
EDITOR: Irena Bojanova, irena.bojanova@computer.org

DEPARTMENT: CYBERSECURITY

Labeling Software Security Vulnerabilities
Irena Bojanova, https://orcid.org/0000-0002-3198-7026, NIST, Gaithersburg, MD, 20899, USA

John J. Guerrerio, https://orcid.org/0000-0001-6547-9137, Dartmouth College, Hanover, NH, 03755, USA

Abstract—Labeling software security vulnerabilities would greatly benefit modern
artificial intelligence cybersecurity research. The National Vulnerability Database
(NVD) partially achieves this via assignment of Common Weakness Enumeration
(CWE) entries to Common Vulnerabilities and Exposures (CVE) entries. In this
work, we explore utilization of the Bugs Framework (BF) formalism for systematic
and comprehensive CVE labeling. We specify all memory-related CWEs via BF
weaknesses and examine the suitability of these formalisms to describe the
corresponding CVEs mapped by NVD. We also identify similarities and overlaps in
CWEs that introduce ambiguities in NVD assignments.

Keywords: Weakness, Vulnerability, Security Failure, Vulnerability Dataset,
Cybersecurity Attack, Cybersecurity Mitigation Techniques.

T here are more than 228 000 (as of August
2023) publicly disclosed cybersecurity vulner-
abilities in the Common Vulnerabilities and Ex-

posures (CVE) [1] repository – over 25 000 docu-
mented in 2022 alone. Systematic labeling of this huge
set of software security vulnerabilities would enable
advances in modern artificial intelligence (AI) cyber-
security research (e.g., [2]). The current state-of-the-
art are the National Vulnerability Database (NVD) [3]
mappings of CVEs to Common Weakness Enumera-
tion (CWE) entries and assignments of CVE severity
scores according to the Common Vulnerability Scoring
System (CVSS) [4]). However, deeper analysis of the
CWE entries shows many are overly specific, am-
biguous, or overlapping, complicating the CWE-CVE
assignment.

The Bugs Framework (BF) [5] formalism assures

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000
Date of current version xx July 2023.

Disclaimer: Certain equipment, instruments, software, or mate-
rials, commercial or non-commercial, are identified in this pa-
per in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation
or endorsement of any product or service by NIST, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.

precise descriptions of software security vulnerabilities
[6], which is instrumental in gaining a deeper under-
standing of the CVEs. The existing NVD mappings,
although flawed, offer an opportunity to gain high-level
insights into the CVEs through the CWEs. Mapping
the CWEs to BF and then using the NVD CWE-
CVE assignments allows us to take advantage of BF’s
formal model in the context of the CVEs. This appli-
cation of BF can capture the primary concepts (e.g.,
recurrent operations, consequences) expressed by the
overwhelming number of CVEs and ultimately inform
an automated labeling approach based on machine
learning (ML). We can learn, for example, that thou-
sands of CVEs relate to erroneous read, while there
are none relating to erroneous reallocate. The CWE-
BF mappings also provide formal BF descriptions that
at least partially fit many CVEs, which can aid in their
annotation.

BF’s formalism allows us to specify each CWE as
a (cause, operation, consequence) BF weak-
ness or a chain of BF weaknesses [6]. These specifi-
cations reveal the underlying tacit model of the CWEs
and allows us to identify similarities and overlaps in the
CWE. The latter are part of the issues that introduce
ambiguities into the CWEs to CVEs assignments.

This work is our first exploration of utilizing BF-
CWE-CVE mappings to specify/label CVEs via BF. We
focus on the memory-related CWEs, as there are a

September/October Published by the IEEE Computer Society IT Professional 1



DEPARTMENT

vast number of memory-related CVEs corresponding
to a relatively small number of memory-related CWEs.
We specify them via BF weaknesses and examine
the suitability of these formalisms to describe corre-
sponding CVEs. We also discuss identified similarities
and overlaps among the CWEs, elucidating the NVD’s
and the security community’s struggles with assigning
CWEs to CVEs.

