
Neural networks three ways: unlocking novel computing
schemes using magnetic tunnel junction stochasticity

Matthew W. Danielsa, William A. Bordersa, Nitin Prasadb,c, Advait Madhavanb,c, Sidra
Gibeaultc, Temitayo Adeyeyec, Liam Pocherc, Lei Wand, Michael Trand, Jordan A. Katined,
Daniel Lathropc, Brian Hoskinsa, Tiffany Santosd, Patrick Bragancad, Mark D. Stilesa, and

Jabez J. McClellanda

aPhysical Measurement Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD, USA

bAssociate, Physical Measurement Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD, USA

cInstitute for Research in Electronics and Applied Physics, University of Maryland, College
Park, MD, USA

dWestern Digital Research, San Jose, CA, USA

ABSTRACT

Due to their interesting physical properties, myriad operational regimes, small size, and industrial fabrication
maturity, magnetic tunnel junctions are uniquely suited for unlocking novel computing schemes for in-hardware
neuromorphic computing. In this paper, we focus on the stochastic response of magnetic tunnel junctions,
illustrating three different ways in which the probabilistic response of a device can be used to achieve useful
neuromorphic computing power.

Keywords: Spintronics, neuromorphic computing, magnetic tunnel junction, Ising model, neural networks

1. INTRODUCTION

At both the edge and in datacenters, the energy efficiency of computing systems is an increasingly important opti-
mization target. Two technological paradigms are well-suited to reaching this target: domain-specific computing
systems optimized for machine learning applications, which increasingly dominate edge and cloud workloads;
and non-volatile memory technologies, which can drastically reduce the static power consumption of traditional
circuits and are conceptually well-suited to neuromorphic computing architectures.1,2

Among nonvolatile memory devices, magnetic tunnel junctions (MTJs) are of particular interest.3 They
exist in multiple fabrication facilities at multiple technology nodes, and are more technologically mature and less
susceptible to reproducibility issues than other types of novel non-volatile memories like resistive switches. They
also have broad multiphysical dynamics; slightly different growth and fabrication of nominally similar devices
can produce memory elements, nano-oscillators, or random bit generators.4 The stochastic properties of these
devices are particularly well-suited for hardware implementation, as the stochastic behavior arises chiefly from
thermodynamic processes and does not rely on defects or device imperfections which can be difficult to precisely
replicate at scale.

In this paper, we non-exhaustively survey applications of magnetic tunnel junction stochasticity to neuro-
morphic computing in hardware. For each application, we take a critical eye to when the use of this application
in hardware makes sense and what the limiting technological factors are. Through that lens, we discuss device
properties of magnetic tunnel junctions and prescribe what fabrication targets would be needed to advance the
technology readiness of each application.

Further author information: (Send correspondence to M.W.D.)
M.W.D.: E-mail: matthew.daniels@nist.gov, Telephone: 1 301 975 5601
J.J.M.: E-mail: jabez.mcclelland@nist.gov, Telephone: 1 301 975 3721

dc current 𝐼

𝑘𝐵𝑇

𝑘𝐵𝑇

0 1

0

1

a) b)

𝑉 = 0

𝑉 > 0c)

V
o

lt
ag

e
𝑉

Figure 1. a) A schematic theoretical model of a superparamagnetic tunnel junction. The free layer (top) has two metastable
states, either parallel or antiparallel to the fixed layer (bottom). b) In an ideal theoretical model, either of the states
is equally likely when no voltage is applied to the device. An applied magnetic field is often needed to achieve this in
practice. c) When a voltage is applied, the spin transfer torque on the free layer creates a statistical bias toward one
of the states. d) Asymmetric telegraph noise of the type typically seen in superparamagnetic tunnel junctions. Real
experimental data usually include voltage fluctations around the two states, but can be digitized to produce two clean
states like those depicted here.

The rest of the paper is organized as follows. First we briefly review the physics of magnetic tunnel junc-
tions in Sec. 2. In Sec. 3, we discuss the simulation of Ising models using superparamagnetic tunnel junctions
(SMTJs), with applications to associative memories and combinatorial optimization problems. In Sec. 4, we
discuss stochastic computing with a particular focus on deep neural network architectures, again using super-
paramagnetic tunnel junctions. In Sec. 5, we continue our discussion of deep neural networks, but consider how
magnetic tunnel junctions can be used to augment the capabilities of low-precision digital accelerators.

2. MAGNETIC TUNNEL JUNCTIONS

The standard theoretical model of a magnetic tunnel junction consists of three components: a fixed layer of
magnetic material whose magnetization has been locked in a chosen direction; a tunneling barrier of insulating
material through which charge can pass via spin-dependent quantum tunneling processes; and a free layer
of magnetic material whose magnetization is bistable and, in equilibrium, is oriented either parallel (P) or
antiparallel (AP) to the state of the fixed layer. This theoretical structure is depicted schematically in Fig. 1(a).

The bistable configuration of the free layer is often conceptualized as a particle (representing the component
of the magnetization projected onto the fixed layer’s preferred axis) in a double-well potential. The stability
of the two local minima is then controlled by the height of the potential barrier as in Figs. 1(b,c). Applying
a voltage across the junction can make one well or the other energetically favorable by modifying the torques
experienced by the free layer. Similar biasing of the states can be achieved by application of an external magnetic
field.

