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Abstract
Co3V2O8 features spin-3/2 moments arrayed on a kagome staircase lattice. A spin density wave
with a continuously evolving propagation vector of k⃗= (0, δ, 0), showing both incommensurate
states and multiple commensurate lock-ins, is observed at temperatures above the ferromagnetic
ground state. Previous work has suggested that this changing propagation vector could be driven
by changes in exchange interactions due to Co atom displacements. We present a
straightforward model showing that a Hamiltonian with competing (but temperature
independent) interactions can semi-quantitatively reproduce this behavior using a mean field
approximation. The simulated spin density wave magnetic structures feature buckled kagome
planes that are either ferromagnetically or antiferromagnetically ordered. Propagation vectors
that differ from δ = 1/2 will have multiple different ways of arranging these ferromagnetic
layers that have very similar energies. This classical stacking entropy appears to be crucial in
stabilizing the temperature-dependent propagation vector.

Keywords: entropy, frustrated magnetism, competing interactions, kagome staircase

1. Introduction

In frustrated spin systems the lattice geometry, disorder, or
competing magnetic interactions yield a scenario in which
no magnetically ordered structure can simultaneously sat-
isfy every magnetic interaction [1, 2]. While the magnetic
moments in Co3V2O8 are arranged in a structure reminis-
cent of the highly frustrated kagome lattice, the frustration
appears to arise primarily from competing interactions rather
than the lattice geometry. The M3V2O8 family of compounds
(with M = Mn, Co, Ni, Cu, or Zn) display the kagome
staircase structure, in which M2+ ions form buckled kagome
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∗
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planes of corner-sharing triangles that stack along the crys-
tallographic b-axis. The edge-sharing MO6 octahedra lead to
M–O–M bond angles that are quite close to 90◦, yielding
nearest-neighbor superexchange interactions that are typically
weak. Small differences in magnetocrystalline anisotropy and
further-neighbor interactions can therefore yield very differ-
ent ordered magnetic structures across this structurally sim-
ilar family of materials. Ni3V2O8 (with S= 1 Ni2+ ions) dis-
plays a complex magnetic phase diagram with several distinct
spin density wave ordered structures [3]. The low-temperature
incommensurate magnetic structure (observed between 4.0K
and 6.3K at zero field) [4] is helical order that breaks inver-
sion symmetry. Ni3V2O8 is multiferroic, as this helical order
is concomitant with ferroelectricity [5, 6] and a high-field
reentrant ferroelectric phase is driven by an ordering under
a magnetic field tilted away from the crystallographic axes

1 © 2024 IOP Publishing Ltd
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Figure 1. (a) Nuclear unit cell of Co3V2O8. Co(1) cross-tie sites are shown in blue, Co(2) spine sites are shown in green, vanadium sites are
shown in cyan, and oxygen sites are shown in red. (b) Two kagome layers of cobalt sites are shown, expanded beyond the first unit cell
along the a direction. The first and second nearest-neighbor distances are shown to highlight the buckled kagome lattice structure. The
cross-tie sites are located in the middle of a kagome layers Each layer contains an upper spine located above the cross-ties and a lower spine
located below them. These crystal drawings were produced using VESTA [21].

[7]. Ferroelectricity has not been observed in Co3V2O8 (with
S= 3/2 Co2+ ions), but the vibrational mode leading to polar-
ization in Ni3V2O8 is magnetically sensitive and there is evid-
ence of a magnetic field driven structural distortion [8, 9].

Co3V2O8 also displays a complex magnetic phase diagram
[10] with a transversely polarized spin density wave structure
that displays alternating commensurate and incommensurate
periodicities. All observed magnetic structures in Co3V2O8

are Ising-like, with magnetic moments ordered along the crys-
tallographic a-axis. The ground state, below TC = 6.2K, is fer-
romagnetic with an ordered moment of 2.73µB on the spine
sites and 1.54µB on the cross-tie sites (see figure 1 for defin-
ition of the spine and cross-tie sites). There is evidence that
the moment missing from the cross-tie sites may reside on the
V5+ and O2− ions [11]. Between TC and TN = 11.3K there
is a transversely polarized spin density wave structure with
a propagation vector of k⃗= (0, δ, 0) along the b-axis. There
are distinct commensurate lock-in phases at δ = 1/3 (TC to
6.5K) and δ = 1/2 (6.9K–8.6K) interspersed with incom-
mensurate values of δ [10]. The application of modest mag-
netic fields along the a-axis (the magnetization easy axis)
leads to a new commensurate lock-in phase with δ = 2/5 [12].
Complicated magnetic phase diagrams are also observed with
magnetic fields applied along the b-axis [13] or c-axis [14].
The spin density wave peaks with propagation vectors other
than δ = 1/2 were found to be broad [15]. This material shows
an unusually large change in thermal conductivity with applied
magnetic field [16] due to critical spin fluctuations scattering
phonons near phase transitions; this indicates possible use as a
heat valve. Spin waves in the ferromagnetic ground state dis-
play a spin gap of about 1.5meV and a bandwidth of about

1meV for excitations within the ac-plane [17] and along the
b-axis [13]. Well-defined spin waves were not observed in the
δ = 1/2 spin density wave phase, with the inelastic spectral
weight found in broad peaks of diffuse scattering centered
at antiferromagnetic positions. An analysis of the spin wave
excitations in the ferromagnetic ground state required five dis-
tinct superexchange interactions, distinct single-ion anisotrop-
ies on the two lattice sites, and a significant Dzyaloshinskii-
Moriya interaction [18] to fully explain the spectra.

A full accounting of the relevant magnetic interactions in
Co3V2O8 is a daunting task given the two crystallographically
distinct spin sites, the likely presence of significant moment
on V5+ and O2− ions [11], significant magnetocrystalline
anisotropy [19], and the possibility of changing interaction
strengths due to Co displacements [8]. Despite these complic-
ations wewill show that a model consisting of the Hamiltonian
previously used to describe the spin waves [18] plus two inter-
planar antiferromagnetic interactions suggested by a minimal
Ising model [10] reproduces many of the observed features
of the magnetic phase diagram. In this model the temperat-
ure evolution of the propagation vector does not require any
change in coupling strengths but is driven by thermal fluctu-
ations related to the entropy of stacking ferromagnetic and
antiferromagnetic layers in patterns with nearly equivalent
energies.

