relatable to manufacturing firm decision-makers [3]. For
instance, avoiding or reducing risks with increased reliability
(such as from using a CMS) has monetary value translatable
into financial impact [4], [5]. Additional work provided a
framework for identifying the key elements within a manu-
facturing system’s configuration and maintenance policy that
determine how a CMS impacts an asset’s performance [6].

This work explores risks and benefits of a CMS-driven
maintenance policy in a manufacturing setting, both new in de-
velopment and previously established. We showcase methods
for testing, and matching specific types of CMSs to specific
systems and goals of a manufacturer. Additionally, this paper
focuses on interactivity between a CMS and maintenance
policies across different manufacturing configurations.

Broadly, factors preventing the adoption of otherwise use-
ful technologies are either a lack of trust or limitations of
economic and personnel resources. To address this, we aim to
develop procedures to help users and decision-makers assess
CMS technologies’ impacts in both economic and engineering
capacities. Engineering and system impact assessments sup-
port proper levels of trust and confidence, whether to justify
the continued use of existing systems or investing in new
monitoring technologies.

Our study focuses on impacts of a CMS with respect to
overall system performance instead of the more prevalent
low-level metrics like accuracy or missed/false alarm rates.
System-level manufacturing performance indicators like the
part production and quality, or machine availability, provide
more directly relevant and actionable information to decision
makers. Manufacturing firms use interrelated performance in-
dicators like these to gain understanding of their manufacturing
performance [7], [8]. They are explicitly picked to reflect
the goals and values of the enterprise and aim to capture
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Fig. 1. Flow diagram of steps used in this paper’s simulation-based CMS performance assessments.

factors impacting or reflecting system performance. Obvious
factors affecting system performance include maintenance pol-
icy, machinery configuration, production scheduling, inventory
capacity, and regulatory constraints. These same factors can
affect the capabilities and effectiveness of a CMS deployed
across these systems.

This paper uses a simulation-based approach to evaluate
CMS impact on manufacturing performance. Specifically, we
consider the interactions of maintenance policy and the pro-
duction flow path between manufacturing equipment (a.k.a.
manufacturing system configuration) with a CMS’s ability to
impact manufacturing performance. This research considers a
set of manufacturing configurations and maintenance policies
with significant interplay on CMS performance. In many
scenarios, we can manage the effects of CMS performance
and corresponding system performance by selecting particular
types of CMSs and fine-tuning associated parameters.

Section II gives a description of the methods used to setup
simulations and assess CMS performance impact. This section
also details the selection of manufacturing system performance
indicators and CMS performance metrics to showcase the
relationship between CMS and manufacturing performance.
Section III presents the results of a case study that explores
CMS effectiveness and impacts across five different 6-machine
multi-stage manufacturing processes and five different mainte-
nance policies. Finally, Section IV concludes with a summary
of our presented work and the prospects for future work.

II. EXPERIMENTAL SETUP FOR SIMULATIONS

To help better understand a CMS’s impact on discrete-
part manufacturing performance, we implement a set of steps
using discrete-event simulations divided into two phases. In
the first phase, model setup, we model a set of manufacturing
configurations and maintenance policies and select system-
level manufacturing performance indicators and algorithm-
level condition monitoring performance metrics. In the next
phase, simulation exploration, we observe which test scenarios
see manufacturing performance improvement with a CMS, and
experiment with fine-tuning the CMS to observe the extent to
which the CMS can improve manufacturing performance.

Figure 1 sketches the main steps that comprise the two
phases of our simulation-based experiments:

• Model Setup
– Modeling Test Scenarios, to identify the space of

manufacturing machinery configurations and mainte-
nance policies under consideration. This step also in-
volves identifying the subset of maintenance policies
that makes use of CMSs, the data collection points
from the manufacturing configuration that goes into
the CMS as inputs, and the CMS algorithms under
consideration.

– Selecting Manufacturing System Performance Indi-
cators (PIs), to identify the set of PIs the manufac-
turing firm cares about most.

– Selecting Condition Monitoring Performance Met-
rics, to select algorithm-level performance metrics
that can provide a comparative assessment between
CMS algorithms applied to the same configuration
and maintenance policy.

• Simulation Exploration
– Experiment Design & Simulations, to describe the

experimental factors and effects in simulating the test
scenarios, as well as to observe and analyze perfor-
mance estimations in the simulations themselves.

– Fine-Tuning CMS Hyperparameters, to optimize
CMS models and obtain better performance metrics.

A. Modeling Testing Scenarios with Sim-PROCESD

We model test scenarios for a manufacturing system us-
ing an open-source, discrete-event manufacturing simulator
called Sim-PROCESD (Simulated-Production Resource for
Operations & Conditions Evaluations to Support Decision-
making) [9]. Researchers and analysts commonly use discrete-
event simulation to rapidly evaluate alternatives to complex
manufacturing system configurations and operating policies
that support decision-making in regard to manufacturing op-
erations planning and, more recently, maintenance operations
planning [10]. Decision makers can quickly run and interpret
large numbers of simulation trials to obtain estimations of
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system responses (such as manufacturing system performance
indicators) and their associated measures of variability [11].