Formalizing Memory-Related CWEs
via BF Weaknesses or Chains of BF
Weaknesses

CWE and the BF both classify weaknesses; however,
as a formal model, BF has the ability to make the
tacit CWE model of memory-related software weak-
nesses explicit. We employ the BF formal repre-
sentation of weaknesses as (cause, operation,

consequence) triples, the BF vulnerability model [6],
and the BF Memory Bugs taxonomy [7]. Specifically,
we use the Memory Corruption/Disclosure (_MEM)
BF class type, consisting of three BF classes: the
Memory Addressing (MAD) class deals with initializa-
tion, repositioning, or reassignment of pointers; the
Memory Management (MMN) class deals with erro-
neous allocation, deallocation, resizing, or reallocation
of an object; and the Memory Use (MUS) class deals
with the initialization, reading, writing, and clearing an
object.

The CWEs’ web pages mostly consist of textual
paragraphs (i.e., the description, extended description,
explanations of code snippets, etc.). Many distinct
phrases across CWEs have nearly identical meanings,
the paragraphs themselves could be interpreted differ-
ently, and there is no guarantee a CWE description has
all the necessary information to fully understand the
corresponding weakness. As an Left-to-right Leftmost-
derivation One-symbol-lookahead (LL1) grammar [6],
BF inherently lacks ambiguity, and its cause-operation-
consequence structure means it is guaranteed to fully
describe a software weakness or a vulnerability. Thus,
BF can clarify and supplement the CWE entries.

We identified 60 memory-related CWEs used for
labeling CVEs, starting from the CWE to BF class
mappings introduced in [7]. We updated these map-
pings by BF class operation and created a (cause,

operation, consequence)-based BF description
for each of these CWEs by deeply analyzing its
description, extended description, common conse-
quences, demonstrative code examples, and observed
CVE examples.

In total, the memory-related CWEs map to 48
distinct BF chains formed by the identified BF

(bug, operation, error) and/or (fault,

operation, error/final error) weakness
triples [6]. Thirty-seven of these BF chains map to a
single CWE, and 11 map to more than one CWE. The
60 CWE-BF mappings are depicted across Table 1,
Table 2, and Table 3. Table 1 shows CWEs with
entirely different BF descriptions. Table 2 and Table 3
show CWEs that have similarities in terms of BF. More
specifically, Table 2 shows groups of CWEs that have
the same causing chain and Table 3 shows groups of
CWEs that have identical BF descriptions. Note that
we omit the BF Class names when describing the
weakness triples, as BF classes are orthogonal by
operation. For example, for CWE-562 (Erroneous

Code, Reassign, Wild Pointer) is the same
as (Erroneous Code, MAD Reassign, Wild

Pointer).
For CWE-823, CWE-400, and CWE-1325 we were

able to identify multiple distinct BF chains (shown
bulleted in Table 1). As each CWE entry is supposed
to describe only a single weakness, the existence
of CWEs that describe multiple distinct weaknesses
highlights overlaps within the CWE.

Many CWEs provide information about preced-
ing weaknesses that we formalize into BF chains of
weaknesses. As a result, some BF specifications con-
tain causing weakness operations from non-memory-
related BF classes – see for example Verify and
Calculate for CWE-823, and Coerce for CWE-843 in
Table 1. The first operation is from the Input/Output
Check (_INP) BF class type and the second two
are from the Data Type (_DAT) BF class type [5].
As another example, CWE-126 ostensibly describes
a buffer over-read weakness. However, it also de-
scribes an erroneous calculation leading to an in-
correct pointer reposition. These three weaknesses
form the (Erroneous Code, Calculate, Wrong

Result) → (Wrong Index, Reposition, Over

Bounds Pointer) → (Over Bounds Pointer,

Read, Buffer Over-Read) BF chain.

Memory-Related CWEs Similarity
and Overlaps via BF Specifications

There are three groups of memory-related CWEs
(see Table 2) that share one or more of the same
BF weakness triples causing a different BF weakness
triple. For example, CWE-127, CWE-786, and CWE-
124 all begin with (Erroneous Code, Calculate,

Wrong Result), which causes (Wrong Index,

Reposition, Under Bounds Pointer). This
identical causal chain leads to three different main
BF weakness triples for CWE-127, CWE-786, and

2 IT Professional September/October 2023



DEPARTMENT

TABLE 1: Memory-related CWEs with different BF weaknesses/chains of weaknesses. (The order is by BF Memory
Bugs Model operation flow [7]. Causing weaknesses are in italics. Arrows (→) depict chaining. Asterisks (*) mark
CWEs not assigned to any CVEs). Ellipsis (...) depicts many possible operations.

