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The Kerr effect in atomic vapor may be regarded as the power saturation of the susceptibility. Hence the satu-
rable Kerr effect is intimately tied to the standard Kerr effect. Here, we calculate the saturable Kerr effect without
free parameters using a two-level system and find good agreement with experimental results. Our approach per-
mits a direct comparison of theory to experiment without an extrapolation to low power as required by previous
approaches. An experimentally observed asymmetry between red and blue detuning led us to consider a model with
one ground state and three excited states. Such an asymmetry cannot be described by a two-state model. The model
predicts about 25% of the observed asymmetry.

https://doi.org/10.1364/JOSAB.503903

1. INTRODUCTION

A theme of recent work in quantum optics is the manipulation
of light at extremely low power levels, including the single-
photon level. Among the many candidate media, rubidium
vapor cells have been a subject of intensive study. Such cells are
capable of generating quantum-correlated twin-beams [1,2]
in addition to having several other applications including opti-
cal quantum memory [3], the characterization of thin layers
using optical frequency combs [4], atomic clocks [5], sensi-
tive magnetometers with application in biomedicine [6] and
geology [7], gravimetry [8], and information encoding via
cross-phase modulation [9]. Recent work includes the devel-
opment of small, scalable vapor cells [10]. The field of optics
with hot atomic vapors including rubidium has been reviewed
recently [11].

All of these processes depend on nonlinear optics. Arguably
the simplest nonlinear process is the Kerr effect, whereby the
index of refraction in a medium is depending on the intensity
of the light passing through it. In the Kerr effect, only one fre-
quency and one polarization are required. Usually, the Kerr
effect is regarded as a χ (3) process, i.e., the induced polarization
depends on the cube of the incident electric field. However,
the thinking in nonlinear optics is heavily influenced by solid-
state systems where the lowest-order perturbation theory is
generally applicable for most practical systems. Atomic vapors
exhibit nonlinear effects at very low power levels, which can be
counterintuitive [12]. The saturation of the Kerr effect cannot
be described through lowest-order perturbation theory. Yet,
the Kerr effect for atomic vapor systems is routinely described
in terms of the lowest-order perturbation theory [12–14],

although these same papers describe experiments whose inten-
sities are sufficient to induce O(1) changes in the magnitudes
of the Kerr coefficient compared to its low-field (i.e., non-
saturated) value. Recently, a second term in the perturbation
expansion has been measured along with the Kerr coefficient in
a cesium vapor cell [15].

Here, we calculate the Kerr coefficient at the electric fields for
which it was measured, without extrapolating to the low-field
regime. In addition to the question of principle, in practice, the
Kerr coefficient varies rapidly at low power [12,14], making
such extrapolation a source of uncertainty. Even now, there is
some question about the precise value of the Kerr coefficient
in rubidium vapor. For example, Araújo et al. report a 30%
uncertainty for the extrapolated (i.e., non-saturated) Kerr coef-
ficient in cesium [13], and a recent paper shows that the use of
Gaussian–Bessel beams changes the value of the Kerr coefficient
by a factor of 1.73 compared to a similar measurement with
Gaussian beams [16].

Before our presentation of the theory, we note that there
have been related studies of rubidium vapor cells. For example,
the nonlinear absorption was measured on resonance 20 years
ago [17], and the saturation of the Kerr effect has recently been
extended to spatial mapping [18].

2. THEORY

We consider laser light incident on a Rb vapor cell. The light is
treated as a monochromatic plane wave. The cell is assumed to
have a uniform density of Rb atoms. We will consider only light
with frequencies near the 5S1/2→ 5P3/2 transition, known as
the D2 line [19,20]. We consider continuous wave (CW) [12]
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and pulsed [14] experiments. Both experiments use vapor cells
that are short compared to the Rayleigh length of their Gaussian
beams, and both measure the intensity in the center of the beam.
In this case, we may calculate using a plane wave instead of a
Gaussian.