2. Methods

Co3V2O8 crystallizes in the orthorhombic Cmca space
group with lattice parameters at T = 12.5K of a= 6.027Å,
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Figure 2. Magnetic couplings considered in the simulation. Co(1) cross-tie sites are shown in blue while Co(2) spine sites are shown in
green. Co–O–Co superexchange pathways J1 (red) and J2 (orange) are shown as well as Co–O–V–O–Co pathways J3 (blue), J4 (green), J6
(purple), J8 (cyan), and J12 (yellow). JLU (magenta) was suggested by a minimal Ising model [10].

b= 11.483Å, and c= 8.296Å [10, 20]. The nuclear unit cell
is displayed in figure 1. This structure has two crystallograph-
ically inequivalent Co sites, with the Co(1) sites (at the 4a
Wyckoff positions) referred to as the ‘cross-ties’ and the Co(2)
sites (at the 8e Wyckoff positions) referred to as the ‘spines’.
The Co(2) spine sites form chains running along the a-axis.
The cross-tie sites sit in the middle of the buckled kagome
layers (at y= 0 or y= b/2). In a given kagome layer, half
of the Co(2) sites will be on an upper spine above the cross-
ties (at y≈ 0.13b or y≈ 0.63b) while the other half will be
on a lower spine (at y≈−0.13b or y≈ 0.37b). There are two
possible pathways for Co–O–Co superexchange. The nearest-
neighbor interaction, J1, is 2.966Å between a spine site and
an adjacent cross-tie site. The second nearest-neighbor inter-
action, J2, is 3.014Å between adjacent spine sites. Both of
these interactions are within the same buckled kagome plane.
Given that the spin density wave structures feature a propaga-
tion vector parallel to the b-axis [10] and that the spin wave
bandwidth along the [0K0] direction is comparable to that
within the [H0L] plane [18] it is clear that there must be
significant magnetic coupling between the buckled kagome
planes and that it is therefore necessary to consider further-
neighbor interactions. If we expand our scope to Co–O–V–O–
Co pathways there are six additional possible interactions to
consider; while these can entail fairly large distances there is
evidence that a significant amount of magnetic moment may
reside on the V5+ and O2− ions [11] making such interac-
tion pathways plausible. The third nearest-neighbor interac-
tion, J3, is 4.963Å between a spine site on one layer and a
cross-tie site on the next layer. The fourth nearest-neighbor
interaction, J4, is 4.981Å between a spine site on one layer
and a spine site on the next layer. The fifth nearest-neighbor
interaction, J5, is 5.109Å between sites on the lower spine and
upper spine of the same layer. The eighth nearest-neighbor
interaction, J8, is 5.742Å between a spine site on one layer
and a spine site directly above it along the b-axis. The sixth
nearest-neighbor (J6, 5.127Å) and twelfth nearest-neighbor
(J12, 6.027Å) interactions are between cross-tie sites in the

same buckled kagome plane. (There are several other Co–Co
distances smaller than the twelfth nearest-neighbor, but they
are not considered due to the lack of a Co–O–V–O–Co path-
way.) A minimal Ising model [10] argued that the observed
propagation vector required a nonzero coupling JLU between
a spin on the lower spine of one kagome plane and a spin on the
upper spine of the next higher kagome plane. These possible
couplings are shown in figure 2. Spin wave measurements [18]
were modeled with J2 = J5 = 0, so J5 is excluded from the
figure. The minimal Ising model in Chen et al [10] also con-
sidered a temperature-dependent effective interaction between
the upper and lower spines on the same kagome layer (referred
to as J3 in that work but corresponding to the fifth nearest-
neighbor Co–Co distance). This effective spine-spine inter-
action acted through the intermediate cross-tie site and was
temperature-dependent due to the changing ordered moment
of the cross-tie spins. By considering cross-tie sites in addition
to the spines, this work fully captures this interaction with only
a temperature-independent J1.

Neutron single crystal diffraction measurements were per-
formed on the BT-4 thermal triple axis spectrometer at the
NIST Center for Neutron Research using a 14.7meV neut-
ron energy. A small (≈3× 3× 2mm3), high-quality single
crystal sample that had previously been used for single crys-
tal diffraction [10, 12], including the initial identification of
the δ = 1/3 phase, was aligned in the [HK0] scattering plane.
The sample was cooled in a closed cycle refrigerator to a set
point of T= 6K; this is slightly below the literature trans-
ition temperature of TC = 6.2K, but peaks with a propaga-
tion vector of δ = 1/3 were clearly observed. Measurements
were also performed at T= 3K, in the ferromagnetic phase,
and at T= 15K in the paramagnetic phase. An 80′ collim-
ator and a pyrolytic graphite filter were placed both between
the monochromator and the sample and between the sample
and the analyzer, and an 80′ collimator was placed between
the analyzer and the detector. Both θ scan rocking curves and
θ− 2θ curves were measured for 21 reciprocal space posi-
tions in the [HK0] scattering plane. At T= 6K intensity was
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observed at [H, K, 0] positions where H was an even integer
and K was an even integer ±1/3; for example, the greatest
intensity was observed at [2, 4.33, 0]. The higher-order peaks
were observed as intensity at positions where H was an even
integer and K was an odd integer, such as [0, 1, 0]. The integ-
rated intensities of peaks through the θ scan rocking curves
were determined and corrected for the resolution ellipsoid.
The intensities were normalized by comparing to both nuclear
peaks measured at T= 15K and ferromagnetic peaks meas-
ured at T = 3K; for comparison to ferromagnetic peaks we
used the magnetic structure reported by Chen et al [10]

3. Theory

Our Hamiltonian is

Ĥ=
∑
<i,j>

JijS⃗i · S⃗j+
∑
i,µ

Ai,µ (Si,µ)
2
+

∑
<i,j>

D⃗ij ·
(
S⃗i× S⃗j

)
− gµB

∑
i

S⃗i ·µ0H⃗ext (1)

where the summation < i, j> is over pairs of spins, Jij is the
Heisenberg exchange term between spins i and j, Ai,µ is the
µ-component (µ= x, y, z) of the single-ion anisotropy para-
meter for spin i, D⃗ij is the Dzyaloshinskii–Moriya anisotropic
exchange term between spins i and j, and H⃗ext is the external
applied magnetic field.