CWE ID BF (cause, operation, consequence) Triple(s)
655 (Missing Code/Erroneous Code, Initialize Object, Uninitialized Object)

466 (n/a, Initialize Pointer/Reposition, Over Bounds Pointer/Under Bounds Pointer)

587 (Hard Coded Address, Initialize/Reassign, Wild Pointer)

823 • (Missing Code, Verify, Wrong Value) →
→ (Wrong Index, Reposition, Over Bounds Pointer)

• (Erroneous Code, Calculate, Wrong Result) →
→ (Wrong Index, Reposition, Over Bounds Pointer)

562 (Erroneous Code, Reassign, Wild Pointer)

1325 • (Erroneous Code, Allocate, Memory Overflow)

• (Erroneous Code, ..., Not Enough Memory) →
→ (Wrong Size, Allocate, Memory Overflow)

400 • (Missing Code, Verify, Wrong Value) →
→ (Wrong Size, Allocate, Memory Overflow)

• (Single Owned Address, Reassign, Memory Leak)

• (Missing Code, Deallocate, Memory Leak)

822 (Untrusted Pointer, Dereference, Untrusted Pointer Dereference)

690 (Missing Code, Verify, Wrong Value) →
→ (Forbidden Address, Dereference, NULL Pointer Dereference)

476 (NULL Pointer, Dereference, NULL Pointer Dereference)

824 (Missing Code, Initialize Pointer, Wild Pointer) →
→ (Wild Pointer, Read/Write/Dereference, Uninitialized Pointer Dereference)

588 (Erroneous Code, Cast, Wrong Type) →
→ (Casted Pointer, Read/Write/Dereference, Type Confusion)

672 (Erroneous Code, Read/Write/Dereference, Use After Free)

843 (Wrong Object Type Resolved, Coerce, Wrong Type) →
→ (Casted Pointer, Read/Write/Dereference, Type Confusion)

119 (Missing Code, Verify, Wrong Value) →
→ (Wrong Index, Reassign, Over Bounds Pointer/Under Bounds Pointer) →
→ (Over Bounds Pointer/Under Bounds Pointer, Read/Write,

Buffer Overflow/Buffer Underflow/Buffer Over-Read/Buffer Under-Read)

118 (Missing Code/Erroneous Code, Verify, Wrong Value) →
→ (Wrong Index, Reassign, Over Bounds Pointer/Under Bounds Pointer) →
→ (Over Bounds Pointer/Under Bounds Pointer, Read/Write,

Buffer Overflow/Buffer Underflow/Buffer Over-Read/Buffer Under-Read)

120 (Missing Code, Verify, Wrong Value) →
→ (Wrong Size, Allocate, Not Enough Memory Allocated) →
→ (Not Enough Memory Allocated, Write, Buffer Overflow)

680 (Erroneous Code, Calculate, Wrap Around) →
→ (Wrong Size, Allocate, Not Enough Memory) →
→ (Not Enough Memory, Write, Buffer Overflow)

459 (Erroneous Code, Clear, Not Cleared Object)

404 (Missing Code/Erroneous Code, Deallocate, Memory Leak/Object Corruption)

761 (Wrong Index, Reposition, Wrong Position Pointer) →
→ (Wrong Position Pointer, Deallocate, Object Corruption)

772 (Missing Code, Deallocate, Memory Overflow)

1091 (Missing Code, Deallocate, None)

460 (Missing Code/Erroneous Code, Deallocate, Memory Leak)

586* (Erroneous Code, Deallocate, None)

568* (Missing Code, Deallocate, None)

September/October 2023 IT Professional 3



DEPARTMENT

TABLE 2: Memory-related CWEs with the same causing BF chains. (The order is by BF Memory Bugs Model
operation flow [7]. Causing weaknesses are in italics. Arrows (→) depict chaining).