Sim-PROCESD specifically is designed to allow modeling
of:

• Any configuration of machines and buffers in a multi-
stage manufacturing facility that produces discrete parts
(Section II-A1).

• Various degradation mechanisms for machine health and
corresponding impacts on part quality (Section II-A2).

• Maintenance policies and repair models that manage ma-
chine health, including CMS-integrated condition-based
maintenance policies (Section II-A3).

• Characterization of the manufacturing processes and
maintenance policies through performance indicators and
tracking managed resources (the subjects of Sections II-B
& II-C).

1) Configuration of Machines, Buffers, & Maintenance Per-
sonnel in the Manufacturing Facility: Each test scenario mod-
els a configuration (Cj) of networked machines and buffers.
Those machines manufacture parts, with each part progressing
along directed or allowable flow paths within the multistage
manufacturing configuration. Each part’s path is a subset of
machines and buffers that takes the part from the facility’s
source to its sink (see Figure 2 for an example of different
possible part paths). The part enters the facility at the source,
and each machine along its path performs manufacturing
processes on the part until it reaches its final product state
at the manufacturing facility’s sink.

The six key objects in Sim-PROCESD for modeling produc-
tion behavior are machines, buffers, sinks, sources, parts, and
maintainers. The ”upstream” and ”downstream” conventions
refer to the relative arrangement of assets within a specified
part production path - an object receives a part from an-
other upstream object, or an object places a part in another
downstream object. Descriptions of the six key objects are
as follows, using conventions from a predecessor software to
Sim-PROCESD (see [12]):

• Machine: Receives parts from upstream objects and per-
forms manufacturing processes on those parts. A ma-
chines receives and processes one part at a time. Once
processing is done, the part is available for downstream
objects. The cycle time τm is the time required to process
a part on machine m; this time can be constant or random.

• Buffer: Stores parts in a production line that a machine
is not currently processing. Each buffer b is characterized
by buffer capacity (βb) to specify the maximum number
of parts that it can store.

• Source: Introduces parts to the manufacturing system at
a rate of γ per unit of time, similar to an inventory
of unprocessed parts or raw materials that are up for
production.

• Sink: Received the parts at the end of the manufacturing
line, similar to an inventory of finished products. Can also
be thought of as a buffer with an infinite capacity.

• Part: Objects sent downstream from a source, routed

through a flow-path of machines and buffers, to be
collected at a sink as final products. Multiple types of
parts can be simulated through a model, but each part is
considered a self contained complete unit.

• Maintainer: Maintainers perform maintenance tasks. For
the purposes of this study, only one maintainer (worker)
is needed to complete a task on one machine; the number
of maintainers equals the maximum number of machines
that can be maintained simultaneously. When all main-
tainers are busy, any machines that need maintenance will
wait in a queue until a maintainer becomes available.
There are two types of maintenance tasks: (1) repair a
faulted machine to full health, and (2) inspect a machine
and determine its health state.

In each configuration model, we instantiate the desired
objects with appropriate parameters (such as buffer capacity
or machine cycle time) and set the upstream part routes for the
modeled machines, buffers, and sink. Using these key objects,
we can develop many different manufacturing system config-
urations. The total set of configurations a manufacturing firm
wishes to consider during testing, we denote as {C1, ..., Cq}.

2) Machine Degradation & Part Quality Models: We
model each machine with a health degradation scheme that
is tied to its use. The machines represent a set of tools and
equipment to implement a manufacturing process such as
joining, cutting, or milling [13]. The degradation model of
each machine reflects deteriorating tool wear and other faulty
mechanical failures that deviate from the machine’s planned
manufacturing process tolerances. The health of the machine
is an indicator for the quality of its manufacturing process,
which directly influences finished product quality [14]. In this
work, we lump all machine faults and deterioration paths into
a single indicator of effective health, and relate that health to
both the performance of the machine and the corresponding
quality of the products it produces. Degradation that does not
show symptomatic influence on the production rate or product
quality can be implemented, but is not currently showcased
in this work. Although this simplification may not be valid in
every case, it is used here for illustration purposes, and as a
means to provide quick but informative approximations prior
to performing more in-depth simulations.

Based on the health-related capabilities of each machine,
a similarly simplified and lumped product quality parameter
associated with each part is updated as they pass through the
machines, signifying work has been done. The quality of a
finished product is the degree to which a set of characteristics
inherent to the product fulfills product design requirements
[15]. This quality indicator includes any and all tolerances
which the finished product’s characteristics must meet based
on the design and application requirements. The quality of the
finished product is assumed in these simulations to be how
well the set of machines that processed the product were able
to meet the design requirements. As parts move downstream
a manufacturing configuration Cj through a part flow-path
of machines, each successive machining process transforms
input parts into outputs that are closer to the finished product
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Fig. 2. Example configuration of machines and buffers with 2 possible part production paths.

state, ideally contributing to suitable levels of product quality.
Each machine’s manufacturing process in the part’s flow-
path contributes to the finished product’s end phase quality,
from raw material or simple part to finished product. The
progressive degradation of a machine represents the erosion
of that machine’s manufacturing quality capabilities, and ul-
timately limits any positive contributions to part quality. This
results in output parts with a decreased finished product quality
indicator.