We follow the molecular field theory of Weiss [22]
and assume that the effects of the first three terms in the
Hamiltonian can be reproduced by a molecular field at each
spin site that adds to the external applied magnetic field. This
yields a total effective magnetic field at site i given by

µ0H⃗eff,i =−
∑
j

Jij
gµB

S⃗j−
∑
µ

2Ai,µSi,µµ̂
gµB

−
∑
j

(
S⃗j× D⃗ij

)
gµB

+µ0H⃗ext (2)

and a self-consistent solution is a magnetic structure where the
ordered moment at site i is given by

gµBS⃗i = gµBSBJ

(
S
gµBµ0Heff,i

kBT

)
Ĥeff,i (3)

where BJ(x) is the Brillouin function and S is the spin size.
The experimentally observed magnetic structure of

Co3V2O8 in its δ = 1/2 phase [10] features alternating fer-
romagnetic and antiferromagnetic kagome layers. In the fer-
romagnetic layers all spins are aligned to point in the same
direction; the spine and cross-tie sites have respective ordered
moments of 1.39µB and 1.17µB. In antiferromagnetic lay-
ers the upper and lower spines feature spins with an ordered
moment of 2.55µB that are aligned in opposite directions, and
there is no ordered moment on the frustrated cross-ties. This
ordered structure is displayed in figure 3(a). At the bottom of
the magnetic unit cell is an antiferromagnetic layer in which

the lower spine spins are ordered along the−a direction while
the upper spine spins are ordered along the +a direction. This
is followed by a ferromagnetic layer with all spins pointing
along the+a direction, then an antiferromagnetic layer where
the lower spine is ordered along the+a direction and the upper
spine is ordered along the −a directions, and finally a ferro-
magnetic layer ordered along the −a direction. This motif of
ferromagnetic and antiferromagnetic layers can be extended
to a different periodicity by including more than one adja-
cent ferromagnetic layer between antiferromagnetic layers.
Figure 3(b) shows an ordered structure with a second ferro-
magnetic layer pointing along the +a direction but still only
one ferromagnetic layer pointing along the −a direction. This
structure is ferrimagnetic, with a net magnetic moment point-
ing along the +a direction. This simulated magnetic structure
is likely similar to the commensurate lock-in with δ = 2/5
that was observed in applied magnetic fields [12]. Figure 3(c)
displays a δ = 1/3 structure with two ferromagnetic layers
between each antiferromagnetic layer.

Generally, a magnetic structure following this motif of fer-
romagnetic and antiferromagnetic layers can be described by a
propagation vector component δ which is equal to the fraction
of kagome layers that are antiferromagnetic layers. We will
first consider a magnetic structure consisting of ferromagnetic
and antiferromagnetic layers where all spine sites have the
same ordered moment (Ss) and all cross-tie sites in ferromag-
netic layers have the same moment (Sc) while cross-tie sites
in antiferromagnetic layers are fully frustrated and have no
ordered moment: the energy of this magnetic structure using
the given Hamiltonian will depend upon the number of anti-
ferromagnetic layers (and therefore on δ) but, so long as two
antiferromagnetic layers are never adjacent, the energy does
not depend upon the location of the antiferromagnetic layers.
This implies that spin density wave ordered structures with a
δ less than 1/2 will feature large degeneracies. Placing two
antiferromagnetic layers adjacent to one another is energet-
ically unfavorable, provided that JLU is nonzero and antifer-
romagnetic. The energy per unit cell of such a structure with
δ ⩽ 1/2 that never has two antiferromagnetic layers adjacent
to one another is given by

E(δ) = 16 [(1− δ)(J1 + J3)]SsSc

+ 8 [J2 + J4 +(1− 2δ)(J5 + J8)+ (1− 4δ)JLU]S
2
s

+ 4 [(1− δ)(2J6 + J12)]S
2
c .

If 4(J1 + J3)SsSc+ 4(J5 + J8 + 2JLU)S2s +(2J6 + J12)S2c = 0

then
dE
dδ

= 0 and the energy of different ordered structures is

independent of δ. Using the Hamiltonian values given in the
supplementary information of [18] this will occur so long as
J8 + 2JLU ≈ 0.3meV. When J8 + 2JLU is slightly smaller than
this value we would expect a ferromagnetic ground state, but
at higher temperatures thermal fluctuations could select spin
density waves with a range of commensurate or incommen-
surate propagation vectors.

Magnetic structures are determined by simulating 720 Co
spins in a structure that is 60 unit cells stacked along the b-axis
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Figure 3. Example magnetic structures. Antiferromagnetic layers, in which the cross-tie sites are fully frustrated with no order moment and
Co ions on the upper and lower spines are ordered in opposite directions, are highlighted by semitransparent gray boxes. (a) One magnetic
unit cell (two nuclear unit cells) for the δ = 1/2 ordered structure. Moment sizes represent the refined values from Chen et al [10]
performed at 8.4K. (b) One effective magnetic unit cell (2.5 nuclear unit cells) of a ferrimagnetic ordered structure with δ = 2/5. (Given the
AB stacking of the kagome layers, the actual magnetic unit cell is twice this large.) The moment sizes represent simulated values at 9.5K
and 0.15 T from this work, doubled in scale relative to the other two panels of this figure. (c) One magnetic unit cell (three nuclear unit cells)
for the δ = 1/3 ordered structures. Moment sizes represent the refined structure for data measured at 6.0K and reported in this work.

(with no enlargement along the a-axis or c-axis) and periodic
boundary conditions. 245 initial spin structures are chosen to
reflect likely magnetic orderings. For each initial spin struc-
ture the molecular field process described above is applied
until a self-consistent magnetic order is reached. The model
Hamiltonian is used to determine themolecular field at a single
Co site. The spin value at that site is changed to match the
value given by the Brillouin function using an effective mag-
netic field that is themolecular field added to any externalmag-
netic field. This is performed for each spin site in turn and is
repeated until a self-consistent solution is obtained. The free
energy is determined, with the entropy calculated as described
in the appendix. This is then repeated for each of the 245 initial
spin structures, and the self-consistent solution with the lowest
free energy is taken as the simulatedmagnetic structure. 203 of
these initial spin structures are identical during every run of the
simulation; they represent spin structures built from our motif
of alternating ferromagnetic and antiferromagnetic layers with
all possible δ values from 0 to 1 in steps of 1/60 in patterns that
feature no net magnetic moment and in patterns intended to
maximize the net magneticmoment. 40 additional initial struc-
tures are chosen for each run of the simulation, intended to
ensure that structures differing from our motif are not missed.

