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Abstract
With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes 
a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are 
more opportunities for matrix interferents to appear as PFAS where there are none (i.e., “seeing ghosts”), impacting subsequent 
reports. Addressing these ghosts is vital for the research community, as proper analytical measurements are necessary for 
decision-makers to understand the presence, levels, and potential risks associated with PFAS and protect human and environ-
mental health. To date, PFAS interference has been identified in several matrices (e.g., food, shellfish, blood, tissue); however, 
additional unidentified interferents are likely to be observed as PFAS research continues to expand. Therefore, the aim of 
this commentary is several fold: (1) to create and support a publicly available dataset of all currently known PFAS analytical 
interferents, (2) to allow for the expansion of that dataset as more sources of interference are identified, and (3) to advise the 
wider scientific community on how to both identify and eliminate current or new analytical interference in PFAS analyses.
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Introduction

Analytical measurements by liquid chromatography-mass 
spectrometry (LC–MS) are predicated both on high meas-
urement sensitivity and the method specificity. Nevertheless, 
in low-resolution mass spectrometry, the specificity of indi-
vidual reaction monitoring transitions (e.g., multiple reaction 
monitoring (MRM)/selected reaction monitoring (SRM)) can 
be difficult to ensure. For the analysis of per- and polyfluori-
nated alkyl substances (PFAS) in particular, the necessity of 
low detection limits and the ubiquity of environmental PFAS 

contamination makes measurements susceptible to bias from 
systematic contamination and interfering compounds from 
complex matrices. Careful method validation and awareness 
of analytical limits is necessary to prevent one from “seeing 
ghosts” of PFAS interferences where they are not present.

During PFAS analyses, systemic issues related to PFAS 
contamination that may arise from the unintentional introduc-
tion of PFAS to samples during sample collection, prepara-
tion, or analysis can be resolved through experimental and 
laboratory design [1–3]. This type of contamination, while 
an important concern in PFAS analysis, is outside the scope 
of this paper. Instead, this paper will focus on analytical inter-
ferences, which are non-PFAS based substances, interferents, 
that produce a signal indistinguishable from the target analyte 
within the context of the analytical method (e.g., identical 
MRM transition and (similar) retention time) [4]. Interfer-
ents can impact any measurement, and the techniques here are 
broadly applicable to other chemical classes, but this manu-
script focuses on PFAS due to the relatively high probability 
and impact of interference. Compounds interfering with PFAS 
MRM transitions have been observed as closely or co-eluting 
chromatographic peaks and as persistent background [5, 6]. 
These elevated or incorrectly selected peaks can result in 
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erroneously elevated quantitative values for targeted PFAS 
measurements and can significantly alter the scientific conclu-
sions of a study and lead astray resulting decisions. For exam-
ple, false positive detections of PFAS occurrence may lead to 
inaccurate assumptions about which PFAS are present in the 
environment or bioaccumulating in a study population. They 
may also obscure true PFAS sources. For example, research-
ers reported apparent false detection of 6:2 fluorotelomer 
sulfonic acid (6:2 FTS) due to interference from an emerg-
ing PFAS [5, 6], which would have suggested significantly 
different origins (e.g., aqueous film-forming foams (AFFFs) 
vs. fluoropolymer manufacturing) for the PFAS contamina-
tion and markedly different follow-up source identification 
and control steps.

Additionally, analytical interference that yields quantita-
tive biases of present PFAS can have significant impacts on 
our understanding of PFAS behaviors. A study by Bangma 
et al. 2020 identified a perfluorobutanoic acid (PFBA) inter-
ference in placenta, with radically different conclusions if 
the interferent had not been noticed [7, 8]. The apparent 
high prevalence and abundance of PFBA in human placenta 
described by the authors would have radically departed 
from our understanding of short- vs. long-chain PFAS accu-
mulation and toxicokinetic behavior. Instead, correction of 
the analytical measurements by removing inclusion of the 
interferent yielded expected distributions of PFAS, and no 
radical adjustment of current dogma was necessary.

