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P+ monolayers in Si are of great scientific and technological interest, both intrinsically as a material in the “ideal
vacuum” of crystalline Si, and because they are showing great promise as qubits of electron and nuclear spin. The
GHz complex conductivity σ(ω) can allow one to elucidate basic physical properties and also is important for fast
devices, but measuring σ(ω) in 2D materials has not been easy. We report on such measurements, including showing
i) qualitatively, a lack of any resonances up to 5 GHz (indicating no energy splittings below about 0.02 meV); and ii)
quantitatively ideal Drude behavior of this novel material up to 5 GHz, showing a lower bound on the scattering rate of
about 2× 1010s−1. We also discuss deconvolving the confounding effect of the distributed resistance and capacitance
of the monolayer.

I. INTRODUCTION

In recent years, workers have developed the ability to gen-
erate a subsurface monolayer of P+ dopants (typically about
¼ of a full monolayer), surrounded by lattice-matched crys-
talline Si1,2. In addition, the ability to pattern the monolayer
with atomic precision using an STM has resulted in an excit-
ing variety of device possibilities, under the rubric of “digital
manufacturing”3 in which nominally the fabrication can be
atomically perfect; this variety has resulted in rapid progress
in quantum coherent manipulation in both electron and nu-
clear spin4,5.

However, some of the basic properties of this novel 2D ma-
terial are not yet fully understood, including the basic con-
duction mechanism and energy spectrum . For instance, such
a system’s conductivity spectrum depends strongly on its en-
ergy level spectrum, and thus is a direct reflection of the
ground state and excited state physics. The high-frequency
conductivity is, in addition, of great importance for the high-
speed operation of conventional and quantum devices in this
STM-patterned P+ monolayer architecture.

In our previous work6, we proposed a quantitative, non-
contact method of sensitively characterizing the GHz response
of 2D flakes and showed simulated results on a candidate ma-
terial. In the present work, we have experimentally demon-
strated the applicability of this technique to the important case
of a blanket P+ monolayer in Si.

The closest previous result to characterization of a blanket
P+ monolayer embedded in Si in this high-frequency regime
is the demonstration of exchange qubits4 as it includes trans-
mission of signals in “wide” P+ lines (10 nm), from which
we can surmise qualitatively that some level of GHz trans-
mission was occurring . Our observation of a smooth fre-
quency dependence of the transmission (i.e., no resonances),
and ideal Drude behavior in the complex conductivity, adds
to our understanding of this 2D material. In the remainder of
this publication, we give experimental details of the fabrica-
tion, measurement, analysis, show the raw data for transmis-
sion and DC resistance and the deduced complex conductivity,
and then conclude.

II. EXPERIMENTAL DETAILS

FIG. 1. Above: Sketch of the fine area of the gapped CPW device:
The purple region is the P+ monolayer; grey is Si; teal color is the
metal CPW. The gap in the CPW allows us to focus the dominant
transmission effect on the µm-sized mesa-etched conducting mono-
layer. Below: sketch with the lumped-parameter circuit elements
added.

A. Fabrication

We prepared blanket P+ layers using our standard
process7; briefly (samples W18-F3 and W18-F4) we cleaned
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atomically-flat Si (001) chips in UHV, exposed the sample to a
saturation dose of PH3 gas that resulted in about 1

4 of a mono-
layer of P+, incorporated P atoms substitutionally by heating
to 350 ◦C for two minutes, then overgrew epitaxial Si (33.0
± 2.7 nm for W18-F4 and 30.8 ± 1.6 nm for W18-F3) with
a 2 nm room-temperature locking layer. After this, we etched
mesas of size (7µm × 50µm) to a depth of 52 nm , deposited
about 185 nm of Al and performed standard photolithogra-
phy and chemical etching to produce coplanar waveguides
(CPWs) (both continuous and with gaps in the center con-
ductor). The continuous CPWs were used to normalize the
transmission data to derive the conductivity function.

For series-gapped CPWs, we placed the gap centered over
the mesa; see Figure 1 for a sketch of the final device. We
note that, as a result of depositing Al over the side of the
mesa-etched monolayer, we provided a weak resistive connec-
tion Rcontact between the CPW signal line and the monolayer
– in future work, we plan on providing an insulating barrier to
avoid this complication. Please see Appendix A for a theoret-
ical analysis of the effect of this resistance.