For the purposes of this paper, there are two key sources of stochasticity that interest us. First, if the free
energy barrier separating the two local minima of the energy landscape is lowered to be on the order of a few kT
(throughout we generally consider T to be room temperature; k is Boltzmann’s constant), then one expects the
system to switch between the two states according to Kramer’s escape rate theory. This process was originally
formalized by Brown5 and led to the Néel-Brown model of superparamagnetic tunnel junctions, which models
the device dynamics as a two-state Markov process with escape rate

φj = φ0 exp

[
− ∆

kT

(−1)jI

Ic

]
(1)

out of state j ∈ {0, 1}, where I is the current through the device, Ic a characteristic current scale, φ0 is
a characteristic escape rate (sometimes called the attempt rate). The Néel-Brown model thus gives rise to
asymmetric random telegraph noise, whose statistical properties have been detailed by Fitzhugh.6

For many of the applications we consider, the Néel-Brown model is a sufficient description of the device
dynamics – usually because support circuitry is used to discretize the device state. In some cases, however,

the analog behavior of the magnetization dynamics can become important, and modeling that behavior will be
important for compact models of these devices in circuit design tools. Circuit models for these devices have been
developed at various levels of approximation, from the Néel-Brown level to macrospin approximations of the
magnetic dynamics.7–9 Even so, the use of these models in circuit simulator tools can be tricky, as simulators
are often not equipped to carry out mathematically-correct stochastic integration routines. Progress in both
models and tooling will be an important step in moving stochastic applications of magnetic tunnel junctions
from experiment to prototype.

3. ISING MODELS

The connection between MTJs and Ising spins seems immediate; both are two state systems and the magnetic
origin of these states makes for a tempting analogy. Indeed, much of the contemporary work in using magnetic
tunnel junctions attempts to exploit this analogy, often for the purposes of simulated annealing of a spin system
with some energy functional curated to solve a problem of interest.10,11

Although MTJs can clearly represent the states of Ising systems, coupling MTJs is a more difficult proposition.
Although it is possible to imagine a dipolar coupling between devices, the locality (on the order of 300 nm) of
that physical interaction limits the construction of arbitrary energy functionals and puts strong constraints on
device design. More general Ising machines are more likely to be constructed using electrical coupling.

The leading efforts on digital coupling of SMTJs for Ising model emulation are based on so-called p-bits.
Originally introduced in the context of reversible logic,12 p-bits are proposed as a computational element that
bridges the gap between deterministic bits and qubits. Since their introduction, p-bits have seen extensive devel-
opment in combinatorial optimization problems. One of the first nontrivial demonstrations of an experimental
p-bit system demonstrated that a p-bit computer could factor semiprimes up to approximately 8 bits.13

FPGA- and ASIC-based coupling of p-bit devices described in the previous section has proven to be extremely
versatile for a wide range of computational problems.14 However, it is tempting to ask whether we can connect
these devices with direct electrical signals rather than digital control, the latter of which often comes with
non-negligible area and energy consumption overheads.

3.1 Two-device coupling

One mechanism that was recognized early on for coupling SMTJs is through stochastic resonance. A series of
papers by Mizrahi et al. investigate stochastic resonance of SMTJs in simulation, theory, and experiment.15–17

As a computational platform, however, spin-torque oscillators continue to be a favored spintronic platform for
implementing coupled oscillator systems.18

Perhaps the simplest form of analog circuit coupling between two SMTJs is investigated experimentally by
Talatchian et al.19 In their system, depicted in Fig. 2(a), the total voltage across the circuit is determined by
the parallel resistance of two SMTJs in a voltage divider with a static resistor R. In the limiting case where
the voltage source and series resistor become a current source, a change in conductance of one device maximally
changes the current through the other device, thereby maximally changing the second device’s escape probability
into a different state. In this regime, the correlation between devices is maximal; clearly in the limit that the
series resistor goes to zero and becomes a voltage source, there is no coupling between the devices at all.

3.2 n-device Ising chains

The basic premise of the coupling mechanism from Talatchian et al. is that the two devices share the same pool
of current. In the present paper, we envision extending the system to beyond two devices by constructing a
chain as in Fig. 2(b). Current conservation at the node above each MTJ in the chain leads us to the voltage
drop across the MTJ given by

Vj =
ij + Vj−1gj−1,j + Vj+1gj,j+1

Gj + gj−1,j + gj,j+1
(2)

where Gj is the MTJ’s conductance, gi,j is the conductance of the resistor connecting devices i and j, and ij
the current source on column j. Although we will restrict ourselves to an infinite chain topology for the sake of
brevity, note that we could have connected the node above MTJ j to any number of other nodes and we simply

Figure 2. a) The experimental setup investigated by Talatchian et al.; the devices couple by virtue of one device’s
conductance changing the current through the other device, especially in the current source limit. b) A chain of coupled
devices that work on the same principle as Fig. 2(a); solving for the transition probabilities indicates that this system
mimics a 1D Ising chain.

would have added more terms to the top and bottom of Eq. (2). Whatever the topology, this implicit equation

for Vj can be viewed as a matrix equation V⃗ = MV⃗ + U⃗ ; letting Γj = Gj +
∑

⟨jk⟩ gjk where the sum is over

nodes k connected to j, we have Uj = ij/Γj and

M =



. . .
. . .