To serve the community performing PFAS analysis, this 
communication describes important observations or “red 
flags” that may indicate that an interferent is leading to a false 
positive or elevated PFAS detection. To demonstrate this, we 
present a few recent examples of PFAS interferents and their 
characterization. Additionally, we propose actions to confirm 
and resolve suspected PFAS interference. Finally, this work 
introduces a centralized resource for cataloging known interfer-
ences for specific PFAS compounds, the PFAS Interferents List 
(PIL), and includes information based on LC–MS/MS data and 
sample matrices where these interferents have been observed. 
The interferents list has been created as a consultation resource 
when suspected interferences occur, and as a living document 
for continual collation of observed interferents as they are dis-
covered. The PIL can be accessed via the National Institute of 
Standards and Technology via the static DOI: 10.18434/mds2-
3040 or at https://​data.​nist.​gov/​od/​id/​mds2-​3040.

Origins and documenting known analytical 
interferents for PFAS

The literature record on PFAS interference began in 2007 
when Benskin et al. reported that isomers of taurodeoxy-
cholic acid (TDCA) in human serum samples could interfere 

with the 499 m/z → 80 m/z MS/MS transition for perfluo-
rooctane sulfonic acid (PFOS) [9]. Since 2007, the literature 
has expanded significantly, with the recognition of endog-
enous steroid sulfates interfering with the 399 m/z → 80 m/z 
and 399 m/z → 99 m/z transitions for perfluorohexane sul-
fonic acid (PFHxS) [10], and reports of lipid interferents for 
measurements of perfluorinated carboxylic acids in placenta 
[8], chocolate [11], oysters [12], and condensate water [12], 
among others (DOI 10.18434/mds2-3040).

The PIL currently contains the reference literature for 
these interferents reported in various sample matrices, 
but while the examples given are varied, they should not 
be interpreted as an exhaustive listing of possible matrix 
interferences. For example, a lipid interferent for per-
fluorobutanoic acid (PFBA) observed in the 2021 study 
of Bangma et al. was hypothesized to be a tissue-specific 
interferent and unlikely to be observed in environmental 
matrices (e.g., surface water). However, shortly thereafter, 
a PFAS study on indoor air observed several isomers of 
that interferent in condensate collected from an air condi-
tioning unit [12].

Likewise, cholic acids, such as TDCA mentioned pre-
viously, are commonly observed in matrices associated 
with the bile duct, including serum and egg/egg-yolk, 
and these species were also found in other egg-containing 
products (e.g., ranch dressing, ravioli, baby food, soup) 
analyzed as part of a total diet study [11]. These com-
pounds have also been observed in commonly consumed 
seafood products (e.g., cod, tuna) [13]. To avoid credulous 
interpretation of PFAS results, it is important to assume 
analysis of complex matrices will be impacted by unidenti-
fied or understudied interferents; therefore, strategies must 
be developed to differentiate incurred PFAS from matrix 
interferences.

Recognizing possible analytical interference

Identification of an analytical interferent requires recog-
nition that results are suspicious, outliers, or otherwise 
abnormal. Typically, interferents present themselves in 
different ways, but suspicion is most likely to arise during 
the data review stage, rather than during data collection. 
Observing an interferent is easiest in the raw data; how-
ever, given the prevalence of automated workflows and 
data processing software, interference may go unnoticed 
until multiple processing steps have passed (e.g., peak 
integration, quantification, data interpretation) or even 
multiple personnel have interacted with the results. While 
recognizing “suspicious” data is subjective and heavily 
dependent on analyst experience, there are numerous situ-
ations where PFAS measurements may require follow-up 
investigation. These include, specific concentrations being 
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unexpectedly and/or uniquely elevated in a sample set or 
individual PFAS being present in unexpected samples, 
and/or uncorrelated to similar species. The raw data of 
seemingly unusual or suspect samples can be interrogated, 
where close examination can reveal indicators such as ele-
vated background signal or variations in QC metrics like 
retention times and/or qualitative transitions. A detailed 
list of potential red flags that could indicate an analytical 
interferent with literature examples is provided in Table 1. 
In addition, Fig. 1 shows visual representations of several 
of the red flags.