CWE ID Same Causing Chain Different Main Weakness
126 (Over Bounds Pointer, Read, Buffer Over-Read)

(Erroneous Code, Calculate, Wrong Result) →
→ (Wrong Index, Reposition,

Over Bounds Pointer)

788 (Over Bounds Pointer, Read/Write,

Buffer Overflow/Buffer Over-Read)

127 (Under Bounds Pointer, Read, Buffer Under-Read)

786 (Erroneous Code, Calculate, Wrong Result) → (Under Bounds Pointer, Read/Write,

→ (Wrong Index, Reposition, Buffer Underflow/Buffer Under-Read)

Under Bounds Pointer)

124 (Under Bounds Pointer, Write, Buffer Underflow)

125 (Over Bounds Pointer/Under Bounds Pointer,

Read, Buffer Over-Read/Buffer Under-Read)

(Erroneous Code, Calculate, Wrong Result) →
→ (Wrong Index, Reposition,

Over Bounds Pointer/Under Bounds Pointer)

787 (Over Bounds Pointer/Under Bounds Pointer,

Write, Buffer Overflow/Buffer Underflow)

CWE-124, which properly distinguish the three entries.
There are also 11 groups of memory-related CWEs

(see Table 3) with the same BF weakness or chain of
weaknesses, suggesting areas of repetition or overlap
within the CWE.

For example, CWE-401 describes a memory leak
due to an allocated object with no references, while
CWE-771 describes erroneous removal of all refer-
ences to an allocated object. However, these weak-
nesses are quite similar, as the erroneous removal
of all references to an allocated object in CWE-771
causes the memory leak described by CWE-401, and
the state described by CWE-401 is created by the re-
assign operations described by CWE-771. In BF terms,
these CWE entries are both specified as (Single

Owned Address, Reassign, Memory Leak).
Other CWEs have slight differences only by BF

attributes, which inform about the severity of the
weakness and not about its nature. For example,
CWE-121 describes buffer overflow on the stack
and CWE-122 describes buffer overflow on the
heap. Once the stack versus heap difference is
accounted for by a BF attribute, these two entries are
specified by the same instance of a BF weakness
type: (Over Bounds Pointer/Under Bounds

Pointer, Write, Buffer Overflow/Buffer

Underflow).
The CWE hierarchical relationships between CWEs

with the same BF chain (see third column in Table 3),
reveal that most of them have either ChildOf or PeerOf
relations. Some of them, such as CWEs 121-122-123

and CWEs 170-463-464, are siblings with a common
parent. However, there are also instances of CWEs
without direct relationships that have identical chains,
such as CWE-401 and CWE-771. An interesting ob-
servation is that while CWE-123, CWE-415, CWE-416
are specified with very different BF weakness triples,
they are listed as peers in the CWE.

Of special note are parent-child CWE pairs that
share a BF chain. Per the CWE, a parent entry is
supposed to be more abstract than its child entry.
In BF terms, this is expressed by having multiple
possible causes, consequences, and/or operations
(e.g., Buffer Overflow/Buffer Underflow

versus only Buffer Overflow). One would expect
that parent/child CWEs would have slightly different
BF chains, or the main weakness for the child would
be contained within the main weakness for the
parent. For example, (Over Bounds Pointer,

Read, Buffer Over-Read) is contained
within (Over Bounds Pointer/Under Bounds

Pointer, Read, Buffer Over-Read/Buffer

Under-Read). The fact that a parent and a child
have the same chain (including both an identical
main weakness and causing weakness) means this
difference in ambiguity is missing and highlights an
area of overlap within the CWE.

BF also reveals missing relationships within the
CWE. CWEs that have differences only by BF at-
tributes (e.g., CWE-121 and CWE-122) should have
some relationship (e.g., PeerOf) within the CWE.

4 IT Professional September/October 2023



DEPARTMENT

TABLE 3: Memory-related CWEs with the same BF weakness/chain of BF weaknesses. (The order is by BF
Memory Bugs Model operation flow [7]. Listing the operation is sufficient, as BF classes are orthogonal by
operation. Causing weaknesses are in italics. Arrows (→) depict chaining); asterisks (*) mark CWEs not assigned
to any CVEs. Ellipsis (...) depicts many possible operations and consequences.)

CWE ID Same BF (cause, operation, consequence) Triple(s) CWE Relationships

664

400

404

771

772

401

401
(Single Owned Address, Reassign, Memory Leak)

771

665

770
908

909

789
457

456

770 (Missing Code, Verify, Wrong Value) →
789 → (Wrong Size, Allocate, Memory Overflow)

456
(Missing Code, Initialize Object, Uninitialized Object)

909
457 (Missing Code, Initialize Object, Uninitialized Object) →
908 → (Uninitialized Object, ..., ...)