. . .
gj−2

Γj−1
0

gj
Γj−1

gj−1

Γj
0

gj+1

Γj
gj

Γj+1
0

gj+2

Γj+1

. . .
. . .

. . .


(3)

with zeros off the tridiagonal; we have given M for the chain topology but in general the jth row would contain
nonzero terms {gi/Γj}⟨ij⟩. The Neumann series (1−M)−1 =

∑∞
j=0 M

j always converges and we can write down

a series expansion for V⃗ = (1−M)−1U⃗ ; at leading order in g/Γ, we have

Vj = Uj +
∑
jk

gk
Γj

Uk +O(g2/Γ2). (4)

Note that g/Γ is always small if the degree of connectivity is high. However, we will make the further assumption
that the MTJs are far more conductive than the transverse resistors, G > gD in general where D is the degree
of connectivity. This localizes the interactions; when g → 0, the SMTJs are isolated, and when g becomes small
but nonzero they can be affected just a bit by their neighbors. In this limit, we have (with Rj = 1/Gj)

1

Γj
= Rj

(
1−

∑
jk gk

Gj
+O(g2/G2)

)
. (5)

Keeping terms only up to linear order in g/G and dividing both sides of Eq. (4) by Rj to get the current Ij
through the device leads us to conclude that

Ij = ij

1−Rj

∑
⟨jk⟩

gjk

+
∑
⟨jk⟩

gjkikRk. (6)

Now suppose the MTJs are all identical, and have Rj = R0+ρsj where sj = ±1 is the MTJ’s state. Substituting
these in, we have

Ij = ij +R0

∑
⟨jk⟩

gjk(ik − ij) + ijsjρ
∑
⟨jk⟩

gjk + ρ
∑
⟨jk⟩

gjkskik. (7)

Now that we know the current through each MTJ, what can we say about its transition rate out of its current
state? Recall Eq. (1) and let us further assume – as is the case with many real devices – that we require a current
bias of i∗ to achieve equal probabilities of the two states. Then the switch probability of device j out of state sj
is

φj,sj = φ0 exp

(
− ∆

kT

sj(Ij − i∗)

Ic

)
(8)

where we will take from now on β := ∆/(kTIc) for brevity. Then

φj,sj = φ0 exp

−β

sj(ij − i∗) + sjR0

∑
⟨jk⟩

gjk(ik − ij) + ijρ
∑
⟨jk⟩

gjk + ρ
∑
⟨jk⟩

sjskgjkik

 (9)

= φ̃0 exp

−β

sj(ij − i∗) + sjR0

∑
⟨jk⟩

gjk(ik − ij) + ρ
∑
⟨jk⟩

sjskgjkik

 (10)

where in the second equation we absorb the constant term ijρ
∑

⟨jk⟩ gjk into φ̃0.

Each SMTJ has exponentially distributed switching time with rate parameter φj,sj . In that sense, the
probability that a device switches in a time τ is just φj,sjτ . Ignoring the overall prefactor, then, we would like
to interpret this switching probability to be of the form exp(−β∆E) where ∆E is the change in energy that
would result from the changed state – this would roughly map the dynamics to a Metropolis-Hastings algorithm.
Applying this mapping to Eq. (10), however, we find two problems.

First, this system is not Hermitian, because the change in the interaction energy between two of the devices
would be different depending on which one switches, due to the ik factor in the sjsk sum. If we want a Hermitian
system with a well-defined energy landscape, we must take all ij to be some constant i0. Note that this also
makes the R0 sum vanish, leaving us with

φj,sj = φ̃0 exp

−β

sj(i0 − i∗) + ρi0
∑
⟨jk⟩

gjksjsk

 (11)

Second, we note that as ρg ∼ g/G is a small parameter, the energy will be dominated by the sj(i0 − i∗) term.
However, if we simply choose i0 = i∗, then the physics is dominated by the couplings,

φj,sj = φ̃0 exp

− ∆

kT

i∗
Ic

∑
⟨jk⟩

Jjksjsk

 (12)

where we have defined Jjk = ρgjk. Note that as the change in energy has sign sgn(sjsk) for each coupling, the
corresponding effective energy function for this system is

Eeff = − i∗
2Ic

∑
⟨jk⟩

Jjksjsk (13)

where the sum is over all connected columns. One can choose a ferromagnetic or antiferromagnetic interaction
simply by changing the sign of i∗, that is, by flipping the polarity of the MTJs in the circuit.

Using a crossbar architecture, one could theoretically construct all-to-all connectivity between a set of SMTJs
and construct a Jjk-programmable Ising model in this way. However, several technical problems remain. One is
that in most problems of interest, one would want to anneal the effective temperature of the system. This could
be done in theory by increasing the magnitude of the applied currents while correspondingly using an applied
field to change i∗ at the same time, increasing the effective inverse temperature without reintroducing the (i0−i∗)
effective field. In practice, of course, this would be very difficult, and even without annealing one would need
very well-matched devices to maintain hermiticity while avoiding the introduction of a dynamics-dominating
effective field. How to read out the state of such a system is yet another challenge.