In this study, we modeled machine health with an indicator
from 0 to 1 corresponding to a nonoperational machine that
requires maintenance (Health = 0) to a machine that imple-
ments perfect manufacturing processing quality(Health = 1).
Likewise we modeled the part quality with an indicator from
representing the deviation from nominal tolerances where 0
is a unprocessed part or one that completely fails all quality
tests, and 1 indicating a finished product with perfect scores
on all quality requirements.The relative scales and permissible
thresholds for these metric can be set by user preferences.

For the scenarios presented in this paper, parts start at the
simulation source with a quality indicator of 0, and each
machine along a part’s flow-path is meant to contribute equally
to produce a finished product with a quality indicator of 1. For
example, in a production path of 4 machines, each machine
contributes up to 0.25 to the part’s quality indicator, bringing
it closer to the nominal tolerances for quality assurance.
As a machine’s health degrades, its contribution decreases
proportionally. In the example, if a machine is at 0.5 health,
it would contribute about 0.125 to the part’s quality indicator.
We also model some degree of variation in machine health and
its contribution to part quality. This represents deviations due
to process “noise” that may come from environmental factors,
thermal effects, operator error, etc. [16].

We characterize each test scenario to have a manufactur-
ing configuration Cj with M number of machines and B
number of buffers. Depending on the configuration Cj , the
maintenance policy Πk, buffer capacities βb for each buffer b,
machine cycle times τm for each machine m, and the duration
of the simulation Tsim, each simulation of Sj,k produces a
total of P parts. The number P varies between simulation

runs of the same test scenario Sj,k due to modeled stochastic
parameters that represent the variations and randomness that
appear in manufacturing systems. We note that simulation
termination Tsim scraps all parts in the production process.

The value contribution to the quality indicator of a part p
by a machine m at time t is captured by:

qm(t) = (vm + ϵm)(Hm(t) + δm), where t ≥ 0, (1)

where vm is the expected quality value added by machine
m onto a part; ϵm is a small amount of randomly generated
noise in the added value vm; Hm(t) is the health indicator of
machine m at time t; finally, δm is the minuscule randomly
generated variation in the machine’s health.

Eq (1) shows the quality contribution that machine m
provides to a part processed at time t, thus the resulting
total quality indicator will depend on the quality contributions
for machine m and all prior machines that processed that
product in its part flow-path w ∈ W . A part path w is
the set of all machines that processes a part from source to
sink. A configuration Cj will have a maximum of W part
paths, derived from its arrangement of machines and buffers.
For simplicity, we ensure that the length Lj (or number of
machines) of each part path w within each configuration Cj

is the same, i.e., all parts have the same number of machining
stages.

The final product quality indicator Qp for any part p that
went through the part flow-path w is defined as:

Qp =
∑
m∈w

(vm+ϵm)(Hm(tp,m)+δm), where tp,m ≥ 0, (2)

The timestamp when machine m processed part p is indicated
by tp,m and is progressive off a global clock of the simulation.
In this study vm = 1/Lj for all m ∈ M in Cj . This follows
from our choice to model all part paths w in Cj as having
the same path length Lj , and nominally require each machine
to contribute equally to achieve a total part quality indicator
Qp value of 1. The machine health indicator is bound by
Hm(tp,m) ∈ (0, 1) and represents the ratio by which the
machine is capable of contributing quality value to the part
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it processes. This means that, when taking into account the
variations that come from ϵm and δm, the part quality indicator
is bound by
Qp ∈

(
(1 + min(ϵm))( min

Hm ̸=0
(Hm) + min(δm)), (1 +

max(ϵm))(1 + max(δm))
)
.

In each simulation the machines are all reset to start
with a perfect health condition (Hm(t = 0) = 1, ∀m) for
each test scenario Sj,k. Each machine’s degradation model
instantiates at the beginning of each simulation run, along with
its production processes. The machines degrade independently
from each other, though we set them to reference the same
underlying degradation mechanisms.

At each degradation event, we model a 0.125 reduction
in a machine’s health indicator Hm(t). This forms a finite
and discrete state space for a machine’s health indicator,
Hm =

{
1, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25,

0.125, 0
}

, whose state transition function is deterministic. If
the health indicator reaches 0, a maintenance work order is
created. Other mechanisms like inspection or alerts from a
CMS can trigger a maintenance work order before the ma-
chine’s health indicator reaches 0. Section II-A3 will discuss
various maintenance policies in more detail. Regardless of the
triggering event, completion of the maintenance work order
results in perfect maintenance, reverting the machine’s health
indicator back to 1. This restoration to perfect health is also a
simplification that may not always be valid, but is used here
for convenience and best case illustrative purposes.