Finally, we placed the 4 mm × 10 mm dies into a sample
box assembly, wirebonded to Al pads, and mounted the as-
sembly onto the mixing chamber plate of a dilution refriger-
ator (DR). In this publication, we report measurements taken
at the base temperature (thermometer read 10 mK).

We also produced control devices (W22-62 and W22-85)
nominally identical with the previous two, with the exception
that we did not expose the samples to PH3, and thus they had
no P+. We note that the control samples had a nominally iden-
tical overgrown Si layer.

B. Measurement Details

For the high-frequency measurements, we used standard
Vector Network Analyzer (VNA) techniques yielding magni-
tude |t| = |S21| and phase φ = arg(S21) of the transmission
function, with SMA cable assemblies going to the sample box
assembly in the DR. The cable assemblies were heat-sunk at
all stages using 0 dB attenuators.

To deduce the complex conductivity from |t| and φ , we used
techniques derived in6, modified to account for the effects of
the distributed impedance in the P+ monolayer on the capac-
itive coupling to the signal lines (See Appendix A and Ref.8

for more details).
For the DC resistance measurement of the sample, we

etched Hall bars on the same chips with metalized contact
pads on the samples. We made four-point measurements us-
ing a closed cycle cryostat at a temperature of 4 K (to suppress
parallel conduction in the Si substrate). We then extracted the
sheet resistance of the phosphorous monolayer using the ge-
ometry of five squares between each of the voltage leads.

III. DATA AND ANALYSIS

Figure 2 shows representative data for the magnitude and
phase for transmission t in several structures.
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FIG. 2. Raw data for magnitude and phase of transmission coeffi-
cient versus frequency. Note the excellent signal dependence on the
µm-sized conducting monolayer: i) above the monolayer, the gapped
CPW has a much larger transmission than above the undoped Si; ii)
the gapped CPW has a much smaller transmission than a continuous
CPW. Note also the good reproducibility between the two “continu-
ous CPW” spectra (same cooldown, different wiring) as well as be-
tween the two “gapped CPW over P+ monolayer” (same cooldown,
different samples, different wiring). Above about 5 GHz, coupling
through the wirebonds removes the difference between monolayer
and bare Si (see text). The typical power supplied by the Vector Net-
work Analyzer was -10 to -15 dBm.

Firstly, the two top curves in the upper panel show contin-
uous CPWs (no gap), which demonstrate both the expected
low pass filter frequency dependence, good (low) insertion
loss below about 1 GHz, and excellent reproducibility (the
two measurements were taken on different devices in the same
cooldown using different wiring).

Secondly, we note the dynamic range (about a factor of 102

or 40 dBm) separating the monolayer transmission data from
both the continuous CPW and the CPW with no monolayer.
Additionally, the reproducibility shown in sets of data taken
on similar configurations (e.g., gapped CPWs) demonstrates
the P monolayer is the dominant material being probed. In
particular: 1) The transmission in the gapped CPW over un-
doped Si is about 102.5 smaller than in the continuous CPW
(power is 105 smaller); this shows that the transmission in
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5 m of transmission line is totally dominated by the gap of
size a few µm. 2) For the dynamic range, we note that the
transmission magnitude for the devices with a conducting P+

monolayer is far larger than the “control” device (no conduct-
ing P+ monolayer) up to about 5 GHz. Above this frequency,
the transmission intensity across a series gapped CPW begins
to suffer from crosstalk and loses reliability. This qualitative
change in the frequency-dependence of the transmission spec-
trum can be seen in t of Fig. 2, which shows that the transmis-
sion across the series gapped CPW over undoped Si sharply
increases with frequency above approximately 1 GHz, eventu-
ally converging to the transmission spectrum across the series
gapped CPWs over P+ mesas, indicating a loss of sensitivity
to the P+ layers. Shortening the wirebond length increased
the maximum frequency at which the transmission was dom-
inated by transmission through the series gap between the
signal lines. Comparing different samples of the same type,
please note the excellent agreement between the two curves
with P+ monolayer, given the two measurements were taken
on different devices in same cooldown using different wiring.