All of the examples provided share one aspect, the lack 
of correlation of a single PFAS measurement with other 
members of the class and/or with the analyst expectations 
for the system under study. The likelihood of analyti-
cal interference must be weighed against the likelihood 
of specific, novel behavior for a single PFAS when such 
PFAS are normally correlated. When the possibility of 
interference is indicated, there are several considerations 
for resolving the interferent from the analysis.

Approaches for investigating and removing 
analytical interference

Despite the specificity of MS/MS transitions, there is 
always some degree of risk of analytical interference that 
contaminates the transition. During method validation and 
implementation, there are several key methods for resolv-
ing this interference.

(a) Critical analysis of QA/QC validation
Careful monitoring of quantitative transitions in MRM 
can reveal deviations consistent with interference and 
allow for flagging of the affected data. For example, 
maintaining strict performance metrics for baseline 
abundance and/or retention time deviations can flag 
samples, or entire matrices, for issues, even if peaks are 
still integrated by processing software. A recent recom-
mendation by the European Union specified a relative 
retention time deviation between analyte and matched 
internal standard should not exceed 1% for PFAS anal-
ysis in food and feed [14]. Unusual distributions of 
apparent isomers or the inclusion of misshapen peaks 
(i.e., shouldering) can be the result of close eluting 
interferents and can be compared to spike-in controls 
to determine whether it is the result of chromatographic 
deviations, or additional species. These types of QA/
QC checks can extend to modification of the analytical 
methods in response to frequent interferents.
(b) Alternate transitions can be used for confirmation of 
PFAS or known interferents

For some compounds, the examination of qualitative 
secondary transitions can confirm the presence of the 
analyte of interest and/or known interferents. Secondary 
transitions can also, if necessary, be used as quantita-
tive transitions, trading sensitivity for higher specific-
ity. The classic example of TDCA interference in the 
499 m/z → 80 m/z transition can be resolved because 
a prevalent 499 m/z → 99 m/z transition is specific to 
PFOS over the interferent [9]. Unfortunately, secondary 
qualitative transitions for the target analyte are not always 
available, for example PFBA and PFPeA lack secondary 
transitions, in which case, the secondary transition must 
be specific to the suspected interferent(s). For example, 
499 m/z → 124 m/z has been used to confirm the presence 
of cholic acid, while 263 m/z → 175 m/z has been used 
to confirm certain lipid interferents for PFPeA [12] and 
263 m/z → 114 m/z has been used to confirm an inter-
ferent commonly found in chocolate [11, 12]. Authors 
recommend PFAS results should be labeled uncertain 
if only one transition is available for confirmation and 
note that confirmatory transitions or supporting analytical 
techniques are required for unequivocal identification of 
compounds in certain regulatory schemes [15].
(c) Adjusting method parameters to reduce or remove 
interferents
Eliminating interference can also be accomplished by 
adjusting the method gradient, altering the column sta-
tionary phase (e.g., using a fluoro-column), or using a 
longer column to see if secondary peaks can be resolved. 
In the total diet study mentioned above, PFBA and 
PFPeA detections were confirmed to contain interfer-
ents after the use of a longer analytical column revealed 
unacceptably large relative retention time shifts. 
Researchers may also consider modifications to their 
sample preparation to remove specific interferents. For 
example, simple “dilute-and-shoot” extraction methods 
may be more susceptible to interference compared to 
extensive cleanup methods using weak-anion-exchange 
and/or carbon cleanup. Adding graphitized carbon 
clean-up to remove TDCAs is one example where this 
approach has worked well [16]. Note that method modi-
fications should still be validated to be consistent with 
accreditation for specific numbered methods or internal 
methods. When an interferent is characterized, it may 
be possible to purchase a chemical standard (and/or iso-
topically labeled analog) to validate that a preparation 
or analysis method is suitable for resolving the interfer-
ent from the analyte of interest. Validation of the exact 
identity and structure of interferent will likely require 
secondary analytical techniques.
(d) Leveraging other analytical techniques to confirm 
PFAS/interferents
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To supplement low-resolution MS/MS analysis such as tri-
ple-quadrupole measurements, high-resolution mass spec-
trometry (HRMS) can enable higher specificity detection 
of both target precursors and suspected interferents. Exact 
mass (mass accuracy error < 10 ppm) is normally suffi-
cient to resolve PFAS from interferents; however, high-
resolution MS/MS may still be necessary for unequivo-
cal confirmation; for example, an exact mass interference 
between 6:2 FTS and the novel PFAS HYDRO-EVE 
has been reported [17]. Charbonnet and colleagues have 
published a comprehensive resource on communicating 
confidence during novel PFAS identification using HRMS 
[18]. Another option is to use ion-mobility mass spec-
trometry as an additional dimension of separation, which 
can readily separate multiple classes of chemical species. 
This has been demonstrated to identify PFAS from com-
plex mixtures with biological molecules and xenobiotic 
compounds [19]. True confirmation of an interferent may 
require acquisition of an authentic chemical standard, but 
any of the techniques discussed may be enough to confirm 
the presence of an unidentified interferent.