The distribution of the time between degradation events is
a two-parameter Weibull distribution with probability density
function:

f(t) =
λ

αλ
tλ−1e−(t/α)λ , where (t, α, λ) > 0, (3)

where λ is the shape parameter and α is the scale parameter.
Each degradation event follows a stochastic clock structure

as shown in Equation (3). Since the events themselves are
finite and discrete, the machine health indicator states are also
finite and discrete, and the state transitions are deterministic.
The degradation model for Hm(t) is a stochastic-timed state
automata that generates a generalized semi-Markov process,
a well-studied behavior of many stochastic, discrete-event
systems [17].

3) Maintenance Policies : The goal of maintenance is to
keep equipment healthy, safe, available to fulfill all related
system requirements. In production manufacturing, often the
additional goals of maintaining flexibility, consistent oper-
ations, high throughput, and quality production output are
also added. Throughout this work, we describe, model, and
implement several types of maintenance policies to form a
set of policies {Π1, ...,Πr}. Each test scenario evaluated
Sj,k is characterized by the pair {Cj ,Πk} of manufacturing
configuration Cj and a specific maintenance policy Πk. This
means given q manufacturing configurations and r mainte-
nance policies, there exists q · r possible number of test
scenarios from {S1,1, . . . , Sq,r}.

In this study, we focus on three major classes of mainte-
nance strategies: corrective run-to-failure policies, time-based
inspection policies, and CMS-enabled condition-based poli-
cies. Here, we consider the time-based inspection and CMS-
enabled policies forms of proactive preventive maintenance, as
they are nominally designed to trigger before a machine fails.
A reactive, corrective maintenance policy, also known as run-
to-failure, represents the worst-case scenario where there is no
chance for action or discovery prior to machine failure. Time-
based inspections represent commonly performed practical
maintenance practices that operate and trigger with no direct
need of continual system monitoring. The CMS based policies
represent the potential results of enacting autonomous or semi-
autonomous active evaluation of the system during operations.
The three additional CMS-enabled policies we selected rep-
resent various methods between a best-case scenario where
perfect information about each machine’s health is known and
a severely limited assessment of the system health states.

We model a maintainer object within the simulator to exe-
cute these policies. The maintainer has two possible actions:
performing maintenance work that moves machines back to
full health, or conducting inspections to gain knowledge of
current machine health. Each maintenance policy describes
the mechanisms and events involved in which the maintainer
object performs these tasks.

* Run-To-Failure Policy
In our corrective, run-to-fail policy model, the machines

produce parts until their degradation state indicates failure
(Hm(t) = 0). At failure, the machine shuts down, no longer
receives incoming parts, and scraps (i.e., discards) any parts
currently being operated on. This failure then triggers the
machine to submit a ’repair’ maintenance work order that will
be recognized and queued with the maintainer. Maintenance
only occurs when maintenance resources are available. Main-
tenance resource availability for repairing a machine depends
on the maintenance capacity parameter MTcap of maintenance
personnel that can perform the repair task. This parameter
models the number of repair maintenance work orders that can
be addressed simultaneously. Once maintenance is available
for the failed machine, a maintainer responds and performs
the task that restores the machine to full health (Hm(t) = 1).

* Periodic Inspection Policy
In our preventive, time-based inspection policy models,

an inspector (a special sub-class of maintainer) periodically
checks the health indicators of the machines in the configu-
ration. Each inspection pauses the machine for a duration of
TTIm to call a maintenance work order if the health of the
machine is under a threshold THinsp m. The first inspection
of each machine is requested at a time τfirst insp m after the
simulation start. This same interval is nominally the time until
the first inspection of a machine after it has undergone a repair
action. All subsequent machine inspections are requested every
τinsp m units of time until the machine again goes under repair
or the simulation ends. We model τfirst insp m < τinsp m

to represent earlier inspections that check for early machine
failures that may result from high failure rates early in a typical
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machine reliability bathtub curve.
The occurrence of a machine’s inspection depends on the

scheduled request time and the availability of maintenance
personnel that can perform inspections (which we will refer
to as inspectors). Inspector availability is dependant on the
user-specified inspection capacity parameter INcap, i.e., the
number of inspections that can be performed simultaneously,
and the priority log of queued inspection tasks from other ma-
chines. If all the inspectors are busy, any additional scheduled
inspections will be queued for the next inspection availability.
Failures and requests for machine maintenance supersede
inspection requests: if a machine fails with inspections queued,
those inspections will be canceled and restarted as normal after
repairs occur.

* Condition Monitoring System(CMS) Enabled Policies
We have modeled three different CMSs for the condition-

based maintenance policies in our case study (Section III). The
simulation-based approach of this paper can apply to other
CMS types. We do not model any time-based inspections in
conjunction with our CMS-enabled policy models. The three
CMS-enabled policies are:

• Complete Perfect Sensing - the CMS exactly knows and
reports the entire state of the system

– 1) Perfect CMS
• Limited Scope Sensing with AI Diagnostics - The CMS

uses AI algorithms and a limited set of inspection capa-
bilities to infer where problems with machines occur

– 2) Part Quality Contribution Indicator-based (PQCI-
based)

– 3) Prediction Error Minimization-based (PEM-
based)

Complete Perfect Sensing
The ’perfect CMS,’ provides complete and accurate in-

formation about each machine’s health to the maintainer.
The CMS records the machine health indicator data from
each machine’s sensors every τsense units of time. If, at
any sensing event, the CMS detects that any of the machine
health indicators has fallen at or below a machine health
threshold THcms, it creates a maintenance work order for the
corresponding machine.