707 138

464463

170

170
463* (Erroneous Code, Write, Object Corruption)

464*

805 (Wrong Size, Read/Write,

1341

119

787
788805

825

123

121

122

806

416
415

806* Buffer Overflow/Buffer Underflow/

Buffer Over-Read/Buffer Under-Read)

121
(Over Bounds Pointer/Under Bounds Pointer, Write,

Buffer Overflow/Buffer Underflow)
122
123
416

(Dangling Pointer, Read/Write/Dereference, Use After Free)
825
415

(Erroneous Code, Deallocate, Double Free)
1341*

226

1239
1272244

226

(Missing Code, Clear, Not Cleared Object)
244*
1239*
1272*

763

762

590

590
762 (Mismatched Operation, Deallocate, Object Corruption)

763

CWEs by Abstrac�on:

Pillar

Class

Base

Variant

CWEs Rela�on:

ChildOf

PeerOf

September/October 2023 IT Professional 5



DEPARTMENT

Labeling Memory-Related CVEs via
BF Specifications

There are 60 426 memory-related CVEs as of August
2023. We queried the CVE repository for entries with
CWEs assigned by NVD that map by main operation
to the BF Memory Corruption/Disclosure (_MEM) BF
class type. We ordered them by the NVD-assigned
CVSS severity scores and selected a maximum of ten
CVEs per operation – thus reducing the count to 91
observable CVEs for this exploratory analysis. Then
we examined the groups of CVEs mapped to CWEs
with identical causing BF chains and of CVEs mapped
to CWEs with entirely identical BF chains. From the
latter group we also identified the CVEs that map to
CWEs with parent-child relationships.

Analyzing this subset of CVEs, we find that it
covers well the BF memory operations Reposition, Re-
assign, Verify, Initialize Object, Read, Write, Derefer-
ence, Clear, and Deallocate. However, although there
may be CVEs related to the BF memory operations
Initialize Pointer, Extend, Reallocate-Extend, Reduce,
and Reallocate-Reduce, they are not identifiable via
CWEs in the entire CVE repository. This indicates gaps
in CWEs or issues with the CWE assignments. In any
case, we would need different methods to identify and
specify CVEs related to these operations.

Examining further this subset of CVEs, we con-
firm that, overall the memory-related CWE to CVE
assignments, which reflect the main weakness under-
lying each CVE are almost completely correct by BF
operation. For example, the CVEs mapped to CWE-
126 and CWE-788 (see Table 2) correctly distinguish
between the Read only and Read/Write operations,
respectively. We only sporadically find examples of
incorrect CWE to CVE assignments by operation,
such as CWE-123 to CVE-2018-12036. The confu-
sion for this CVE must relate to the use of "writes"
in its description, while in fact it is a BF Input/Out-
put Check (_INP) class type vulnerability: (Missing
Code, Validate, File Injection).

However, when examining the CVEs by the CWE
BF weaknesses of or chains of weaknesses, which
cover not only operations but also causes and con-
sequences, we find parts of these BF weakness
specifications may not fit all of the corresponding
CVEs. For example, the BF CWE-126 chain (see Ta-
ble 2) completely fits the (Over Bounds Pointer,

Read, Buffer Over-Read) main weakness of
CVEs such as CVE-2014-0160 (Heartbleed), as
well as their (Wrong Index, Reposition, Over

Bounds Pointer) direct causing weakness. How-
ever, most of the CVEs with CWE-126 assigned have

as an initial weakness Missing Code for a Verify opera-
tion and not Erroneous Code in a Calculate operation
– see the first Heartbleed weakness in [8]. We con-
clude the causal chains from Table 2 may be helpful
for describing some CVEs but are too specific to fit
other CVEs. This can be explained by CWE’s lack of
flexibility to describe all possible security weaknesses
– the entries could be too specific to be reused, some
may be missing, and some may be overlapping. We will
have to use entirely different methods to identify and
specify the parts of the BF description for a CVE that
do not fit the overly specific CWE variation assigned
to that CVE.