We work in a semiclassical approximation, using the rotating
wave approximation (RWA) [21,22] in quantum mechanics
as well as the paraxial approximation in electrodynamics [23].
For the case of a two-level system, the susceptibility χ is given
by [24]

χ =−N
d2

ε0~
1+ i

0sp
2

02
sp
4 +

�2
1

2 +1
2
, (1)

where N is the number density, d is the dipole matrix element,
ε0 is the permittivity of free space, ~ is the reduced Planck
constant, 0sp is the spontaneous emission rate, �1 is the Rabi
frequency at zero detuning, and 1 is the detuning. {See Eq.
(2.188) in the reference. Angular frequencies must be used
in Eq. (1) for �1 and 1; nevertheless we call these quantities
“frequencies” and convert using 1 Hz = 2π s−1 [25].} The
expression assumes decoherence is due to spontaneous emis-
sion. We use the values d = 2.52 · 10−29 Cm [12,20] and
0sp = 38.11 · 106 s−1. The values change negligibly between
87Rb and 85Rb, so we use the same values for simplicity. The
zero-detuning Rabi frequency is given by [24]

�1 =
d E
~
, (2)

where E is the amplitude of a real cosine wave electric field.
Another key equation relates the electric field to the intensity in
a plane wave. The formula is [26]

I =
ε0c n

2
|E|2, (3)

where c is the speed of light, and n is the index of refraction in
the medium. In this work, we approximate n = 1 when using
Eq. (3). The experiments [12,14] use a Gaussian beam, and they
quote their results in terms of power. The power in a Gaussian
beam is related to its peak intensity I0 by

P = 2π
∫
∞

0
dρ ρ I (ρ)=

πw2
0

2
I0 =

zRλ

2
I0, (4)

where ρ is the radius used in cylindrical coordinates, w0 is the
beam waist parameter, zR is the Rayleigh length, and λ is the
wavelength. For the Rb D2 line, λ= 780 nm. Also, zR = 8 mm
is quoted in both experiments. Since the Rayleigh length is
quoted in the references, we use the final form in Eq. (4) to
convert intensity to power.

Both McCormick et al. [12] and Wang et al. [14] give a for-
mula for the unsaturated Kerr effect for a two-level system.
The formula may be derived from Eq. (1) and the other equa-
tions presented here by a first-order Taylor expansion in I [24]
[Eq. (7B.9)]. Hence, the Kerr effect is the lowest-power mani-
festation of the saturation of the susceptibility; moreover, the
two-level system predicts that the Kerr effect will also saturate.
(Because n2

= 1+ χ , and χ� 1 for the systems we consider,
n − 1≈ 1

2χ , so it does not matter qualitatively whether we

Fig. 1. Calculations for a two-level system red-detuned from the
87Rb D2 line with a number density of 0.2783 · 1018 m−3. The dipole
matrix element is taken to be 2.52 · 10−29 Cm [12]. An occupancy
factor of 5/8 is included to account for the fraction of atoms in the
F = 2 state of the 5S1/2 state; (a) susceptibility and (b) polarization
P /ε0 = χE . In (b), the saturation electric fields are shown, starting
from 1=−0.9 GHz on the left. The orange, dashed green, and blue
curves correspond to a detuning of 1=−0.9 GHz, −1.0 GHz, and
−1.1 GHz, respectively. The electric fields corresponding to s = 1 are
also shown.

consider the index or the susceptibility.) Representative values of
conditions at saturation are given in Appendix A.

The susceptibility of 87Rb for the conditions of the experi-
ment reported by McCormick et al. [12] is given in Fig. 1(a).
Whereas McCormick et al. quote a number density of 1018 m−3,
the value used in our calculation is 0.2783 · 1018 m−3 to
account for the natural abundance of 87Rb [20]. In addition,
atoms in the F = 1 ground state are nearly noninteracting. As
these represent 3/8 of the total, the number density is adjusted
downward by an additional factor of 5/8, which is the fractional
occupancy of the F = 2 ground state. The saturation effect
leads the index of refraction to change its order as a function of
1 for sufficiently large electric fields. The susceptibility goes to
zero as the field increases. Moreover, it does so quickly enough
that the induced polarization peaks in absolute terms and also
goes to zero as the incident electric field grows large, as shown in
Fig. 1(b). Also shown are the saturation electric fields E sat, which
occur at the maxima of P/ε0 = χE .