Limited Scope Sensing with AI Diagnostics
The other two CMS-enabled maintenance policies deploy a

sensing apparatus only at the end of the production line (at
the sink object) and use algorithms that can predict machine
health. We refer to these two as the limited scope ’AI-
Inference’ CMSs since their alerts about machine degradation
or failure are not based on complete information. These
two AI-Inference CMSs represent monitoring systems with
low requirements for setup.Instead of directly monitoring the
machines, they instead utilize final part quality information
from the end of the production line. This lowered investment
is appealing to many enterprises and allows a much more cost-
effective CMS-enabled maintenance policy than the perfect
CMS case. However, the trade-off is that they produce higher
rates of false or missed alerts for machine health.

The AI-Inference CMS inputs come from each finished
product p that arrives at the sink. Given each finished product
p, the CMS records that part’s quality indicator Qp and its
part flow-path w (i.e. list of machines that processed it). The
CMS uses these inputs from each product in an algorithm that
identifies the most likely machine to be producing lower qual-
ity parts. Each product completed allows the CMS to update
health indicator predictions for all the relevant machines. If a
CMS predicts that a particular machine is low on its health
indicator or contribution to part quality, the CMS creates a
maintenance work order for that machine, same as in the
perfect CMS scenario.

The difference between the two AI-Inference CMSs lies in
the algorithm used to evaluate the likelihood of each machine
requiring maintenance. We will refer to the first AI-Inference
CMS algorithm as the Part Quality Contribution Indicator-
based (or PQCI-based) CMS, and the second as Prediction
Error Minimization-based (or PEM-based) CMS. In the style
of temporal-difference reinforcement learning, the PQCI al-
gorithm creates logical evaluations of the relative probability
that any machine in the configuration can induce lower part
quality contributions on the observed finished product. The
PEM algorithm uses open-source, off-the-shelf local search
algorithms (from the optimization module of Python’s SciPy
library) to minimize the prediction error for each machine’s
contributions towards finished part quality. We discuss the
mechanisms behind these algorithms in greater detail in our
prior work [18].

4) Repair Models: There are two major types of repair ad-
dressed in this experiment, reactive corrective work and proac-
tive preventative work. As mentioned earlier, corrective work
is defined as repairs that occur after a machine has reached
a fail state, and preventative work occurs before the machine
reaches the catastrophic failure state (Hm(t) = 0). Nominally
the Periodic Inspection and CMS-Enabled maintenance poli-
cies would primarily or exclusively trigger preventative work,
although corrective actions are a possibility. Conversely, the
Run-to-Failure policy ONLY provides corrective work.

A standard assumption that we employ here is that correc-
tive work is more resource intensive than preventive work,
both in time/labor and parts/cost. To reflect this, we employ
two different repair time models based on the state of the
machine when the maintenance request was placed.

Reactive Corrective Repair
If the machine reaches a fail state(Hm(t) = 0) triggering a

request or before a request can be fulfilled, the machine halts
production, scraping and in process parts it holds, then waits
for the next available maintainer to come repair it.

The repair action takes TTRfailed m + ϵTTR to complete,
where TTRfailed m is the mean time to repair and ϵTTR

represents some variance to the completion time. A single
maintainer is reserved during this time and can not work on
other maintenance work orders until the time to repair duration
is over. Once completed the maintainer is released and the
machine returns to producing parts at full health.

Proactive Preventative Maintenance
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Fig. 3. Repair duration if machine health is in ’Zone A’: TTRmild det m;
repair duration if in ’Zone B’: TTRdeteriorated m; repair duration if in
’Zone C’: TTRfailed m.

If a machine does NOT reach a failed state(Hm(t) = 0)
before the maintenance request is fulfilled, then as the main-
tainer arrives to perform repairs the machine production is
paused and repairs can commence. The amount of time needed
for this repair action is proportional to the health state of the
machine at the time of repair. The maintainer will repair the
machine back to full health with either a time-to-repair dura-
tion of TTRmild det m+ϵTTR or TTRdeteriorated m+ϵTTR,
depending of whether Hm(t) ≥ 0.5 or 0.5 ≥ Hm(t) > 0,
respectively (see Figure 3). No parts are scraped during this
type of repair action.

Regardless of the type of repair action, after completion
the machine is restored to complete and perfect operations
(Hm(t) = 1). As previously mentioned, this is not always the
case, but is a simplification made here to help highlight the
interplay of system configurations and maintenance policies,
without over complicating the results.

B. Selecting Manufacturing System Performance Indicators

Industry practitioners use a variety of performance indi-
cators (PIs) to track the performance of their manufacturing
firm and ensure that manufacturing performance reflects the
company’s strategy [7]. Balancing the cost and value of PIs is
a challenge: “The trick is to measure as little as possible, but
to ensure that you are measuring the things that matter” [19].