For much smaller systems (no more than six stacked unit cells,
as opposed to the 60 in our simulation) it is computationally
feasible to find the lowest free energy structure by this method
with initial spin structures chosen by assigning random spin
directions. Systems consisting of two through six stacked unit
cells are considered in this way. The lowest free energy state
for these reduced systems is found and repeated between five
and 30 times to build a 60 unit cell system that serves as ini-
tial spin structure. Finally, the last two initial spin structures
are determined by slightly perturbing the lowest free energy
state up to that point in a way that maximizes the effect of the
Dzyaloshinskii-Moriya interaction. These final 42 initial spin
structures are always included to avoid biasing results toward
our expected structural motif, but every run of the simulation
with the model Hamiltonian has returned a lowest free energy
magnetic structure that matches the expected motif.

4. Results

Magnetic structures were simulated with the spin sizes and
Hamiltonian from the supplementary materials of [18], which
were determined from spin wave modeling with reduced
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Table 1. Spin Hamiltonian parameters used for the simulations. All
values except J8 and JLU were taken from the supplementary
information of [18]. Single ion anisotropy values are set to zero
along the easy axis. J< 0 are ferromagnetic while J> 0 are
antiferromagnetic.

Sc 0.770 J8 0.140meV
Ss 1.365 JLU 0.038meV
J1 −0.320meV Ac,x 0.850meV
J3 −0.250meV Ac,y 1.240meV
J4 −0.250meV As,y 1.770meV
J6 0.020meV As,z 1.120meV
J12 0.044meV D1,x 0.210meV

cobalt spins of Sc = 0.770 for cross-ties and Ss = 1.365 for
spines. The single ion anisotropy parameters have been shifted
so that the component along the easy axis (the a-axis for spines
and the c-axis for cross-ties) is set to zero. J8 = 0.140meV and
JLU = 0.038meV were added to provide a semi-quantitative
match to the experimentally observed [10] evolution of the
propagation vector in zero applied field. An antiferromagnetic
exchange along J8 with a strength about one third of this had
been suggested in Ni3V2O8 [4]. The spin wavemodeling using
SpinW [23] reported in [18] was repeated with these two addi-
tional antiferromagnetic couplings included and it was con-
firmed that these two terms do not perceptibly change the spin
wave spectrum (spin wave positions are unchanged to a sens-
itivity of at least 0.01meV). This confirms that the simulated
Hamiltonian is consistent with measured spin waves in the fer-
romagnetic phase. The complete set of parameters is listed in
table 1. The entropy per kagome layer of a given ordered struc-
ture was determined using equations (15) and (20) derived in
the appendix.

When calculating free energies, the energy scales with the
number of spins while the stacking entropy scales with the
number of buckled kagome layers along the b-axis; increas-
ing the size of the considered system within the ac-plane will
cause the energy to increase, but not the stacking entropy. The
simulation does not enlarge the unit cell within the ac-plane,
so that energy per unit cell in the ac-plane is calculated. This
needs to be compared with the entropy per unit cell in the ac-
plane, determined by diving the overall entropy by the number
of ac-plane unit cells in the system. The simulation achieved
this by multiplying the overall calculated entropy by a scale
factor; this scale factor can be thought of as the inverse of
the number of unit cells in the ac-plane. This scale factor was
an adjustable parameter, and a value of 0.0035 was chosen to
best match the measured diffraction results. This scale factor
corresponds to 290 unit cells in the ac-plane, which could be
achieved by domains with an average diameter of 135Å in the
ac-plane. A correlation length of 220Å had been found [15]
along the b-axis at a temperature where δ≈ 0.4, so a 135Å
domain size in the ac-plane is reasonable.

Figure 4 displays the scattering intensity for the simu-
lated magnetic structures as a function of temperature. The
simulation determined the lowest free energy structure at

Figure 4. Simulated neutron scattering intensity (the norm-square
of the structure factor) for the model Hamiltonian as a function of
temperature.

each temperature (with step of 0.05K). The calculated neut-
ron scattering intensity for each structure was determined
and then convolved with a Gaussian with a width (stand-
ard deviation) of 0.02 r.l.u. to mimic an instrumental resol-
ution. These Hamiltonian parameters reproduce the experi-
mentally observed data quite well. Ferromagnetism gives way
to a spin density wave at 6.0K which locks in to a δ =
1/3 propagation vector between 6.5K and 7.0K. This is fol-
lowed by incommensurate structures with a steadily evolving
δ up to 8.3K. In this region a weak higher-order reflection is
present at δ ′ = 2− 3δ, just as was experimentally observed
[10]. The δ = 1/2 lock-in occurs from 8.3K to about 11.0K.
Experimentally, incommensurate structures with 1/2< δ <
0.55 were observed at temperatures a bit below TN; in our sim-
ulation no magnetic structure with δ > 1/2 is ever observed to
minimize the free energy. While these states do have a higher
entropy than the δ = 1/2 lock-in they do not have a higher
entropy than states with δ values a bit below 1/2. Some other
mechanism (perhaps a breakdown of the pattern of alternat-
ing ferromagnetic and antiferromagnetic layers) is needed to
account for these states.

At T = 8.4K the simulation finds that the lowest free energy
self-consistent solution for this Hamiltonian is one with δ =
1/2. Figure 5 displays the ordered moment along the a-axis
across two unit cells for both this simulation and the results
of powder neutron diffraction measurements at this temperat-
ure from [10]. The ordered moment in the simulated results
is fully along the a-axis, with no components along the other
axes. The simulated results follow the experimental refinement
with alternating ferromagnetic and antiferromagnetic layers
and have very similar cross-tie ordered moments. Powder dif-
fraction measurements found a significantly larger ordered
moment of the antiferromagnetic layer spine sites than on the
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Figure 5. Ordered moment along the a-axis for the δ = 1/2 phase
at T = 8.4K. Results are shown for the refinement of neutron
powder diffraction data from Chen et al [10] and from the simulated
results. Cross-tie sites are shown as solid symbols, while spine sites
are shown as hollow symbols with perpendicular lines.
Antiferromagnetic layers are highlighted by semitransparent gray
boxes.

ferromagnetic layer spin sites, which is not reflected in the sim-
ulated data.