Figure 3. The basic premise of a stochastic computing computation. Bitstreams with some unknown probabilities pj to
be in their logical-true state are input to the computer (from the left, in the figure). The inputs are generally regarded
as uncorrelated but need not be; the machine accepts, in general, samples from an unknown multivariate distribution. A
network of logic gates induces some transformation on these input bitstreams to produce a (possibly multivariate) output
distribution, manifest in some output bitstream(s). In order to read the output of the machine, one must sample from
this bitstream and attempt to guess some statistic q (often the expected value of the bitstream) from a finite population
of bit samples. The longer one waits to report q, the more precisely one can report the output of the computation.

As the mean SMTJ resistance increases toward the coupling resistance, more terms become relevant in our
various series expansions, and couplings between next- and next-next-nearest neighbors begins to appear. This
too could be of interest, though such couplings would be less programmable. We leave further exploration of
this system to future research, noting that a similar idea of a crossbar architecture coupling SMTJs to achieve
a restricted Boltzmann machine architecture is proposed by Phan et al. in a recent paper.20

4. STOCHASTIC COMPUTING

In the previous section, the stochasticity of devices was used to mimic physical thermodynamic processes, sim-
ulating Hamiltonian systems whose energy functions were arranged to encode a problem of interest. In this
section, we instead use stochastic dynamics to encode numerical values directly, and operate on the generated
random bitstreams to construct arithmetic computations. The idea of using random bitstreams as numerical
scalars in a computational circuit is called stochastic computing and traces its origins back to von Neumann.21

Stochastic computing (demonstrated conceptually in Fig. 3) has received much attention for the elegance of
its simple circuits, promise of low-power and low-area operation, and as an ideal application space for stochastic
nanodevices. Typically the inputs to a stochastic computer are serially-injected random bitstreams associated
with some statistical distribution I. The output of the computation can be regarded as some unknown distri-
bution D with a functional dependence f on the input distribution, D = f(I), with f determined by the logic
circuits comprising the stochastic computer. In practice, one can never determine D with perfect certainty, but
must instead estimate D (or, more typically, the expected value of D) by sampling N random bits from the
output bitstream of the computer. One can spend additional time and energy to increase the precision and
accuracy of the output by increasing N .

4.1 Encoding and efficiency of stochastic computing

Usually numerical information is encoded in the expectation value of a bitstream. One way to do this (called
the unipolar encoding) is to directly associate to any bitstream of 0s and 1s the expected value of the bitstream
distribution, limiting the representable space to the unit interval – note that this is equivalent to letting the
stream be represented by the probability p of finding a 1. The so-called bipolar encoding, by contrast, associates
to that same bitstream the value 2⟨p⟩ − 1, allowing the designer to access values [−1, 1]. Other encodings exist
and are sometimes used in niche applications. Regardless of the particular mapping, however, these encodings
are all examples of unary number systems. Notice that a length-N bitstream in this context can encode only
N +1 distinct values, since the order of the bits carries no information. In an information theoretic sense, then,
a length-N bitstream carries only log2 N bits of information—a significant degradation over the exponential
compression of usual binary numbers. This degradation has led to the observation that stochastic computing is

0.0 0.2 0.4 0.6 0.8 1.0
0.001

0.005

0.010

0.050

0.100

0.500

Population mean

S
ta
nd
ar
d
er
ro
r
on
th
e
m
ea
n,

σ
/
n

Confidence in mean after n trials

n = 22

n = 23

n = 24

n = 25

n = 26

n = 27

n = 28

n = 29

n = 210

n = 211

n = 212

n = 213

n = 214

4-bit resolution

6-bit resolution

8-bit resolution

Figure 4. The standard error on the mean when estimating the expected value of some bitstream output from a stochastic
computation (e.g. estimating q in Fig. 3). Note the logarithmic scale.Note the logarithmic scale. In order to reliably
distinguish 16 different outputs with 1σ confidence, one must collect 64 bits; to distinguish 64 levels, one must collect
1024 bits; to distinguish 256 levels, one must collect 16384 bits.

energy- and time-efficient only for small N , as at large N there is almost certainly a binary-coded circuit that
can carry out the same computation with far fewer cycles.

Exactly how small N must be for efficient stochastic computing is a question of some debate. From an
abstract computational standpoint, Manohar has shown that stochastic computing is almost never optimal.22

However, when concrete considerations about circuits and architecture are considered, stochastic computing does
have the capacity to outperform binary computing for certain tasks, for bitstream lengths up about 256.23

In terms of bitstream length, stochastic computing must fight against not only a low-density encoding but
also statistical uncertainty in the mean. The latter goes down only as N−1/2. Because of uncertainty in the
mean of a stochastic bitstream, the effective resolution of a bitstream is less than log2 N bits. Figure 4 shows the
standard error on the mean, parametrically for different N , as a function of the underlying distributional mean.
To reach an effective 8-bit resolution – where you can be reasonably sure that a particular output is distinct
from values ±2−8 to each side – requires the collection of 214 samples from the bitstream, or over 16000 clock
cycles. Meanwhile 64 samples, a perhaps more reasonable runtime, can achieve effective 4-bit resolution.