In this study, we used the following PIs to measure the
effects of using different maintenance policies Πk and manu-
facturing configurations Cj :

• Machine Availability (MA): The proportion of time in a
simulation run that a machine is not in a failed state,
not undergoing repairs, or (if applicable) not undergoing
inspections.

• Machine Mean Time Between Failure (MTBF): The ex-
pected time between two machines failures in a simula-
tion run.

• Machine Repair Count (MRC): Number of completed
repair work orders for a machine in a simulation run.
Includes corrective repairs as well as preventative repairs
triggered by inpection or condition monitoring.

• Work-In-Process (WIP): The average number of parts
waiting for further processing in buffers during a sim-
ulation run.

• Produced Parts (PP): The average number of parts pro-
duced in a simulation run.

• Mean Product Quality (MPQ): The average part quality
from the produced parts.

The first three PIs (MA, MTBF, and MRC) describe manu-
facturing reliability and maintainability. The next two PIs (WIP
and PP) give indicators of productivity and insight on machine
bottlenecks. The PI MPQ is an indicator for manufacturing
process quality.

C. Selecting Condition Monitoring Performance Metrics

Given the results of a simulation run, we can summarize
information about predictions for machine maintenance and
actual machine health conditions to construct a confusion ma-
trix of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) [20]. We used the following
confusion metric-based metrics to evaluate CMS performance:

• True Positive Rate (TPR): Also known as sensitivity or
recall, TPR measures the proportion of TPs with respect
to all actual machine health positives in a simulation run.

• False Positive Rate (FPR): Also known as fall-out, FPR
measures the proportion of FPs with respect to all the
actual negatives in a simulation run.

• Positive Predicted Value (PPV): Also known as precision,
PPV measures the proportion of TPs with respect to all
the CMS alerts for maintenance (predicted positives) in
a simulation run.

• F1 Score (F1): Measures the weighted harmonic mean
between PPV and TPR in a simulation run.

D. Experimental Design & Running Simulation Experiments

We conducted a systematic simulation study to compare
different test scenarios on their manufacturing performance
indicators and observe any impacts from CMS use. We ex-
perimented with different manufacturing configurations and
maintenance policies for a manufacturing system that has M
machines. The manufacturing configuration and the mainte-
nance policy form our two experimental factors. We select q
manufacturing configurations and the r maintenance policies
to form the experimental levels for each factor. We experiment
over all q · r combinations of the factors, each referred to as
a test scenario Sj,k. We measure the effects of these factors
on the experimental responses, the manufacturing system per-
formance indicators (Section II-B) and condition monitoring
performance metrics (Section II-C). All simulations for all test
scenarios ran for the same duration of simulated time, Tsim,
to reflect operation of the actual manufacturing system.

For each test scenario, the simulation results provide the
manufacturing performance indicators and any CMS perfor-
mance metrics. We then use the performances measured from
each test scenario’s simulation set to characterize each of
the test scenario’s manufacturing performance indicators and
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CMS performance metrics with a sample average and sample
standard deviation.

E. Fine-Tuning Condition Monitoring Hyperparameters

After conducting N simulation replications and obtaining
performance estimates with each test scenario Sj,k, we focused
on conducting further experiments with the subset of test
scenarios that make use of a CMS-enabled, condition-based
maintenance policy.

We experiment with hyperparameters for each of the three
CMSs discussed in Section II-A3 (the Perfect CMS, the PQCI-
based CMS, and the PEM-based CMS). The goal was to fine-
tune the hyperparameters as a way to optimize the CMS mod-
els for obtaining better manufacturing performance indicator
estimates and observing the corresponding CMS performance
metrics. We focused on the following hyperparameters for each
of our CMS models:

• Perfect CMS
– THCMS : CMS alert detection threshold for direct

machine health sensor measurements.
• PQCI-based CMS

– hPQCI : Number of last final product quality values
processed by each machine (in its part path w) to
consider for CMS alert prediction.

– THPQCI : CMS alert detection threshold for predic-
tions of each machine’s probability to induce lower
final product quality.

• PEM-based CMS
– hPEM : Number of latest final product quality values

to consider for CMS alert prediction.
– THPEM : CMS alert detection threshold for predic-

tions of each machine’s contribution to part quality.
For each hyperparameter, we selected Z values within a

practical range. For each test scenario that made use of any of
the three CMSs, we performed a parameter sweep for each of
its hyperparameters. In each parameter sweep, we replicated
N simulations for each of the Z hyperparameter values.

III. CASE STUDY

A. Model Parameters

This section describes the fictional manufacturing con-
figurations that were used to evaluate CMS performance.
These are labeled {C1, C2, C3, C4, C5} (see Figure 4). Each
configuration has six machines that represent 3-axis milling
machines to produce a single type of part. Each machine in
configuration C1 performs a specialized, short operation. At
the other extreme, each machine in configuration C2 performs
a more time-intensive series of operations on each part.