The behavior may be understood qualitatively by consid-
ering Eqs. (A1)–(A3). For small electric fields, the saturation
parameter is also small. If the detuning 1 is large compared to
the spontaneous emission rate 0sp, then the susceptibility varies
inversely with1, which explains the ordering at E = 0. As the
electric field increases, the saturation parameter becomes large
and contributes a factor of 12 asymptotically. The product of
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the two terms goes as1. Hence, the susceptibilities must appear
in the opposite order as the electric field increases compared to
the low-field limit.

The curvature at the beginning of the graph is related to the
unsaturated Kerr effect. In general, we may find the saturated
Kerr coefficient n(s )2 by

n(s )2 =
n(I )− n0

I
, (5)

where n(I ) is the intensity-dependent index of refraction, and
n0 is its limit as I→ 0.

Some of our results include a calculation beyond the two-level
system. For 87Rb, we compute the density matrix within the
RWA for a system consisting of the F = 2 ground-state level
and the three excited-state levels with dipole allowed coupling,
namely, F ′ = 1, 2, 3. As discussed in the text of Grynberg et al.
[24], the susceptibility may be found through the steady state
solution of the density matrix. In practice, we find this matrix
by propagating the density matrix in time [27] by 0.5 µs, which
is large compared to the lifetime of 28 ns and comparable to the
typical time an atom spends in the beam. The formalism is given
in Appendix B. The atom is initially taken to be in the ground
state. The final time is a typical time that a Rb atom can spend
in the beam. We considered the possibility of optical pumping
to the F = 1 level. However, we found that this process occurs
long after 0.5 µs for the detunings we consider. Near resonance,
e.g., for |1| ≤ 10 MHz, optical pumping would need to be
included. Evaluating the density matrix in its steady state yields
the induced dipole moment per atom p via

p = qe Tr(rρ), (6)

where qe is the charge on the electron, r is the dipole operator,
ρ is the density matrix computed within the RWA, and Tr is
the trace. The polarization is given by P = Np , where P is the
polarization envelope, and N is the number density of atoms.
This forms the source term in the paraxial wave equation,
derived from the Maxwell equations. The equation is

Ez +
nbkg

c
Et = i

µ0c
2nbkg

ωP, (7)

where E is the electric field envelope, the subscripts z and t are
the partial derivatives in the propagation direction and time,
respectively, µ0 is the vacuum permeability, nbkg is the index of
refraction due to effects that are not being modeled by the den-
sity matrix (i.e., the background), andω is the optical frequency,
about 384 THz. In practice, we take nbkg = 1. In the regime
we consider, Clausius–Mossotti local field effects [26] may be
neglected.

Strictly speaking, we should consider all of the magnetic
sublevels when forming our density matrix. Coupling by
spontaneous emission leads to the inclusion of many states.
Nevertheless, non-magnetic systems are nearly always treated
without considering magnetic sublevels. We do so here, but
then we are faced with the question of determining the coupling
coefficients. We find these by taking the coupling constants
given by the Clebsch–Gordan-like formulas presented by Steck
[19,20], squaring them, and summing them over the magnetic
sublevels of a given transition. The values are given in Table 1.