Figure 6 shows the simulated HT phase diagram for this
Hamiltonian and with magnetic fields along the a-axis (the
magnetization easy-axis). As is observed experimentally from
single crystal neutron diffraction [12] very small applied fields
destabilize the δ = 1/3 commensurate lock-in and produce
a δ = 2/5 commensurate lock-in. This δ = 2/5 phase in the
simulation results consists of sets of two ferromagnetic layers
pointing along the field direction and single ferromagnetic lay-
ers pointing opposite the field direction separated by antiferro-
magnetic layers, providing a net ferrimagnetic moment along
the a-axis. However, the applied field needed to suppress spin
density wave order in the simulation is almost a factor of two
smaller than the experimentally observed value and the shape
of the δ = 1/2 lock-in differs from the experimental phase dia-
gram. Still, this strongly suggests that the δ = 2/5 commen-
surate lock-in observed experimentally features the samemotif
of alternating ferromagnetic and antiferromagnetic layers.

The integrated intensities of 13 magnetic reflections at T=
6K in the δ = 1/3 phase were measured using neutron single
crystal diffraction. The calculated intensities for these reflec-
tions were determined for a structure consisting of two ferro-
magnetic layers between each antiferromagnetic layer. These
calculated intensities were fit to the measured intensities with
four fit parameters: the ordered moments for ferromagnetic
layer cross-ties, the antiferromagnetic layer spines, and both
the upper and lower spines on ferromagnetic layers. The best
fit matched the measured intensities fairly well, but produced
a cross-tie ordered moment of 1.87(2)µB. Given that even in
the ferromagnetic phase the cross-tie ordered moment is only

Figure 6. HT phase diagram for simulated structures using the
considered Hamiltonian with magnetic fields applied along the
a-axis. The color scale is used to display δ, where the propagation
vector is k⃗= (0, δ, 0). Boundaries of the commensurate lock-ins are
shown with white lines. The three black dots refer to the places in
the phase diagram where the simulated structures shown in
figures 3(b), 5 and 7(a) were determined.

1.54µB the fit was repeated with this as the maximum pos-
sible cross-tie ordered moment. This fit did not match the data
quite as well, but captured the intensities of the strongest mag-
netic reflections reasonably well. These results are displayed
in figure 7. Panel (a) shows the ordered moments for both the
refined structure determined by fitting the diffraction data and
from the simulation in the δ = 1/3 phase. Both display the
same motif of two consecutive ferromagnetic layers followed
by an antiferromagnetic layer. The simulated structure has sig-
nificantly larger ordered moments on the spine sites. Panel (b)
compares the calculated intensity of magnetic reflections for
themoments displayed in panel (a) to themeasured intensity of
the magnetic reflections. The motif of two ferromagnetic lay-
ers followed by an antiferromagnetic layer is consistent with
the measured intensities in this phase. Some of the difference
between the measured and calculated intensities could be due
to the fact that this simulation models purely magnetic peaks
at these positions while polarized diffraction data [10] found
a modest intensity in the non-spin-flip channel that indicated
a subtle structural distortion.

5. Discussion

A single crystal neutron diffraction study of Co3V2O8 [15]
found that the reflection in the δ = 1/2 phase was resolution
limited. However, the reflections in both the δ = 1/3 phase
and the incommensurate phase with δ > 1/2 featured a broad
Lorentzian component on top of a dominant resolution lim-
ited peak. The reflection at a temperature with an incommen-
surate propagation vector of δ≈ 0.4 was purely a Lorentzian
with a width (FWHM) of 0.015 r.l.u. A single crystal spectro-
scopy study [18] did not find well-defined spin waves in the
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Figure 7. (a) Ordered moment along the a-axis for the δ = 1/3 phase. Results are shown for the refinement of our neutron single crystal
diffraction data at T = 6.0K (with the cross-tie ordered moment not allowed to exceed 1.54µB) and from the simulated results at T = 6.9K.
Cross-tie sites are shown as solid symbols, while spine sites are shown as hollow symbols with perpendicular lines. Antiferromagnetic
layers are highlighted by semitransparent gray boxes, and vertical dashed lines separate the two ferromagnetic layers between each
antiferromagnetic layer. (b) Comparison of the calculated (from the simulated structure) and measured (from neutron single diffraction)
structure factors norm-squared for magnetic reflections.

δ = 1/2 phase at 9.2K; rather, most of the spectral weight was
found in broad, heavily damped columnar excitations found at
[0, 0.5, 0] reduced wave vectors. This is similar to Ni3V2O8

[24] which also featured very broad excitations in its incom-
mensurate phases.

The entropy of various spin density wave structures
provides a natural way to describe these widths. An antifer-
romagnetic JLU makes it energetically unfavorable for two
antiferromagnetic layers to be adjacent; therefore the δ =
1/2 ordered structure is nondegenerate, with alternating fer-
romagnetic and antiferromagnetic layers. A nondegenerate
structure explains the observed resolution-limited reflection.
Still, given the fact that ordered structures with different δ
are very close to degenerate (assuming that 4(J1 + J3)SsSc+
4(J5 + J8 + 2JLU)S2s +(2J6 + J12)S2c ≈ 0), we would expect
fairly small ordered domains with boundaries that prevent the
propagation of well-defined spin waves. A δ = 1/3 ordered
structure is highly degenerate assuming that all spin ordered
moments are fixed. However, the stability of a δ = 1/3 lock-
in phase suggests that this ordered structure with two ferro-
magnetic layers between each antiferromagnetic layer is par-
ticularly stabilized. This leads to a resolution limited primary
reflection while thermal fluctuations into the continuum of
nearly degenerate states provides a broad Lorentzian compon-
ent on top of this. At an incommensurate propagation vector
of δ≈ 0.4 the structures are highly degenerate, with sets of
either one or more ferromagnetic layers in a distribution with
a high degree of randomness. This leads to a reflection with a
single broadened component. However, the measured width of
this phase indicates some level of order. A completely random
δ = 2/5 phase structure was modeled with antiferromagnetic
layers separated by a number of ferromagnetic layers given by
one plus a random integer generated from a Poisson distribu-
tion with a mean of 0.5 (an average of 1.5 ferromagnetic lay-
ers yielding δ = 2/5). This model structure produced a scat-
tering pattern that fit to a Lorentzian with a width (FWHM) of

at least 0.08 r.l.u., which is more than five times broader than
the experimental observation [15]. Similar to the case of the
δ = 1/3 lock-in phase, the complete degeneracy of states with
the same δ assumes that all spin ordered moments are fixed.
Allowing for slightly different ordered moments likely favors
some order, but the domains (along the b-axis) are fairly small.
Both of these phases point to the fact that this model is likely
overestimating the entropy, but this could be compensated by a
change in the size of domains within the ac-plane as described
earlier.