This analysis suggests that stochastic computing is best suited to computational problems where precision
can be low and where heavy reliance on dataflow structures can make the most use of stochastic computing’s
architectural advantages. Many modern machine learning workloads fit these criteria. This observation has
motivated an exploration of stochastic computing systems based around deep neural network architectures,
which have long been capable of performing low-precision inference and are now capable of training at low
precision on a variety of architectures.24–26

4.2 Randomness and pseduorandomness in stochastic computing

Randomness sources have traditionally been difficult to integrate in complementary metal-oxide semiconductor
(CMOS) processes, and pseudorandom algorithms for generating high-quality randomness tend to be bulky and
energy-inefficient when realized in hardware. As a result, traditional stochastic computing work has focused on
the use of linear feedback shift registers (LFSRs) for generating cheap but low-quality pseudorandom bitstreams.

For stochastic computing systems with large fan-in, however, low-period random generators become problem-
atic. Most stochastic computing operations rely on input bitstreams being statistically uncorrelated, or at best
correlated in some precisely known way.27 When the number of inputs to a stochastic circuit starts to approach
the period of the underlying generator, collisions between perfectly correlated bitstreams become increasingly
likely, leading to computational inaccuracies. To manage these problems, a variety of schemes have been intro-
duced; one of the most energy efficient is the use of approximate parallel counters to translate out of and back
into the stochastic regime.

Figure 5. Top left: floating point number representation. Bottom left: fixed-point number representation. Center: The
relative error induced by the round-nearest operation in fixed and floating point number schemes. Fixed point relative
rounding error becomes 100 % when the number to be represented is under the precision floor of the encoding. Right:
below the precision floor of the fixed point coding, the expected value of the relative error can be suppressed by using
stochastic rounding; more samples increases the precision.

The possibility of using SMTJs to introduce truly random bitstreams to stochastic computers releases a
significant constraint on stochastic circuit design by removing so-called edge correlations from a stochastic circuit
(c.f. graph correlations built up by merging the bitstreams in their computational flow, language introduced in
Daniels et al.28). Initial forays into the use of SMTJs for stochastic computing focused on basic computational
primitives and energy efficient circuit designs. The pre-charge sense amplifier, a key circuit for MTJ state
detection, has also played an important role in energy efficient SMTJ devices.28

As much of the SMTJ community consists of physicists and materials-oriented researchers rather than elec-
trical engineers, the use of SMTJs in traditional stochastic computing applications such as image filtering and
other streaming computations on sensor data has been limited, since the former communities have less familiarity
with these algorithms and use-cases. By contrast, neuromorphic computing has become widely studied across
fields, and so it is no surprise that SMTJs have found use in this new cross-disciplinary area.

One study has used the stochastic bitstreams of SMTJs in a population coding context.29 Population coding
is a multi-channel encoding often used to code a distribution over a discrete domain (the channels) rather
than a single scalar value. In Mizrahi et al., SMTJs are envisioned as an array of analog-to-stochastic sensors
that convey a brightness versus angle profile for a robot’s perceptive operation.29 They use this coding in a
multilayer perceptron using weights stored in MRAM cells and show that the energy efficiency of such a system
is considerably lower than an analogous CMOS-only design.

Population-coded perception systems are heavily bio-inspired; Daniels et al.,28 by contrast, takes an algebraic
approach and uses traditional stochastic computing primitives to construct a deep neural network directly. Unlike
the DNN applications described above, the SMTJ-based work takes advantage of the truly random bitstreams
to dramatically simplify the neuron model, reducing a neuron to a single CMOS OR-gate. With some loss of
accuracy, the network described there performs 2× to 10× more efficiently than CMOS stochastic networks
(which themselves are known to be more energy efficient than traditional methods such as graphical processing
units).

5. LOW-PRECISION DEEP NEURAL NETWORKS

One of the oldest and most obvious applications for the stochastic behavior of magnetic tunnel junctions is merely
as random bit generators, rather than as computational or encoding elements. Though much recent attention
has been given to SMTJs in this context, the stochastic write behavior of stable MTJs has also been exploited
for this purpose.30

As others have observed,31 accessibility to massively parallel random bit generators has the potential to
dramatically change the landscape of how we do scientific and numerical computing. From Monte Carlo simula-
tions to the integration of stochastic differential equations, random number generation is often a computational
bottleneck in modern scientific computing workloads.

One of the most interesting uses of these random bits has been to enable low-precision operations. In high
dimensional ODEs, for instance, low-precision has been essential for practical implementation, but it turns
out that extra precision can be hidden in the least significant bit through stochastic rounding.32 Stochastic
rounding (Fig. 5) is the practice of rounding up the excess precision of a numerical result (often the result of a
multiplication) with probability given through the digits to be truncated. As a simple example, imagine rounding
14.327 to two decimal places. The most well-known rounding scheme, round-nearest, would round this to 14.33.
Other deterministic schemes exist like round-even, round-odd, round-toward-zero, and so on. Stochastic rounding
would round 14.327 to 14.33 with probability 0.7, and would round to 14.32 with probability 0.3.