Our technique (AC transmission in µm-scale 2D materials
using non-contact gapped CPWs) has two main methods of
analysis. The first is the qualitative one of looking for resonant
features in the transmission. We can see from Figure 2 that, up
until the 5 GHz extrinsic limit, we see no such resonant fea-
tures. Thus, we can conclude that there are no excited states
within 0.02 meV of the ground state of the conduction elec-
trons in our P+ monolayer (see Appendix B for a discussion
of the prediction of the Drude model as extended to include
possible resonances).

The second method is the quantitative one of deducing
the frequency-dependent conductivity σ (ω) from the com-
plex transmission spectrum mathematically. In our previous
publication6, we derived the complex transmission spectrum
expected to result from the circuit diagram shown in Fig. 4c:

t (ω) =

2
[

1
2ZCouple+

α

σ(ω)
+ iωCSeries

]
2
[

1
2ZCouple+

α

σ(ω)
+ iωCSeries

]
+ 1

ZCPW

(1)

where ZCouple, the coupling impedance between each sig-
nal line and the P+ monolayer, replaces CCouple. CSeries is the
capacitive coupling between the signal lines, σ(ω) is the con-
ductivity of the P+ monolayer, ZCPW is the CPW impedance
(≈ 50 Ω), and α is the ratio of the series gap to the signal line
width.

Simply, when the gap in the CPW looks like an open
( 1

ωCSeries
>>

∣∣∣2ZCouple +
α

σ(ω)

∣∣∣), the signal is transmitted
through a series coupling capacitance between the one sig-
nal line and the sample of interest, the conductivity of the
sample of interest, and capacitive coupling to the second sig-
nal line. Since the frequency dependence of the capacitors is
smooth and monotonic, features in the sample conductivity vs
frequency become detectable.

However, we realized in the course of this work that the
simple formula was not sufficient. As discussed in detail

in Appendix A, the finite conductivity in the monolayer that
forms the capacitor plate leads to a substantial modification in
the transmission, and thus we need the result in Appendix A
to accurately deduce σ (ω), resulting in:

ZCouple =

RContact
2 cosh(

√
u)+ l

wσ(ω)
sinh(

√
u)√

u

iωCCouple
RContact

2
sinh(

√
u)√

u + cosh(
√

u)
(2)

Here u = iωCCouple
l

wσ(ω) , where l and w are the length and
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FIG. 3. Complex conductivity deduced from data in Fig. 2, using
Equations 1 and 2 and the parameters in Table A1. The two different
devices (2 µm and 8 µm gap) were on different dies and were mea-
sured in the same cooldown with different wiring. Note that (1.1 ×
10−3 sq/Ω is the value of resistance per square measured in the Hall
bars.

width, respectively, of the mesa-etched monolayer underneath
both signal lines. The formula in the limit of infinitely large
RContact can be found in Refs.9 and10.

We have thus taken the complex transmission in Fig. 2 and
deduced σ (ω) using Equations 1 and 2, shown in Fig. 3.
This deduction requires accurate normalization for the trans-
mission; as discussed in Appendix A, we used the data from
the continuous CPW to normalize. We also note that the sig-
nificant dispersion (dependence on f in Figure 2) arises from
the complex impedance of the RC delay embodied in ZCouple;
thus, the simple Drude results in Figure 3 are consistent with
the dispersion observed in Figure 2.

The values of RContact used to deduce the conductivity spec-
tra were 138 kΩ and 495 kΩ for the devices with the 2 µm and
8 µm gap, respectively. These values were taken from elec-
tronic transport measurements. The values of CCouple were
obtained by fitting the transmission spectra between 10 MHz
and 100 MHz, where the signal is dominated by the capacitive
coupling. It is also worth noting that the values of CCouple used
to fit the spectra are close to theoretical expectations.

We note the good reproducibility between the two samples
for both real and imaginary parts; the real part of the com-
plex conductivity is about 20% above the DC value measured
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in Hall bars. We further note that i) Re[σ (ω)] is frequency-
independent, and that ii) Im[σ (ω)] ≈ 0 (within the statisti-
cal uncertainty). From the discussion in Appendix B , we
thus conclude that an upper bound on the scattering time τ

is approximately 0.2
2π(4GHz) ≈ 10 ps based on the negligible

frequency-dependence of the real and imaginary components
of σ (ω).