6. Conclusions

Co3V2O8 features spin-3/2 Co2+ ions decorating a kagome
staircase lattice. Previous diffraction measurements have
found that, between the temperatures of 6.2K and 11.3K,
the system displays a transversely polarized spin density
wave structure with a propagation vector that evolves con-
tinuously with temperature as an incommensurate propaga-
tion vector with distinct commensurate lock-ins at both δ =
1/3 and δ = 1/2 [10]. It has been suggested [8] that con-
tinuously changing coupling strengths due to Co displace-
ments could drive this behavior. While this phenomenon
might play a role, we present a simple model demonstrat-
ing that this behavior could occur even with constant coup-
ling strengths as classical thermal fluctuations select between
nearly degenerate ordered structures caused by nearly bal-
anced competing interactions. A simulation was created to
determine the lowest free-energy self consistent ordered struc-
tures. Using the Hamiltonian determined from ferromagnetic
spin wave measurements [18], plus two additional antiferro-
magnetic interactions that were suggested by a minimal Ising
model [10] and were sufficiently weak as to not appreciably
affect the spin wave results, the temperature dependence of
the incommensurate propagation vector and commensurate
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lock-ins could be semi-quantitatively modeled. A comparison
of simulated magnetic structures in the δ = 1/2 and δ = 1/3
phases to refined structures from, respectively, previously
measured [10] powder diffraction data and newly measured
single crystal diffraction data revealed consistent structural
motifs. When modest magnetic fields were applied along the
a-axis (the magnetization easy-axis) a new δ = 2/5 commen-
surate lock-in was stabilized, consistent with single crystal dif-
fraction results [12]. An interesting feature of the proposed
antiferromagnetic structural motif is that the energies depend
upon the number of antiferromagnetic layers but generally
(assuming that the number of adjacent antiferromagnetic lay-
ers is minimized) do not depend upon the location of these
layers. This indicates a stacking entropy for all magnetic struc-
tures with δ ̸= 1/2. This entropy drives the selection of incom-
mensurate magnetic structures by thermal fluctuations in a
manner similar to an order-by-disorder mechanism in which
quantum fluctuations select among degenerate ground states in
strongly correlated systems [25, 26] including kagome lattice
antiferromagnets [27]. The entropy of structures with δ ̸= 1/2
provides a mechanism to explain the broader-than-resolution
peaks observed in single crystal diffraction measurements
[15].

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Appendix

A.1. Entropy calculation

For an isolated spin-3/2 moment in a magnetic field, the
ordered spin will be given by

s=
∑
m

pmm= p−3/2
−3
2

+ p−1/2
−1
2

+ p+1/2
1
2
+ p+3/2

3
2

(4)

where pm is the probability that a measurement of the
spin angular momentum along the magnetic field direction
would yield mh̄ and the possible quantum numbers are m=

−3
2
, −1

2
, +

1
2
, and +

3
2
. This probability is given by

pm =
1
Z
e
−
gµBmµ0H

kBT (5)

with the partition function given by

Z=
∑
m

e
−
gµBmµ0H

kBT . (6)

The entropy of this spin is given by

Sper spin =−kB
∑
m

pm ln(pm) . (7)

In this way the value of the ordered spin can be directly con-
nected with its entropy, with a fully ordered spin (s= 3/2)
having zero entropy and a fully disordered spin (s= 0) having
entropy S= kB ln(4).

We should also consider the fact that (assuming that spine
and cross-tie ordered moments are constant) the energy of
ordered structures will depend upon the number of antiferro-
magnetic layers but not their locations, provided that two anti-
ferromagnetic layers are never adjacent. This means that struc-
tures with δ < 1/2 will have a stacking entropy determined by
the number of equally energetic ways of arranging a particular
number of antiferromagnetic layers. We will rely upon a well-
known result in combinatorics [28] often called the ‘stars and
bars problem’ which shows that the number of distinct ways of
distributing n indistinguishable objects into k distinguishable
bins is given by(

n+ k− 1
n

)
≡ (n+ k− 1)!

(n)! (k− 1)!
. (8)

If we further specify that each bin must contain at least one
object (assuming that n⩾ k) we can start by first distributing
one object into each bin and then applying the previous for-
mula to the remaining n− k objects to obtain(

n− 1
n− k

)
≡ (n− 1)!

(n− k)! (k− 1)!
. (9)

Consider a series of N kagome layers (or N/2 nuclear unit
cells). An ordered structure with δ = 1/2 will feature N/2 fer-
romagnetic layers and N/2 antiferromagnetic layers. Because
it is energetically unfavorable to place two antiferromagnetic
layers adjacent to on another this structure is inherently nonde-
generate: the only δ = 1/2 magnetic structure with this energy
will be the one in which ferromagnetic and antiferromagnetic
layers alternate. Adding ferromagnetic layers into this has the
effect of lowering δ. Suppose we add ηN ferromagnetic lay-
ers into this structure (this does not necessarily result in a net
magnetic moment as there are ferromagnetic layers pointing in
both directions along the a-axis). There were originally N/2
ferromagnetic layers serving as bins into which the ηN new
ferromagnetic layers can be added. The number of distinct
ways that ηN layers can be placed into N/2 bins is equal to

Ω=

(
N/2+ ηN− 1

ηN

)
≡ (N/2+ ηN− 1)!