Expanding the list of observed PFAS 
interferents

Accurate detection/quantitation of PFAS is important and 
given the challenges associated with the prevalence of inter-
ferents across diverse matrices and classes of PFAS, there 
is significant value in cataloging these interferences as they 
are discovered. To address this need, we have created “The 
PFAS interferents List” (PIL). This list is formatted as a 
simple excel table and includes the following data columns:

•	 PFAS:

○	 Compound name and identifier (DTXSID)
○	 Precursor mass and transition with observed inter-

ferent

•	 Interferent:

○	 Chemical name or any identifying information if the 
compound is unknown

○	 Precursor m/z
○	 Standard availability
○	 Diagnostic MS/MS transition (secondary)
○	 Citation or reference to work where the interferent 

has been observed/documented

The PIL resource can be accessed at https://​datap​ub.​
nist.​gov/​od/​id/​mds2-​3040 and is available with a static Ta
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DOI:10.18434/mds2-3040. We recognize that it is com-
mon for researchers to come across relevant interferences 
in their work, quickly deal with them, and move on, often 
without publishing this valuable information. This dataset 
is intended to be a “living” resource to capture both pub-
lished and un-published interferents once they have been 
found. As such, the dataset will be maintained and updated 
by NIST researchers as additional interferents are identified. 
We encourage researchers in the PFAS analysis community 
to submit observed interferents as they find them in differ-
ent matrices so they can be added to this dataset ad hoc. To 
submit new interferents, please use the template included in 
the PIL website (https://​datap​ub.​nist.​gov/​od/​id/​mds2-​3040) 
and send it to pfas@nist.gov. Ideally, interferents will be 
associated with DOIs for a citable resource to direct other 
researchers, but anecdotal “author communications” are 
also accepted. With more contributions, this resource will 
become more powerful for the community. Currently, sup-
port for verification of new interferents added to the PIL are 
only being accepted for PFAS, please visit https://​data.​nist.​
gov/​od/​id/​mds2-​3040 for any updates.

Conclusions

Overall, analytical interferences with PFAS measurements 
may introduce uncertainty and reduce confidence in results. 
Informed decision making relies on accurate and precise 
data. If that data lacks confidence, then potential actions 
can be delayed and require further investigations—which 
may increase overall costs of site investigations, risk assess-
ments, and regulatory decisions and thus postpone needed 
remedial actions. It is our hope that the solutions provided 
in this commentary for identifying PFAS interferents can 
improve the quality of data available to the community, 
and that it acts as a centralized repository for previously 
identified problems to accelerate acquisition of new PFAS 
measurements.
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Fig. 1   “Red flags” indicating 
potential PFAS interferents in 
a multi-matrix dataset (a, b), a 
sample set in a single matrix (c), 
and in a single-sample (d, e). a 
Elevated detection of an easily 
interfered species in an unex-
pected subset of a multi-matrix 
sampling (pink, blue, green). 
b Unique detection of a single 
PFAS in a single matrix (pur-
ple). c Unusually high reporting 
of a single PFAS (dark pink). 
d Minor retention time shifting 
and shouldering of observed 
PFAS signal caused by a coelut-
ing interferent, but which could 
be resolved from the internal 
standard. e Elevated, persistent 
background which reduces the 
signal-to-noise for the analyte 
of interest and may result in the 
loss of quantitative accuracy 
and limit of detection
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