The discrepancy of about 20 % could be due to either i)
lateral inhomogeneity in the P+ monolayer 2D resistance (in
some cases, the resistance range across chips is larger than 20
%); ii) a true frequency dependence resulting in a change be-
low about 100 MHz (the lowest frequency we measured with
this technique) or iii) the uncertainty of our measurement of t
and of the deduction of σ (ω)

IV. CONCLUSION

From the qualitative lack of resonances in the raw data in
Fig. 2, we can conclude that there are no excited states within
about 0.02 meV from the ground state (as expected) [see Ap-
pendix B for details]. From the deduced conductivity in Fig.
3, we can see that this nearly-ideal conductor in the “ideal
vacuum” of crystalline Si shows behavior identical to the sim-
ple Drude model, within the uncertainty. We note the upper
bound on the scattering time of τ < 10 ps.

We again note the discrepancy between the real part of the
deduced complex conductivity and the DC value measured in
Hall bars. As described above, this is likely due to inhomo-
geneity in monolayer resistivity across a chip. While very un-
expected, frequency dependence below 100 MHz cannot be
ruled out entirely; we hope to extend one technique or the
other to determine the existence of such a dependence.

We can also comment on the strength of our measurement
technique in general: While there have been a number of pre-
vious techniques to measure GHz conduction in 2D materials
(see Ref.6), Fig. 3 clearly demonstrates that our technique
provides this new capability, with an estimated relative un-
certainty δσ(ω)

σ(σ) of at most about 20 %, and provides a wide
bandwidth while avoiding the need for Ohmic contact.

In addition to gaining additional scientific information
about the P+ monolayer conducting behavior, our results also
bear on the burgeoning use of P+ qubits and ancillary devices

in quantum dots4. The natural frequency of the electron spin
in a typical magnetic field is of order 10 – 40 GHz, and thus to
produce one-qubit rotations and two-qubit coupling requires
that the P+ leads can transmit signals at this frequency range
and speed (for pulses). The excellent results obtained recently
provide an inference about the ability of the P+ leads to trans-
mit high-speed signals, and our results provide quantitative
confirmation of this inference.
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Appendix A: RC Coupling Derivation

In our previous publication6 on the theoretical framework
for this technique, we assumed a circuit diagram as in Fig. 4,
with capacitive coupling to the flake Z (ω). However, in the
present work we realized that much (essentially all) of the fre-
quency dependence of the t(ω) in Figure 2 is not reflective
of intrinsic dispersion in the 2D material P+, but rather arises
due to the dispersion of the distributed resistive/capacitive net-
work in the P+.

Thus, in this section, we derive a framework for two mod-
ifications mentioned in Fig. 1: i) RContact as mentioned in the
"Fabrication" section and ii) a distributed resistance RElectrode
in the plate of CCouple arising from the non-zero resistivity of
the monolayer; both of these modifications can be seen in Fig-
ures 4c and 4d. We note that we have chosen to put capacitors
at both ends of the distributed RC network8; in the limit of
large N [see Fig. 4 caption], this boundary condition becomes
numerically insignificant.

In the following sections, we will i) recursively derive
an expression for ZN and then ii) approximate ZCouple =
limN→∞ZN

1. Deriving a General Expression for ZN

It is clear that R and C decrease in value as N increases.
For most of this Section, we will suppress this dependence
and simply treat R and C as values that are constant for all el-
ements in the circuit for a given value of N, and then substitute

for the decreasing values at the end.

a. Deriving Z2

It is straightforward to derive

Z2 =
1

iωC+ 1
R+ 1

2
RContact

+iωC

(A1)
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FIG. 4. (a) Magnified portion of Figure 1, with lumped-parameter electrical elements. indicated [corresponding to panel (b)]; (b) Circuit
diagram equivalent to our previous publication6, with simple capacitors CCouple. (c) Modified diagram, where we have replaced CCouple by the
more general ZCouple. (d) The details of ZCouple, in particular the RContact and the distributed RC combination. There are N capacitors and (N
– 1) resistors; in the end, we will take the limit as N → ∞.