(ηN)! (N/2− 1)!
. (10)

By the Boltzmann formula this degenerate magnetic struc-
ture will have an entropy equal to S= kB lnΩ. This new mag-
netic structure will have N/2 antiferromagnetic layers among
(1+ η)N total layers, implying that δ = 1

2(1+η) . We assume
that N≫ 1, use the Stirling approximation (lnN!≈ N lnN),
divide by the number of layers, and convert from η to δ to
determine that the entropy per kagome layer of a structure with
0⩽ δ ⩽ 1/2 is equal to

kB [(1− δ) ln (1− δ)− (1− 2δ) ln (1− 2δ)− δ lnδ] . (11)
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A.1.1. General formula for H=0. This entropy formula is
logically easy to deduce, but applies to a very limited scenario.
Now we derive generally applicable formulas to define the
entropy of amagnetic structure. Consider a series ofN kagome
layers (or N/2 nuclear unit cells), each of which is either a
ferromagnetic layer or an antiferromagnetic layer; it will con-
tain δN antiferromagnetic layers and (1− δ)N ferromagnetic
layers. The δN antiferromagnetic layers are grouped into χN
‘sets’ of one or more consecutive layers. Between each set of
antiferromagnetic layers there will be at least one ferromag-
netic layer. Clearly,χ⩽ δ; when δ > 1/2 it becomes necessary
that some antiferromagnetic layers are placed adjacent in the
same set and χ ⩽ (1− δ). Because it is energetically unfavor-
able to place two antiferromagnetic layers adjacent, the lowest
energy state for a given δ will occur when χ is as large as pos-
sible. We will start by considering the case where the applied
magnetic field is zero, so there is no energy dependence upon
the relative number of ferromagnetic layers pointing in each
direction. First we place one antiferromagnetic layer into each
set. Then we determine the number of distinct ways of placing
the remaining (δ−χ)N antiferromagnetic layers into the χN
sets. This is

Ω1 =

(
δN− 1

(δ−χ)N

)
≡ (δN− 1)!

((δ−χ)N)! (χN− 1)!
. (12)

We then need to place the (1− δ)N ferromagnetic layers into
χN sets: each set of antiferromagnetic layers is directly fol-
lowed by a set of ferromagnetic layers, so the number of sets
must be equal. Again, there must be a minimum of one layer
in each set. Similarly, the number of ways of doing this is

Ω2 =

(
(1− δ)N− 1
(1− δ−χ)N

)
≡ ((1− δ)N− 1)!

((1− δ−χ)N)! (χN− 1)!
.

(13)

The total degeneracy of this state is the product of these two
individual degeneracies:

Ω=
(δN− 1)! ((1− δ)N− 1)!

((δ−χ)N)! ((1− δ−χ)N! ((χN− 1)!)2
. (14)

From this we find that the entropy per kagome layer is equal
to

kB[δ lnδ+(1− δ) ln (1− δ)− (δ−χ) ln (δ−χ)

− (1− δ−χ) ln (1− δ−χ)− 2χ lnχ]. (15)

Note that this equation reproduces equation (11) when χ = δ,
which will be true for the most energetically favorable struc-
ture at a given δ with 0⩽ δ ⩽ 1/2.

A.1.2. General formula for H>0. When there is an applied
magnetic field along the a-axis the degeneracy between mag-
netic structures with different numbers of ferromagnetic lay-
ers pointing in each direction is lifted. Again, we will consider
δN antiferromagnetic layers and (1− δ)N ferromagnetic lay-
ers each split into χN sets. But now we further state that the
ferromagnetic layers consist of ηN layers pointing up grouped

into ϕN sets and (1− δ− η)N layers pointing down grouped
into (χ−ϕ)N sets. When the antiferromagnetic set between
two ferromagnetic sets contains an odd number of antiferro-
magnetic layers the two ferromagnetic sets will point in oppos-
ite directions, while if it contains an even number of antifer-
romagnetic layers the two ferromagnetic sets will point in the
same direction. We will assume without loss of generality that
ϕ⩾ χ/2: we are defining ‘up’ to be the direction that has more
ferromagnetic sets.

We start off by taking 2ϕN antiferromagnetic layers and
using them to created 2ϕN antiferromagnetic sets each con-
taining one layer. This leaves ϕN spaces for ferromagnetic
sets pointing up and ϕN spaces for ferromagnetic sets point-
ing down. However, we will have only (χ−ϕ)N sets pointing
down. This means that (2ϕ−χ)N of the sets set aside for fer-
romagnetic sets pointing down will be left empty. If a place for
a ferromagnetic set pointing down is left empty, the antiferro-
magnetic sets on each side (both of which contain one layer)
merge to form a single antiferromagnetic set with two layers
that is placed between two ferromagnetic sets both pointing
up. The number of distinct ways of choosing which spots are
left empty is

Ω1 =

(
ϕN

(2ϕ−χ)N

)
≡ (ϕN)!

((2ϕ−χ)N)! ((χ−ϕ)N)!
. (16)

There are now (δ− 2ϕ)N antiferromagnetic layers remain-
ing. The number of antiferromagnetic sets is nowχN.We need
to distribute the (δ− 2ϕ)N layers into the χN sets, but it must
be done in groups of two so that the number of antiferromag-
netic sets containing an even number of layers remains con-
stant. This is equivalent to the number of ways of distributing
(δ/2−ϕ)N elements into χN sets. This is

Ω2 =

(
(δ/2−ϕ+χ)N− 1

(δ/2−ϕ)N

)
≡ (δ/2−ϕ+χ)N− 1)!

((δ/2−ϕ)N)! (χN− 1)!
.

(17)

Third, we then determine the number of distinct ways to
place ηN ferromagnetic layers pointing up into the ϕN places
for them, again requiring that there be at least one layer per
set. This is

Ω3 =

(
ηN− 1
(η−ϕ)N

)
≡ (ηN− 1)!

((η−ϕ)N)! (ϕN− 1)!
. (18)

Finally, we need to determine the number of ways of pla-
cing the (1− δ− η)N ferromagnetic layers pointing down into
the (χ−ϕ)N spots remaining for them, with the constraint that
there is at least one layer in each spot. The number of ways of
doing this is

Ω4 =

(
(1− δ− η)N− 1

(1− δ− η−χ+ϕ)N

)
≡ ((1− δ− η)N− 1)!