Note that the expectation of a number rounded stochastically is equal to the arbitrarily precise value of the
roundee. Therefore if sufficiently many (say N) values are stochastically rounded and then summed – as in, for
instance, a dot-product operation – then we roughly expect a 1/

√
N convergence to the “true” underlying value

of the operation, up to whatever is representable in the output coding. As a contrived example, consider the dot
product of two N -vectors each of the form x⃗ = (1/2, 1/2, 1/2, · · ·), and suppose we have only a single fractional
bit available. A deterministic rounding scheme must round each product of 1/4 to either 0 or 1, so that the
dot product results in either 0 or N . Stochastic rounding has expected output N/4, plus or minus some error
on the mean of order O(1/

√
N). While in many applications a deterministic result is required, the stochastic

computing result is certainly closer to the correct answer even in the presence of the stochastic error term.

In the past few years, it has become well-understood that stochastic rounding is a crucial operation for
training deep neural networks at low precision.33 Since the initial demonstration that stochastic rounding could
maintain the learning dynamics of a network even after the error propagation dropped beyond the representation
floor, many other algorithms have since emerged to push network training to fewer and fewer bits, not only in the
weights and gradients of the network but in the errors and activations as well.34 For these algorithms to make
sense in high-performance artificial intelligence hardware, a ready source of random bits is required; magnetic
tunnel junction schemes are well-poised to fit this niche, and it has been shown that SMTJ-based generators can
be more energy efficient per random bit even than the smallest LFSR circuits.28

Extreme cases of low-precision networks include the binary and ternary neural networks, where weights are
either −1 or 1 in the former case and −1, 0, or 1 in the latter. These networks require special training algorithms,
but are usually sampled stochastically from real-valued “latent” weights. As a first step toward systems of this
type based on magnetic tunnel junctions, several groups have tested experimental prototype networks using
MTJ crossbars. Zhou et al. showed in a small demonstration that an experimentally based MTJ binary neural
network could in fact achieve functionality.35 A subset of the present authors demonstrated an inference engine
for the Wine dataset and found that the mapping between software and hardware systems of this type can be
made highly nontrivial even in online learning.36 Recently, a very large network based on an MTJ architecture
was demonstrated by Samsung.37 However, direct on-line training of such systems has been elusive due to the
requirement of latent weights described above. Overcoming this challenge will be an important next step for the
field.

6. ACKNOWLEDGEMENTS

AM, SG, TA, LP, and DL acknowledge support by the National Science Foundation under Grant No. CCF-
2121957.

REFERENCES

[1] Berggren, K., Xia, Q., Likharev, K. K., Strukov, D. B., Jiang, H., Mikolajick, T., Querlioz, D., Salinga,
M., Erickson, J. R., Pi, S., Xiong, F., Lin, P., Li, C., Chen, Y., Xiong, S., Hoskins, B. D., Daniels, M. W.,
Madhavan, A., Liddle, J. A., McClelland, J. J., Yang, Y., Rupp, J., Nonnenmann, S. S., Cheng, K.-T.,
Gong, N., Lastras-Montaño, M. A., Talin, A. A., Salleo, A., Shastri, B. J., de Lima, T. F., Prucnal, P.,
Tait, A. N., Shen, Y., Meng, H., Roques-Carmes, C., Cheng, Z., Bhaskaran, H., Jariwala, D., Wang, H.,
Shainline, J. M., Segall, K., Yang, J. J., Roy, K., Datta, S., and Raychowdhury, A., “Roadmap on emerging
hardware and technology for machine learning,” Nanotechnology 32, 012002 (Oct. 2020).

[2] Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Le Gallo, M., Redaelli, A., Slesazeck,
S., Mikolajick, T., Spiga, S., Menzel, S., Valov, I., Milano, G., Ricciardi, C., Liang, S.-J., Miao, F., Lanza,
M., Quill, T. J., Keene, S. T., Salleo, A., Grollier, J., Marković, D., Mizrahi, A., Yao, P., Yang, J. J.,
Indiveri, G., Strachan, J. P., Datta, S., Vianello, E., Valentian, A., Feldmann, J., Li, X., Pernice, W. H. P.,
Bhaskaran, H., Furber, S., Neftci, E., Scherr, F., Maass, W., Ramaswamy, S., Tapson, J., Panda, P., Kim,
Y., Tanaka, G., Thorpe, S., Bartolozzi, C., Cleland, T. A., Posch, C., Liu, S., Panuccio, G., Mahmud, M.,
Mazumder, A. N., Hosseini, M., Mohsenin, T., Donati, E., Tolu, S., Galeazzi, R., Christensen, M. E., Holm,
S., Ielmini, D., and Pryds, N., “2022 roadmap on neuromorphic computing and engineering,” Neuromorph.
Comput. Eng. 2, 022501 (June 2022).

[3] Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and Stiles, M. D., “Neuromorphic
spintronics,” Nature Electronics 3, 360–370 (July 2020).