R
Contact

2
C C

R

FIG. 5. Circuit for ZCouple for N = 2.

and thus:

Z2 =
RContact

2 (1+ iωCR)+R

iωC RContact
2 (2+ iωCR)+1+ iωCR

(A2)

b. Deriving a General Recursive-Based Relation for ZN , then
Solving for Coefficients

In analogy with Equation A2, in this Subsection we will
first show that the trial solution in Equation A2 satisfies the
recursion relation and the boundary conditions set by

Zn =
∑

N−1
m=0

(
RContact

2 aN
m (iωRC)m +RbN

m(iωRC)m
)

∑
N−1
m=0

(
iωC RContact

2 cN
m (iωRC)m +dN

m (iωRC)m
) (A3)

with the constraints that for all coefficients x ∈ [a,b,c,d],
x j

j = 0 whenever i < 0 or i > j−1. We then solve for the coef-
ficients a, b, c, d. We note, as shown later, that the decreasing
nature of the coefficients ensures that the series converge.

We start by observing that

ZN+1 =
1

iωC+ 1
R+ZN

(A4)

Now, we will use Equation A2 as a trial solution, and show
that it gives a consistent result for ZN+1. Substituting the trial
solution from Equation A2 into the recursion relation Equa-
tion A3, we obtain:

ZN+1 =
1

iωC+ 1

R+
∑

N−1
m=0

(
RContact

2 aN
m(iωRC)m+RbN

m(iωRC)m
)

∑
N−1
m=0

(
iωC

RContact
2 cN

m(iωRC)m+dN
m (iωRC)m

)
(A5)

We can then obtain (the subscript (m-1) arises from the extra
capacitor that results in an extra factor of iωC in some of the
terms)

ZN+1 =
∑m=0 N

(
(ßωRC)m

(
RContact

2

(
aN

m + cN
m−1

)
+R

(
bN

m +dN
m
)))

∑
N
m=0

(
(ßωRC)m

(
iωC RContact

2

(
cN

m +aN
m + cN

m−1

)
+dN

m +bN
m−1 +dN

m−1

)) (A6)
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We thus impose the following recursive constraints on the coefficients:

aN+1
m = aN

m + cN
m−1 (A7)

bN+1
m = bN

m +dN
m (A8)

cN+1
m = cN

m +aN
m + cN

m−1 (A9)

dN+1
m = dN

m +bN
m−1 +dN

m−1 (A10)

Substituting these into Equation A6, we obtain:

ZN+1 =
∑

N
m=0

(
RContact

2 aN+1
m (iωRC)m +RbN+1

m

)
(iωRC)m

∑
N
m=0

(
iωC RContact

2 cN+1
m (iωRC)m +RbN+1

m

)
(iωRC)m

(A11)

Note that this is identical with Equation A3, where N has been
replaced by N+1. We have thus proven that the trial solution
obeys the required recursion relation Equation A4. Next, with
the following assignments for N = 2 (see Fig. 5), the trial so-
lution will obey Z2 in Equation A2: a2

0 = 1, a2
1 = 1, b2

0 = 1,
c2

0 = 2, c2
1 = 1, d2

0 = 1, d2
1 = 1, with all other N=2 coeffi-

cients being zero. Note that the recursion relations (Equations
A7-10) are obeyed fro Z1 (not shown) and Z2; thus, in the fol-
lowing we truncate all summations at the known values for N
= 2 without loss of generality.

We will now derive recursive equations for the coefficients,
and then present useful approximations. Since the solution
includes a j

j = 0 whenever i<1, we can obtain aN
0 = 1 for all N.

It immediately follows from Equation A9 that

cN
0 = cN−1

0 +aN−1
0 (A12)

= cN−2
0 +aN−2

0 +aN−1
0 (A13)

= ...= c2
0 +

N−1

∑
k=2

ak
0 = N (A14)

Similarly, generalizing to arbitrary m,

aN
m = aN−1

m + cN−1
m−1 = a2

m +
N−1

∑
k=2

ck
m−1 (A15)

and

cN
m = cN−1

m +aN−1
m−1 + cN−1

m−1 = c2
m +

N−1

∑
k=2

ak
m +

N−1

∑
k=2

ck
m−1 (A16)