To allow for direct comparison between configuration per-
formance, we ensure that the sum of cycle times τm of
all machines in each part flow-path w, regardless of the
configuration, is 6 hours. We also ensure that the cycle times
are the same for every machine within a configuration. All of
the buffers have a capacity βb=10 units. The source introduces
parts at a rate of γ=1 part per hour. We model the degradation

Fig. 4. Five manufacturing configurations {C1, ..., C5}, each consisting of
6 machines (M), 1 source (Src), 1 sink (Snk), and buffers (B).

events of each machine’s health indicator Hm(t) with Equation
(3), where (λ, α) = (1.5, 12) for all machines except Machine
3. Instead, we modeled Machine 3’s degradation with the
parameters (λ, α) = (0.9, 3), which causes Machine 3 to
degrade much more rapidly than other machines. This model
choice allows us to test the sensitivity of our CMS-enabled
maintenance policies to machines with varying reliability.

We evaluated CMS performance with the five maintenance
policies described in Section II-A3: Π1 (Run-to-Failure), Π2

(Periodic Inspection), Π3 (PQCI-based Condition Monitor-
ing), Π4 (PEM-based Condition Monitoring), and Π5 (Per-
fect CMS). Three maintenance personnel (MTcap = 3) are
available for maintenance work, regardless of configuration
or policy. This allows us to compare the performance of
different test scenarios without worrying about performance
bottlenecks caused by a lack of personnel. We present the
remaining maintenance & repair model parameters, excluding
CMS hyperparameters from Section II-E, in Table II.

B. Results & General Discussion

The choice of five different configurations and five different
maintenance policy options illustrate the scale of analysis
and decision-making for complex manufacturing systems. We
run simulations on each of the 25 possible test scenarios.
The total duration for simulating each test scenario is set
to Tsim=10,080 hours. Initially, we run N=50 simulation
replications for each of the 25 test scenarios. If the test
scenario involved a CMS-enabled condition monitoring policy,
we conducted a manual parameter sweep over the relevant
CMS hyperparameters discussed in Section II-E (Z = 9 values
for the Perfect CMS and Z = 17 for PQCI-based and PEM-
based condition monitoring). Table I shows a subset of man-
ufacturing performance indicators and condition monitoring
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TABLE I
PERFORMANCE MEASURE MEANS

& STANDARD DEVIATIONS FOR TEST SCENARIOS

Test MA MRC (Num. PP (Num. MPQ CMS TPR CMS PPV
Scenario (%) of Repairs) of Parts) (Index Val.) (Ratio) (Ratio)
{C1,Π1} 76.70 115.12 4730.16 0.60