[4] Locatelli, N., Cros, V., and Grollier, J., “Spin-torque building blocks,” Nature materials 13(1), 11–20 (2014).

[5] Brown, W. F., “Thermal Fluctuations of a Single-Domain Particle,” Phys. Rev. 130, 1677–1686 (June 1963).

[6] Fitzhugh, R., “Statistical properties of the asymmetric random telegraph signal, with applications to single-
channel analysis,” Mathematical Biosciences 64, 75–89 (May 1983).

[7] Torunbalci, M. M., Upadhyaya, P., Bhave, S. A., and Camsari, K. Y., “Modular Compact Modeling of MTJ
Devices,” IEEE Transactions on Electron Devices 65, 4628–4634 (Oct. 2018).

[8] Yang, X., Zhang, Y., Zhang, Y., and Wang, P., “A Universal Compact Model for Spin-Transfer Torque-
Driven Magnetization Switching in Magnetic Tunnel Junction,” IEEE Trans. Electron Devices 69, 6453–6458
(Nov. 2022).

[9] Vincent, A. F., Locatelli, N., Klein, J. O., Zhao, W. S., Galdin-Retailleau, S., and Querlioz, D., “Analytical
Macrospin Modeling of the Stochastic Switching Time of Spin-Transfer Torque Devices,” Ieee T Electron
Dev 62, 164–170 (Jan. 2015).

[10] Aadit, N. A., Grimaldi, A., Carpentieri, M., Theogarajan, L., Martinis, J. M., Finocchio, G., and Camsari,
K. Y., “Massively parallel probabilistic computing with sparse Ising machines,” Nat Electron 5, 460–468
(July 2022).

[11] Aadit, N. A., Mohseni, M., and Camsari, K. Y., “Accelerating Adaptive Parallel Tempering with FPGA-
based p-bits,” in [2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)],
1–2, IEEE, Kyoto, Japan (June 2023).

[12] Camsari, K. Y., Faria, R., Sutton, B. M., and Datta, S., “Stochastic p-Bits for Invertible Logic,” Phys.
Rev. X 7, 031014 (July 2017).

[13] Borders, W. A., Pervaiz, A. Z., Fukami, S., Camsari, K. Y., Ohno, H., and Datta, S., “Integer factorization
using stochastic magnetic tunnel junctions,” Nature 573, 390–393 (Sept. 2019).

[14] Chowdhury, S., Grimaldi, A., Aadit, N. A., Niazi, S., Mohseni, M., Kanai, S., Ohno, H., Fukami, S.,
Theogarajan, L., Finocchio, G., Datta, S., and Camsari, K. Y., “A full-stack view of probabilistic computing
with p-bits: Devices, architectures and algorithms,” (Feb. 2023).

[15] Mizrahi, A., Locatelli, N., Matsumoto, R., Fukushima, A., Kubota, H., Yuasa, S., Cros, V., Kim, J.-
V., Grollier, J., and Querlioz, D., “Magnetic Stochastic Oscillators: Noise-Induced Synchronization to
Underthreshold Excitation and Comprehensive Compact Model,” IEEE Trans. Magn. 51, 1401404 (Nov.
2015).

[16] Mizrahi, A., Locatelli, N., Grollier, J., and Querlioz, D., “Synchronization of electrically coupled stochastic
magnetic oscillators induced by thermal and electrical noise,” Phys. Rev. B 94, 054419 (Aug. 2016).

[17] Accioly, A., Locatelli, N., Mizrahi, A., Querlioz, D., Pereira, L. G., Grollier, J., and Kim, J.-V., “Role
of spin-transfer torques on synchronization and resonance phenomena in stochastic magnetic oscillators,”
Journal of Applied Physics 120, 093902 (Sept. 2016).

[18] Romera, M., Talatchian, P., Tsunegi, S., Araujo, F. A., Cros, V., Bortolotti, P., Trastoy, J., Yakushiji, K.,
Fukushima, A., Kubota, H., Yuasa, S., Ernoult, M., Vodenicarevic, D., Hirtzlin, T., Locatelli, N., Querlioz,
D., and Grollier, J., “Vowel recognition with four coupled spin-torque nano-oscillators,” Nature 563, 230–+
(Nov. 2018).

[19] Talatchian, P., Daniels, M. W., Madhavan, A., Pufall, M. R., Jué, E., Rippard, W. H., McClelland, J. J.,
and Stiles, M. D., “Mutual control of stochastic switching for two electrically coupled superparamagnetic
tunnel junctions,” Phys. Rev. B 104, 054427 (Aug. 2021).

[20] Phan, N.-T., Soumah, L., Sidi El Valli, A., Hutin, L., Anghel, L., Ebels, U., and Talatchian, P., “Electrical
Coupling of Perpendicular Superparamagnetic Tunnel Junctions for Probabilistic Computing,” in [Proceed-
ings of the 17th ACM International Symposium on Nanoscale Architectures], 1–6, ACM, Virtual OR USA
(Dec. 2022).

[21] Neumann, J. V., “Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Compo-
nents,” in [Automata Studies. (AM-34)], Shannon, C. E. and McCarthy, J., eds., 43–98, Princeton University
Press (Dec. 1956).