Thus, “ratcheting” ourselves upwards, we can see that

aN
0 = 1 (A17)

cN
0 = 1 (A18)

aN
1 = 1+

N−1

∑
k=2

k ≈ N2

2
(A19)

cN
1 = 1+

N−1

∑
k=2

k2

2!
+

N−1

∑
k=2

k ≈ N3

3!
(A20)

aN
2 =

N−1

∑
k=2

k3

3!
≈ N4

4!
(A21)

cN
2 =

N−1

∑
k=2

k4

4!
+

N−1

∑
k=2

k3

3!
≈ N5

5!
(A22)

We thus conclude that the general approximate result is:

aN
m ≈ N2m

(2m)!
(A23)

cN
m ≈ N2m+1

(2m+1)!
(A24)

bN
m ≈ N2m+1

(2m+1)!
(A25)

dN
m ≈ N2m

(2m)!
(A26)

We note that these approximations are good to within ap-
proximately 30% for m < N

2 .
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c. Deriving ZCouple = limN→∞ZN

As noted earlier, for all coefficients x ∈ [a,b,c,d], x j
j = 0

whenever i < 0 or i > j−1 and thus the infinite sums are ac-
tually sums from m = 1 to N. However, when we take the limit
as N → ∞, we must consider the convergence of the sums, and
the appropriateness of using the approximations. In particu-
lar, we have confirmed (not shown) that each approximation
overstates the actual values of the coefficients; thus, if we can
show that the sums converge, this will also show that using the
approximations is valid. At a given N, the coefficients peak at
m slightly below N

2 .

Each of the four terms in Equation A2, taking into ac-
count the approximations in Equations A23-A26, has the form
N2m

(2m)! (iωRC))m; ; we now move away from the generic C and

R, and instead note that C =
CCouple

N and R = RElectrode
N−1 ; we will

later expand RElectrode to deduce the desired complex conduc-
tivity σ (ω). Noting that both C and R ∝

1
N , we now see that

the four terms, at large N, tend to 1
(2m)! ; thus, the sums have

half of the terms of the Taylor expansion for e1; the sums con-
verge.

We will i) first combine Eqs. A2 and with A23-A26, ii)
then replace R and C, taking the limit as N → ∞, and finally
iii) simplify ZCouple.

For large N,

ZN =
∑

N−1
m=0

(
RContact

2
N2m

(2m)! (iωRC)m +R N2m+1

(2m+1)! (iωRC)m
)

∑
N−1
m=0

(
iωC RContact

2
N2m+1

(2m+1)! (iωRC)m + N2m

(2m)! (iωRC)m
) (A27)

ZN =

RContact
2 ∑

N−1
m=0

(iωREletrodeCCouple)
m

(2m)! +RElectrode ∑
N−1
m=0

(iωRElectrodeCCouple)
m

(2m+1)!

iωCCouple
RContact

2 ∑
N−1
m=0

(iωRElectrodeCCouple)
m

(2m+1)! +∑
N−1
m=0

(iωRElectrodeCCouple)
m

(2m)!

(A28)

We note the Taylor expansions cosh(x) = ∑
∞
m=0

x2m

(2m)! and

sinh(x) = ∑
∞
m=0

x2m+1

(2m+1)! and that RElectrode =
l

wσ(ω) , where w
is t the electrode’s width and l is its length (under the signal
line). We obtain:

∞

∑
m=0

(
iω l

σ(ω)wCCouple

)m

(2m+1)!
=

∞

∑
m=0

(√
iω l

σ(ω)wCCouple

)2m+1

√
iω l

σ(ω)wCCouple(2m+1)!

(A29)

∞

∑
m=0

(
iω l

σ(ω)wCCouple

)m

(2m+1)!
=

sinh
(√

iω l
σ(ω)wCCouple

)
√

iω l
σ(ω)wCCouple

(A30)

Note that the coefficients drop off significantly from the ap-

proximations in Equations 23-26 for m > N/2; thus, to use
the definitions of cosh(x) and sinh(x), we take the limit as
N → ∞ to obtain:

ZCouple (ω) = lim
N→∞

ZN (A31)

ZCouple(ω) =

RContact
2 cosh(

√
u)+ l

wσ(ω)
sinh(

√
u)√

u

iωCCouple
sinh(

√
u)√

u + cosh(
√

u)
(A32)

where u = iωCCouple
l

wσ(ω) . In Figure 6, we can see plots
of ZCouple, and also comparisons to the simple parallel com-
bination of RContact and CCouple. The low-frequency limits
agree with the parallel configuration, and at higher frequen-
cies, ZCouple is larger than that, due to the interplay of R and C
as in Fig. 4(a).