((1− δ− η−χ+ϕ)N)! ((χ−ϕ)N− 1)!
. (19)

Multiplying these four degeneracies in order to determine
the total degeneracy, we find an entropy per layer of
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Figure 8. The calculated entropy per layer of magnetic structures is plotted as a function of the propagation vector component δ. The
entropy of all structures (with any net magnetic moment) is shown as the solid line; this entropy is the appropriate description when there is
no magnetic field. The entropy of structures that feature the maximum possible ferrimagnetic moment for that δ is shown as the dashed line;
this entropy is used when the applied magnetic field is nonzero so that the energy will depend upon the net moment.

kB[(δ/2−ϕ+χ) ln(δ/2−ϕ+χ)+ η lnη

+(1− δ− η) ln(1− δ− η)− (2ϕ−χ) ln(2ϕ−χ)

− (δ/2−ϕ) ln(δ/2−ϕ)−χ ln(χ)− (η−ϕ) ln(η−ϕ)

− (1− δ− η−χ+ϕ) ln(1− δ− η−χ+ϕ)

− 2(χ−ϕ) ln(χ−ϕ)]. (20)

The four degeneracies derived for when H ̸= 0 all feature
the variable ϕ, where ϕN is the number of sets of ferromag-
netic layers pointing up. However, the energy of the magnetic
structure will be independent of ϕ: the energy will depend
on the number of ferromagnetic layers pointing up and down
(because H> 0) and the total number of sets of ferromag-
netic layers (because that is related to the number of antiferro-
magnetic layers adjacent to another antiferromagnetic layer)
but the energy is independent of how many of the ferromag-
net sets are pointing up. Therefore, in order to determine the
full degeneracy one would need to sum over all possible val-
ues of ϕ. Our model is therefore underestimating the entropy
of individual magnetic structures in field by simply applying
equation (20) using the value of ϕ presented by the structure.
However, it is reasonable to think that ordered structures that
minimize the free energy are likely to be those that minimize
the energy for their given value of δ by maximizing the net
ferrimagnetic moment. Those states have specific values of ϕ
(for example, ϕ = δ/2 for δ ⩽ 1/2) so there is no need to sum
over other values of ϕ.

Figure 8 shows the entropy per kagome layer for magnetic
structures as a function of the propagation vector component δ.
In zero applied field structures with any net magnetic moment
can still be degenerate, so that the entropy depends only on
δ and χ (equation (15)). The lowest energy state for a given
δ will occur when the number of adjacent antiferromagnetic

layers is minimized; this occurs when χ is as large as possible
for the given δ, or χ = δ for δ ⩽ 1/2 and χ = 1− δ for δ ⩾
1/2. This entropy is shown as the solid line. When the applied
magnetic field is nonzero the energy will depend on the net
magnetic moment and the entropy depends on δ, χ, ϕ, and η
(equation (20)). The lowest energy state will occur when the
net magnetic moment is as large as possible, so that χ, η, and
ϕ will be as large as possible for the given δ. This entropy is
shown as the dashed line.

A.2. Diffraction data

Single crystal diffraction data were measured using the BT-
4 thermal triple axis spectrometer at temperatures of 3K, 6K,
and 15K. A total of 21 reciprocal space positions in the [HK 0]
scattering plane were measured. The [H K 0] scattering plane
allows for measurement of both the primary and secondary
antiferromagnetic reflections in the δ = 1/3 phase; further, the
weakening of intensity as Q⃗ moves away from the b-axis con-
firms that moments are ordered along the a-axis in this phase.
Rocking scans (along θ) for a selection of positions are dis-
played in the following figures.

In the δ = 1/3 phase strong magnetic reflections are
observed at [H, K, 0] positions where H is an even integer and
K is an even integer±1/3. Polarized diffractionmeasurements
[10] suggest that this scattering is not completely magnetic in
origin but contains a weak nuclear component. Figure 9 dis-
plays rocking scans measured at [0, 2.33, 0] and [2, 4.33, 0].
The intensities are quite strong at 6K (in the δ = 1/3 phase)
and there is no intensity at 3K (in the ferromagnetic phase).

In the δ = 1/3 phase magnetic reflections are also observed
at [H, K, 0] positions where H is an even integer and K is an
odd integer. These peaks represent higher-order scattering for
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Figure 9. (a) Rocking curve through the [0, 2.33, 0] position. (b)
Rocking curve through the [2, 4.33, 0] position. Lines are Gaussian
fits.

δ = 1/3 as higher-order reflections were observed at δ ′ = 2−
3δ [10]. Figure 10 displays rocking scans measured at [0, 3, 0]
and [2, 3, 0]. Intensity is observed only at 6K (in the δ = 1/3
phase). No intensity was observed either at 3K (in the ferro-
magnetic phase) or at 15K (in the paramagnetic phase). The
reflection at [2, 3, 0] is significantly weaker because the com-
ponent of the spin perpendicular to Q⃗ is considerably smaller,
consistent with moments ordered along the a-axis.

In the ferromagnetic phase magnetic reflections are
observed at [H, K, 0] positions where H and K are both even
integers. Figure 11 displays rocking scans measured at [0, 4, 0]
and [2, 2, 0]. Both reflections show strong intensity at 3K,

Figure 10. (a) Rocking curve through the [0, 3, 0] position. (b)
Rocking curve through the [2, 3, 0] position. Lines are Gaussian fits.

in the ferromagnetic phase. These positions also feature relat-
ively weak nuclear Bragg peaks, so there is some intensity at
both 6K and 15K. The difference in intensities at 3K and 15K
was used to determine the strength of the ferromagnetic Bragg
peaks. These ferromagnetic Bragg peak intensities and the
intensities of nuclear Bragg peaks were used to normalize the
intensities measured in the δ = 1/3 phase. The intensity differ-
ence between 6K and 15K represents the measured intensity
of magnetic reflections at these positions in the δ = 1/3 phase;
the measured difference between 6K and 15K is consistent
with zero, indicating that [H, K, 0] positions where H and K
are both even integers do not feature any magnetic intensity in
the δ = 1/3 phase.
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Figure 11. (a) Rocking curve through the [0, 4, 0] position. (b)
Rocking curve through the [2, 4, 0] position. Lines are Gaussian fits.
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