We find also that from the CWEs with different BF
specifications (see Table 1) CWE-586 and CWE-568
are not assigned to any CVE. Then, from the CWE
groups with identical BF specifications (see Table 3),
the following CWEs were not assigned to any CVE at
all: CWE 806 from the 805, 806 pair, CWE 1341 from
the 415, 1341 pair, CWE 463 and CWE 464 from the
170, 463, 464 triple, and CWE 224, CWE 1239, and
CWE 1272 from the 226, 224, 1239, 1272 quadruple.
It is interesting to explore if there are CVEs that are
better described by the unused CWEs (marked with an
asterisks * in Table 1 and Table 3). One such example
is CVE-2023-38434 (although outside of our 91 CVEs
set) that describes a double free when closing a web
connection. NVD assigns it CWE-415 (Double Free) of
a memory resource, instead of the more general CWE-
1341 (Multiple Releases of Same Resource or Han-
dle). These two CWEs share the (Erroneous Code,

Deallocate, Double Free) BF weakness triple
(see Table 3); their similarity and the vague memory
versus resource distinction introduces errors and am-
biguities in CWE-CVE assignments that would also
affect our efforts for CVE labeling.

The rest of the similar CWEs (see Table 3) lead
in many cases to ambiguous CWE-CVE assignments.
One such example is CVE-2022-0519, which de-
scribes a buffer access with an incorrect length value
leading to a buffer over-read. NVD assigns this CVE
to CWE-119 (Improper Restriction of Operations within
the Bounds of a Memory Buffer) and CWE-805 (Buffer
Access with Incorrect Length Value). However, CWE-
126 (Buffer Over-Read) also nicely and more accu-
rately describes this CVE than the abstract CWE-119.

Another area of ambiguity among CWEs relates
to BF attributes. For example, CVE-2023-40295
describes a buffer overflow on the heap. NVD assigns
CWE-787 (Out of Bounds Write) to this CVE, which
accurately describes the vulnerability. However, CWE-
122 is also a suitable assignment, as it describes
buffer overflow specifically on the heap. Apart from this

6 IT Professional September/October 2023



DEPARTMENT

minor difference (captured in BF by an address-related
attribute), CWE-122 and CWE-787 share an identical
main weakness: (Over Bounds Pointer/Under

Bounds Pointer, Write, Buffer Overflow,

Buffer Underflow). While CWE-122 is the more
specific mapping, the similarities create difficulty in
deciding which CWE should be assigned to this CVE.

In many cases, CWE-CVE assignments capture
either the cause of a vulnerability or its consequence
but not both. CVE-2022-34399 and CVE 2022-
32454 describe a buffer over-read and a buffer
over-write vulnerability, respectively. The BF chain
for CVE-2022-34399 is (Missing Code, Verify,

Inconsistent Value) → (Wrong Index,

Reposition, Over Bounds Pointer) →
(Over Bounds Pointer, MUS Write, Buffer

Overflow), and the BF chain for CVE-2022-
32454 is (Missing Code, Verify, Wrong

Value) → (Wrong Size, MUS Read, Buffer

Over-Read). NVD assigns CWE-119 (Improper
Restriction of Operations within the Bounds of
a Memory Buffer) and CWE-805 (Buffer Access
with Incorrect Length Value) to CVE 2022-34399
and CWE-121 (Stack-based Buffer Overflow) to
CVE 2022-32454. However, the CWEs assigned
to CVE 2022-34399 only describe the cause of
the vulnerability, and the CWE assigned to CVE
2022-32454 only describes its consequence. One
must assign CWE-126 (Buffer Over-Read) to CVE
2022-34399 and CWE-112 (Missing XML Validation)
to capture the full story of each weakness underlying
the vulnerability. This inconsistency in capturing either
the cause or the consequence of a vulnerability further
complicates the CWE-CVE assignment.

The findings from this work show areas that would
require additional analysis to create precise BF CVE
descriptions. We would have to examine deeply corre-
sponding vulnerability reports, source code with bugs,
source code with fixes, and other available related
resources. Utilizing the BF vulnerability model, the
BF cybersecurity concepts definitions and BF taxons
definitions [5] and [6], as well as any of their synonyms
in use, we can employ modern ML and AI approaches
toward automatic CVEs analysis and generation of BF
CVE specifications.