This substantial deviation is what leads us to need to deduce
σ (ω) using this much more complicated analysis.

d. Using ZCouple to Analyze Transmission Data

In the main text we combine Equations 1 and 2 to de-
duce σ (ω)). An experimental complication arises from the
need for normalization of the transmission data, as other-
wise non-idealities in the wiring will substantially degrade
this analysis6. As shown in Fig. 2, by comparing the “con-
tinuous CPW” to the “gapped CPW” data, we can clearly see
that the transmission magnitude is dominated by the P+ mono-

layer; from this observation, we concluded that the best nor-
malization is the continuous CPW data. Thus, when deducing
σ (ω) in Fig. 3, for each device we replaced t (ω) in Equation
1 with tgapped(ω)

tcontinuous(ω) .
Finally, we wish to compare our technique to the closest

previous one8. In the previous work, the authors use a sim-
ilar circuit as in Fig. 4, in order to deduceσ [not σ (ω)] for
a MOSCAP. In order to achieve quantitative results, they lim-
ited their technique to frequencies such that 1 l

σw << 1
ωCCouple

);
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FIG. 6. Theoretical calculation of frequency dependence of ZCouple, from Equation A9, and comparison to the simple parallel combination of
RContact and CCouple. Note the agreement at low frequencies where l

wσ
< 1

ωCCouple
. All parameters are given in Table 1, for the 8 µm gap.

2 µm gap 8 µm gap
α 2/7 8/7

CCouple 580 fF 510 fF
ℓ (µm) 24 µm 21 µm
RContact 138 kΩ 495 kΩ

TABLE I. Parameters used in deduction of σ(ω). α and l come from the nominal geometry, RContact from Hall bar measurements, and CCouple
from low-frequency measurements where CCouple dominates the transmission6. The values of CCouple are within 10% of independent estimates
from the nominal geometry.

also, they did not solve for the equivalent impedance, and thus
could not deduce the frequency dependence. In contrast, in
this work we solve for the impedance (Equation A32), do not
limit ourselves in frequency, and deduce the frequency depen-
dence.

Appendix B: Drude Model and Resonances

The Drude model (no resonances) result for the complex
conductivity is

σ (ω) =
σ(0)

1− iωτ
(B1)

where σ(0) = ne2τ

m for simple metals, i =
√
−1, and where τ

is the scattering time.
Note that σ(ω) will vary from the low-frequency limit

(flat Real part and zero Imaginary part) by about 20% when

ωτ ≈ 0.2 (see Fig. 7); we can thus put an upper bound on the
scattering time of τ < 10ps.

An extension of this model in the case of resonances can be
derived as follows:

The dielectric response for multiple resonances is11

ε(ω) = ∑
j

λ j

ω2
0, j −ω2 − iω/τ j

(B2)

where λ j, ω0, j, and τ j are respectively the weights, center fre-
quencies and lifetimes of the various resonances.

In addition, we can convert σ(ω) = ω

4πi ε(ω)12, using the
second convention, and with the understanding that in our ex-
periment, the measured transmission corresponds to the con-
ductivity σ(ω) arising from all (bound and free) electrons.

This finally yields

σ(ω) = σ0 ∑
j

λ jτ j

4π

(
1+ i

[
ω2

0, j
τ j
ω
−ωτ j

]) (B3)

Importantly, we note that Equation B3 collapses to Equa-
tion B2 in the limit of no resonances (only one term in the
sum) and with ω0, j = 0 and τ j = τ .