Table 1. Matrix Elements Are the Positive Square
Roots of the Following Quantities, which Are Sums
of Squares of the Clebsch–Gordan-Like Coupling
Constants Given by Steck [19,20]

a

85Rb |P3/2 F = 1〉 |P3/2 F = 2〉 |P3/2 F = 3〉 |P3/2 F = 4〉

|S1/2 F = 2〉 27/216 35/216 28/216 0
|S1/2 F = 3〉 0 10/216 35/216 81/216
87Rb |P3/2 F = 0〉 |P3/2 F = 1〉 |P3/2 F = 2〉 |P3/2 F = 3〉

|S1/2 F = 1〉 2/32 5/32 5/32 0
|S1/2 F = 2〉 0 1/32 5/32 14/32

aThe entries in each pair of lines sum to one.

The matrix elements are the taken to be the positive square roots
of these quantities. Using the positive signs is an assumption.

3. COMPARISON TO EXPERIMENT

In Fig. 2, the measured results for the saturated Kerr coefficient
n(s )2 are given for the experiment of McCormick et al. [12] as well
as the results of the two-level calculation. Extra lines are drawn
in Fig. 2 that show that s = 1 is either in the middle of the range
of the data or at the low end, depending on the case. In either
case, only a non-perturbative calculation can be applied directly
to make a comparison of the theory with the data at the power
levels at which they were acquired.

Fig. 2. Saturable Kerr coefficient n(s )2 as a function of CW power
based on the experimental conditions of McCormick et al. [12] for
(a) blue detuned 85Rb and (b) red detuned 87Rb. The filled orange
circles, green plus symbols, and empty blue squares are taken from
the reference with detuning of 1 of ±0.9 GHz, ±1.0 GHz, and
±1.1 GHz, respectively. The same color assignments are used for the
theoretical curves, including a dashed curve at ±1.0 GHz. The three
vertical lines in (a) and (b) correspond to the power for which s = 1 for
(left to right) |1| = 0.9 GHz, 1.0 GHz, and 1.1 GHz.



Research Article Vol. 40, No. 12 / December 2023 / Journal of the Optical Society of America B 3193

Fig. 3. Absolute value of n(s )2 (a) measured in isotopically pure 87Rb
with a pulsed laser and (b) computed including the ground state F = 2
level and the excited state F = 1, 2, 3 levels. The orange solid, orange
dashed, blue solid, and blue dashed curves correspond to detunings
1= 0.9 GHz,−0.9 GHz, 1.1 GHz, and−1.1 GHz, respectively. The
points are similar.

There are no adjustable parameters in the calculation,
i.e., all values are tabulated or specified by the experiment.
We find good quantitative agreement, with the calculated val-
ues being about 80% of the measured ones. The agreement
of our model with the data is less good in the case of 85Rb,
although still within a factor of two. The experimental val-
ues vary more at low power than we can account for in the
model. The two-level model is symmetric in the sign of 1.
Some of the difference between Figs. 2(a) and 2(b) is accounted
for by the natural abundance ratio and the level degeneracy
factors, leading to an expected greater value for 85Rb of
(0.7217/0.2783)(7/12)/(5/8)= 2.4, which is reflected in
the theoretical curves. The cause of the remaining correction is
obscure, although McCormick et al. [12] discuss the possibility
of effects of the other isotope.

Wang et al. [14] used isotopically pure 87Rb in their mea-
surement. Selected values are given in Fig. 3(a). There is an
asymmetry of about a factor of two, with blue detuning giving
larger values than red detuning. The experiment of Wang et al.
used a pulsed laser, so the results are not directly comparable to
the theory or to the experiment of McCormick et al. As noted by
Wang et al., the reported values for the saturable Kerr coefficient
are much larger than those obtained with static measurements.
Part of this is due to having a higher density of Rb atoms (1.55×
McCormick et al.) and part is due to using isotopically pure
87Rb, which gives an enhancement factor of (1/0.2783), for a
number-density-based enhancement of 5.6. This still leaves
a large enhancement in the induced dipole moment per atom

due to the pulses versus earlier CW measurements and the
CW-based theory.

One source of this asymmetry is the fact that the transition
moments grow with F ′ as shown in Table 1. The results of our
calculation with one ground state and three excited states is
shown in Fig. 3(b). We find an asymmetry factor of about 1.25,
which is less than that factor of two implicit in the data of Wang
et al. and also suggested by the McCormick et al. data.