Conclusion
Labeled vulnerability descriptions are of great demand
for advanced AI research related to cybersecurity vul-
nerabilities, attacks, and mitigation techniques. As a
formal bugs/weaknesses model [6], BF has the ability
to unambiguously describe the chains of underlying

weaknesses for any software security vulnerability.
With this work we begin specifying the detailed

information provided for each CWE. We use the CWEs
as a bridge to the corresponding CVEs and explore to
what extent the BF CWE descriptions may aid manual
creation of BF CVE descriptions. We invite you to
collaborate with us in this direction by joining the BF-
CVE specification challenge at [5].

Our future goal is to employ ML and AI approaches
for automated generation of BF CVE descriptions.
The result would be a reference dataset of labeled
vulnerability specifications for use by AI algorithms.
The labels will constitute the exhaustive sets of causes,
operations, consequences, and attributes values, pre-
cisely defined as BF class taxonomies. The BF CVE
reference dataset will be a great source not only
for research but also for cybersecurity education and
guidance.

Irena Bojanova, is a computer scientist at NIST,
Geitherburg, MD 20899, USA. Contact her at
irena.bojanova@nist.gov.

John Guerrerio is a sophomore at Dartmouth College
and a Summer Undergraduate Research Fellowship
(SURF) student at NIST. He is majoring in Computer
Science and Mathematical Data Science. Contact him
at john.j.guerrerio.26@dartmouth.edu.

References
[1] MITRE, Metrics, Accessed: 2023-07-07, 2023.

[Online]. Available: https : / /www.cve.org /About /
Metrics.

[2] D. Malzahn, Z. Birnbaum, and C. Wright-Hamor,
“Automated vulnerability testing via executable at-
tack graphs,” in 2020 International Conference on
Cyber Security and Protection of Digital Services
(Cyber Security), IEEE, 2020, pp. 1–10. DOI: 10.
1109/CyberSecurity49315.2020.9138852.

[3] NVD, National Vulnerability Database (NVD), Ac-
cessed: 2023-07-07, 2023. [Online]. Available:
https://nvd.nist.gov.

[4] FIRST, Common vulnerability scoring system spe-
cial interest group, Accessed: 2023-07-07, 2023.
[Online]. Available: https://www.first.org/cvss.

[5] I. Bojanova, NIST, The Bugs Framework (BF),
Accessed: 2023-08-20, 2023. [Online]. Available:
https://samate.nist.gov/BF/.

[6] I. Bojanova and C. E. Galhardo, “Bug, fault, er-
ror, or weakness: Demystifying software security
vulnerabilities,” IT Professional, vol. 25, no. 1,
pp. 7–12, Jan. 2023. DOI: 10.1109/MITP.2023.
3238631.

September/October 2023 IT Professional 7

https://www.cve.org/About/Metrics
https://www.cve.org/About/Metrics
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://doi.org/10.1109/CyberSecurity49315.2020.9138852
https://nvd.nist.gov
https://www.first.org/cvss
https://samate.nist.gov/BF/
https://doi.org/10.1109/MITP.2023.3238631
https://doi.org/10.1109/MITP.2023.3238631


DEPARTMENT

[7] I. Bojanova and C. E. Galhardo, “Classifying Mem-
ory Bugs Using Bugs Framework Approach,” in
2021 IEEE 45nd Annu. Computer, Software, and
Applications Conf., IEEE, vol. 1, 2021, pp. 1157–
1164. DOI: 10.1109/compsac51774.2021.00159.

[8] I. Bojanova and C. E. Galhardo, “Heartbleed revis-
ited: Is it just a buffer over-read?” IT Professional,
vol. 25, no. 2, pp. 83–89, Mar. 2023. DOI: 10.1109/
MITP.2023.3259119.

8 IT Professional September/October 2023

https://doi.org/10.1109/compsac51774.2021.00159
https://doi.org/10.1109/MITP.2023.3259119
https://doi.org/10.1109/MITP.2023.3259119

	Formalizing Memory-Related CWEs via BF Weaknesses or Chains of BF Weaknesses
	Memory-Related CWEs Similarity and Overlaps via BF Specifications
	Labeling Memory-Related CVEs via BF Specifications
	Conclusion
	Biographies
	Irena Bojanova,
	John Guerrerio