We can now use Equation B3 to achieve an estimate of
the absence of any excited states in the P+ monolayer, given
the frequency-independent Re [σ(ω)] within approximately

±10% (Figure 3). Very simply, this leads to
∣∣∣∣ω2

0, jτ j

ω
−ωτ j

∣∣∣∣ <
0.1; assuming ωmaxτ j < 0.1 where ωmax ≈ 2π (4πGHz) is
the maximum experimental frequency from Figure 3, we ob-
tain ω0, j <

√
0.1ωmax/τ j. If we then approximate τ j, as be-

ing due to thermal broadening (not intrinsic linewidth of the
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FIG. 7. A few illustrative examples of Equation B3, including (black) a simple Drude result (very small ω0,1) and a variety of single resonances
with varying linewidth 1

τ
.

resonance) at 1 K, we finally obtain a bound on the min-
imum energy of any resonance of h̄ω0, j <

√
(0.1 h̄ωmax

τ j/h̄ =√
0.1h̄ωmax(kT ) ≈ 0.1 meV. Finally, we note that this anal-

ysis requires that the possible observation of of conductivity
peaks from Equation B3 depends on λ jτ j

λτ
being not very small

compared to unity; understanding “oscillator strengths” is a
complicated topic of its own, and thus a detailed discussion of
this assumption is beyond the scope of this paper.

Appendix C: Data Locations

C: \Neil\copy from Elwood 17_3\SET_team\Neil\other
peoples documents\Levy\20_5 GHz remote sensing idea
manuscript\21_11 P+ experimental paper\figures\22_4
CPW sketch.skp

1. Figure 1

C:\Neil\copy from Elwood 17_3\SET_team\Neil\other
peoples documents\Levy\20_5 GHz remote sensing idea
manuscript\21_11 P+ experimental paper\figures\22_4

CPW sketch.skp

2. Figure 2

All files in SET_team\Neil\other peoples
documents\Levy\20_5 GHz remote sensing idea
manuscript\21_11 P+ experimental paper\figures\Fig 2
t raw

’Jun29_25.csv’, ’cont’, ’continuous CPW’; ... first
cooldown

’Jun11_21.csv’, ’cont’, ’continuous CPW’; ... first
cooldown

’Jul16_36.dat’, ’2_um’, ’2 um gapped CPW over P^ +
monolayer’; ... second cooldown

’Jul16_20.dat’, ’8_um’, ’8 um gapped CPW over All files
in SET_team\Neil\other peoples documents\Levy\20_5
GHz remote sensing idea manuscript\21_11 P+ experimen-
tal paper\figures\Fig 2 t raw

’Jun29_25.csv’, ’cont’, ’continuous CPW’; ... first
cooldown

’Jun11_21.csv’, ’cont’, ’continuous CPW’; ... first
cooldown ’Jul16_36.dat’, ’2_um’, ’2 um gapped CPW over
P^+ monolayer’; ... second cooldown
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’Jul16_20.dat’, ’8_um’, ’8 um gapped CPW over P^+
monolayer’; ... second cooldown ’Jun18_46.csv’, ’blank_Si’,
’2 um gapped CPW over blank Si’; ... first cooldown + mono-
layer’; ... second cooldown

’Jun18_46.csv’, ’blank_Si’, ’2 um gapped CPW over blank
Si’; ... first cooldown

3. Figure 3

Value of DC Hall bar resistance: SET_team\Neil\other
peoples documents\Levy\20_5 GHz remote sensing idea
manuscript\21_11 P+ experimental paper\DC Hall bar
results\22_8 Pradeep Data.pptx

Graph: SET_team\Neil\other peo-
ples documents\Levy\20_5 GHz remote
sensing idea manuscript\21_11 P+ ex-
perimental paper\figures\conductivity\
do_plot_P_gapped_CPW_Figure_2.m

and do_calc_save_Converting_Raw_Spectra_to_Conductivity.m

4. Figure 4

SET_team\Neil\other peoples documents\Levy\20_5
GHz remote sensing idea manuscript\21_11 P+ experimental
paper\figures\22_1 P+ GHz graphs.pptx

5. Figure 5

SET_team\Neil\other peoples documents\Levy\20_5
GHz remote sensing idea manuscript\21_ 11 P+ experimen-
tal paper\figures\23_5 eps files for Antonio\ Fig_5.eps

6. Figure 6

SET_team\Neil\other peoples documents\Levy\20_5
GHz remote sensing idea manuscript\21_11 P+ experimental

paper\figures\conductivity\do_Zcouple.m

7. Figure 7

SET_team\Neil\other peoples documents\Levy\20_5
GHz remote sensing idea manuscript\21_11 P+ experimental
paper\figures\resonance curves\ do_Drude_resonance.m
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