[22] Manohar, R., “Comparing Stochastic and Deterministic Computing,” IEEE Comput. Arch. Lett. 14, 119–
122 (July 2015).

[23] Lee, V. T., Alaghi, A., Pamula, R., Sathe, V. S., Ceze, L., and Oskin, M., “Architecture Considerations for
Stochastic Computing Accelerators,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37, 2277–2289
(Nov. 2018).

[24] Ren, A., Li, Z., Ding, C., Qiu, Q., Wang, Y., Li, J., Qian, X., and Yuan, B., “SC-DCNN: Highly-Scalable
Deep Convolutional Neural Network using Stochastic Computing,” SIGPLAN Not. 52, 405–418 (May 2017).

[25] Li, J., Yuan, Z., Li, Z., Ding, C., Ren, A., Qiu, Q., Draper, J., and Wang, Y., “Hardware-driven nonlinear
activation for stochastic computing based deep convolutional neural networks,” in [2017 International Joint
Conference on Neural Networks (IJCNN)], 1230–1236, IEEE, Anchorage, AK, USA (May 2017).

[26] Li, Z., Li, J., Ren, A., Cai, R., Ding, C., Qian, X., Draper, J., Yuan, B., Tang, J., Qiu, Q., and Wang,
Y., “HEIF: Highly Efficient Stochastic Computing-Based Inference Framework for Deep Neural Networks,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 38, 1543–1556 (Aug. 2019).

[27] Alaghi, A. and Hayes, J. P., “Exploiting correlation in stochastic circuit design,” in [2013 IEEE 31st
International Conference on Computer Design (ICCD)], 39–46, IEEE, Asheville, NC (Oct. 2013).

[28] Daniels, M. W., Madhavan, A., Talatchian, P., Mizrahi, A., and Stiles, M. D., “Energy-Efficient Stochastic
Computing with Superparamagnetic Tunnel Junctions,” Phys. Rev. Applied 13, 034016 (Mar. 2020).

[29] Mizrahi, A., Hirtzlin, T., Fukushima, A., Kubota, H., Yuasa, S., Grollier, J., and Querlioz, D., “Neural-like
computing with populations of superparamagnetic basis functions,” Nat Commun 9, 1533 (Apr. 2018).

[30] Fukushima, A., Yakushiji, K., Kubota, H., and Yuasa, S., “Spin dice (physical random number generator us-
ing spin torque switching) and its thermal response,” in [2015 IEEE Magnetics Conference (INTERMAG)],
1–1, IEEE, Beijing (May 2015).

[31] Misra, S., Bland, L. C., Cardwell, S. G., Incorvia, J. A. C., James, C. D., Kent, A. D., Schuman, C. D.,
Smith, J. D., and Aimone, J. B., “Probabilistic Neural Computing with Stochastic Devices,” Advanced
Materials , 2204569 (Nov. 2022).

[32] Hopkins, M., Mikaitis, M., Lester, D. R., and Furber, S., “Stochastic rounding and reduced-precision fixed-
point arithmetic for solving neural ordinary differential equations,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 378, 20190052 (Mar. 2020).

[33] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P., “Deep learning with limited numerical
precision,” in [Proceedings of the 32nd International Conference on Machine Learning], Bach, F. and Blei,
D., eds., Proceedings of Machine Learning Research 37, 1737–1746, PMLR, Lille, France (July 2015).

[34] Wu, S., Li, G., Chen, F., and Shi, L., “Training and Inference with Integers in Deep Neural Networks,”
(2018).

[35] Zhou, P., Edwards, A. J., Mancoff, F. B., Houssameddine, D., Aggarwal, S., and Friedman, J. S., “Experi-
mental Demonstration of Neuromorphic Network with STT MTJ Synapses,” arXiv:2112.04749 [cond-mat,
physics:physics] (Dec. 2021).

[36] Goodwill, J. M., Prasad, N., Hoskins, B. D., Daniels, M. W., Madhavan, A., Wan, L., Santos, T. S., Tran,
M., Katine, J. A., Braganca, P. M., Stiles, M. D., and McClelland, J. J., “Implementation of a Binary
Neural Network on a Passive Array of Magnetic Tunnel Junctions,” Phys. Rev. Applied 18, 014039 (July
2022).

[37] Jung, S., Lee, H., Myung, S., Kim, H., Yoon, S. K., Kwon, S.-W., Ju, Y., Kim, M., Yi, W., Han, S., Kwon,
B., Seo, B., Lee, K., Koh, G.-H., Lee, K., Song, Y., Choi, C., Ham, D., and Kim, S. J., “A crossbar array
of magnetoresistive memory devices for in-memory computing,” Nature 601, 211–216 (Jan. 2022).

	INTRODUCTION
	MAGNETIC TUNNEL JUNCTIONS
	ISING MODELS
	Two-device coupling
	n-device Ising chains

	STOCHASTIC COMPUTING
	Encoding and efficiency of stochastic computing
	Randomness and pseduorandomness in stochastic computing

	LOW-PRECISION DEEP NEURAL NETWORKS
	ACKNOWLEDGEMENTS