±9.484 ±47.427 ±53.638 ±0.123
{C2,Π1} 76.66 115.22 7218.26 0.54

±9.496 ±47.499 ±22.831 ±0.277
{C3,Π1} 76.66 115.32 6351.08 0.57

±9.526 ±47.638 ±49.626 ±0.165
{C4,Π1} 76.66 115.24 6422.24 0.57

±0.095 ±47.702 ±41.333 ±0.167
{C5,Π1} 76.69 115.13 4812.82 0.58

±9.431 ±47.250 ±29.976 ±0.149
{C1,Π2} 74.26 216.29 4840.52 0.68

±8.891 ±40.684 ±55.565 ±0.108
{C2,Π2} 74.19 216.18 6888.28 0.64

±8.932 ±41.218 ±15.357 ±0.253
{C3,Π2} 74.26 216.35 6304.08 0.65

±8.838 ±40.784 ± 38.959 ±0.148
{C4,Π2} 74.32 214.94 6270.60 0.65

±8.880 ±41.585 ±38.913 ±0.149
{C5,Π2} 74.24 216.08 4734.92 0.67

±8.872 ±40.677 ±21.991 ±0.131
{C1,Π3} 76.71 115.06 4702.84 0.60 0.0 0.0

±9.507 ±47.498 ±49.852 ±0.123 ±0.0 ±0.0
{C2,Π3} 59.66 625.79 5403.82 0.72 0.113 0.339

±7.880 ±8.546 ±15.630 ±0.248 ± 0.0047 ±0.0114
{C3,Π3} 60.71 585.70 5051.36 0.74 0.093 0.377

±7.793 ±23.173 ± 35.379 ±0.143 ±0.0051 ±0.0168
{C4,Π3} 61.17 570.49 5080.58 0.74 0.101 0.375

±7.477 ±16.371 ±39.420 ±0.140 ± 0.0050 ±0.0156
{C5,Π3} 66.86 399.45 4792.70 0.66 0.012 0.411

±12.258 ±217.082 ±38.467 ±0.140 ±0.0013 ±0.0348
{C1,Π4} 76.48 121.89 4704.98 0.61 0.002 0.489

±9.407 ±46.209 ±65.504 ±0.123 ±0.0008 ±0.0737
{C2,Π4} 62.31 448.72 5592.98 0.63 0.041 0.182

±11.459 ±126.198 ±26.540 ±0.281 ±0.0013 ±0.0064
{C3,Π4} 69.00 306.00 5623.02 0.64 0.028 0.246

±10.222 ± 72.535 ± 35.563 ± 0.162 ±0.0012 ±0.0097
{C4,Π4} 72.90 215.46 5949.02 0.63 0.016 0.316

±10.737 ± 68.527 ±44.396 ± 0.167 ±0.0012 ±0.0195
{C5,Π4} 73.34 217.37 4800.18 0.61 0.019 0.303

±11.113 ±111.049 ±36.637 ±0.146 ±0.0013 ±0.01693
{C1,Π5} 66.09 669.00 3971.20 0.79 1.0 1.0

±9.729 ± 133.812 ±50.869 ± 0.075 ±0.0 ±0.0
{C2,Π5} 66.09 667.16 6151.54 0.77 1.0 1.0

±9.788 ±135.454 ±30.758 ±0.182 ±0.0 ±0.0
{C3,Π5} 66.10 668.82 5456.80 0.78 1.0 1.0

±9.737 ±133.034 ±55.383 ±0.106 ±0.0 ±0.0
{C4,Π5} 66.06 667.82 5368.60 0.78 1.0 1.0

±9.707 ±134.060 ±55.919 ±0.104 ±0.0 ±0.0
{C5,Π5} 66.15 665.88 4282.40 0.79 1.0 1.0

±9.768 ±134.042 ±63.189 ±0.092 ±0.0 ±0.0
∗Note: Each CMS-enabled test scenario had their CMS fine-tuned across a sweep of hyperparameters;

results presented for hyperparameters that produce the highest mean MPQ.

performance metrics that we generated from simulating these
test scenarios.

The Table I shows that while manufacturing configurations
have a major impact on part production PP, the use of CMSs in
a maintenance policy also has major impacts on manufacturing
performance. We observe the full impact that a CMS can
have from the results of test scenarios that include Π5, the
Perfect CMS, and comparing them against the results of test
scenarios that operate maintenance with Π1, Run-to-Failure.
A configuration with Π1 has higher part production PP,

lower maintenance repair counts MRC, and higher machine
availability MA than the same same respective configuration
that operates by policy Π5. However, configurations with
Π5 indicate a much higher part quality MPQ. The higher
maintenance work orders that result from using the Perfect
CMS direct result in lower productivity and higher part quality.
A manufacturer with higher emphasis on part quality over
quantity would prefer the complete perfect sensing of Π5.

Test scenarios that operate on the Π2 Periodic Inspection
maintenance policy also provide a useful reference point.
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TABLE II
MAINTENANCE & REPAIR MODEL PARAMETERS

Periodic Inspection Policy Π2

INcap 1
TTIm 1 hour

THinsp m 0.5
τfirst insp m 20 hours

τinsp m 40 hours
Perfect CMS-based Policy Π5

τsense 1 hour
Time-To-Repair Values

TTRfailed m 20 hours
TTRdeteriorated m 5 hours
TTRmild det m 2.5 hours

Manufacturing performance indicators for configurations with
the Π2 policy result in higher productivity and lower part
quality than respective configurations that operate with Π5,
and lower productivity and higher part quality than respective
configurations that operate with Π1. Ideally, a cheaper, non-
perfect sensing, CMS-based maintenance policy should result
in manufacturing performance that is comparable with Π2.
That is not necessarily the case with policies Π3 and Π4.

We observe that policy Π3 does show improved part quality
MPQ for configurations {C2, C3, C4} where no part flow-
paths w share a machine. This is due to the PQCI algorithm
used in Π3, which compares part qualities coming from
different paths. In contrast, Π3 was not able to produce a
single maintenance work order in the test scenario {C1,Π3},
as indicated by the resulting TPR metric, because all the
machines in C1 are in the same, single part flow-path. An-
other impact that part flow-paths have on the CMSs used
in Π3 and Π4 can be seen in the variability in maintenance
work order counts for machines in configuration C5. Because
machines M1 and M2 are in the all of the flow-paths in
C5, the CMSs alert for maintenance less frequently than for
other machines. Overall, insights about which configurations
a CMS-enabled policy such as Π3 can impact are invaluable
for creating and improving upon similar CMSs. The goal is
to use CMSs that achieve condition monitoring performance
metrics (TPR, PPV) and resulting manufacturing performance
impacts (MPQ) closer to that of the Perfect CMS case.

IV. CONCLUSIONS

In this paper, we evaluate the use of CMSs in a discrete-
part manufacturing setting with manufacturing and condition
monitoring performance measures across various manufac-
turing configurations and maintenance policies. We describe
a simulation-based approach toward CMS evaluation and
demonstrate our approach with a case study of twenty-five
test scenarios from five configurations and five different main-
tenance policies (three being CMS-enabled condition-based
maintenance policies). The case study results show that using
CMSs can positively impact product quality but may hinder
part production and machine availability. Future works will
expand on the performance indicators and metrics, the types
of CMSs and maintenance policies used, more refined CMS

hyperparameter tuning, and sensitivity analysis for model
parameters such as time-to-repair.

DISCLAIMER

The use of any products described in this paper does
not imply recommendation or endorsement by the National
Institute of Standards & Technology, nor does it imply that
products are necessarily the best available for the purpose.
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