4. CONCLUDING REMARKS

The saturable Kerr effect is a phenomenon closely related to
the saturation of the susceptibility. The Kerr effect itself is a
manifestation of the saturation of the susceptibility. Due to the
low power levels required to achieve saturation, this is a practical
consideration for contemporary experiments in rubidium vapor
cells. The common assumption that aχ (5) orχ (7) phenomenon
has to be smaller than a χ (3) effect [14] does not apply if the
saturation parameter s ≈ 1.

We have achieved semiquantitative agreement with the
experimental results for the intensity-saturation of the Kerr
coefficient in rubidium vapor using a model of the two-level sys-
tem with no adjustable parameters. (There are some parameters
taken from other experiments, such as the dipole matrix element
and the lifetime of the state.) There is an observed asymmetry
in the response in the sign of detuning. We attempt to account
for this asymmetry by considering three excited states instead of
one, still in a framework with no adjustable parameters. Only
about a quarter of this asymmetry can be accounted for by con-
sidering three excited states instead of one. Within the quantum
mechanical domain, other effects to consider include Doppler
broadening, relaxation effects, and light polarization [28], as
well as a theory taking into account the pulsed beam. Obtaining
full quantitative agreement may also depend on a more careful
analysis of the transverse dependence of the electromagnetic
interactions, given the sensitivity of the susceptibility to the inci-
dent power. Although the Kerr effect is the simplest nonlinear
effect in rubidium vapor cells, open questions remain to achieve
full quantitative understanding.

APPENDIX A: NUMERICAL ESTIMATE OF
SATURATION POWER AND RELATED
QUANTITIES

The linear susceptibility χ (1) is the �1→ 0 limit of Eq. (1),
namely,

χ (1) =−N
d2

ε0~
1+ i

0sp
2

02
sp
4 +1

2
. (A1)

Following Grynberg et al. [24], we may define the saturation
parameter

s =
�2

1/2

12 + 02
sp/4

. (A2)

Equations (1), (A1), and (A2) imply

χ = χ (1)
1

1+ s
. (A3)
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Table 2. Parameters for the Rb D2 Line at Saturation
(s= 1)

a

1 (GHz) �1 (GHz) E (kV/m) I (MW/m2) P (mW)

0 0.00303 0.113 1.69 · 10−5 1.98 · 10−5

1 1.41 37.2 184 2.15
aThe values apply to both 85Rb and 87Rb to the accuracy quoted. The param-

eters d = 2.52 · 10−29 Cm, 0sp = 38.11 · 106 s−1, n = 1, λ= 780 nm, and zR =

8 mm are used. The on-resonance Rabi frequency �1, the electric field E , and
the optical intensity I refer to the center of the Gaussian beam. The power P is
integrated over a cross section of the beam at its waist.

The case of s = 1 is interesting since it occurs at the peak
induced electric field, shown in Fig. 1(b). Since s ∝ E 2, s = 1
also represents the value for which the perturbation series
obeys |χ (1)| = |χ (3)| = |χ (5)|, etc., indicating a perturbative
treatment is not warranted. Representative values on and off
resonance are given in Table 2. Off resonance,1∝�1 ∝ E and
I ∝ P ∝ E 2.

APPENDIX B: DENSITY MATRIX CALCULATION

The polarization P(t) is given by the RWA density matrix σ(t)
from

P(t)= ndenqe Tr (rσ(t)) . (B1)

In the RWA, the time-dependent quantities vary slowly
on the time-scale of an optical period (typically 3 fs) and are
envelope functions. In practice, we use a 0.2 ns time step in our
calculation, so there is about five orders of magnitude separation
between the optical frequencies, which are treated analytically,
and the slow radio-frequency variations, which are calculated.

The density matrix is governed by the Lindblad master
equation

dσ

dt
=−i[H, σ ] +

dσ

dt

∣∣∣∣
relax

=Lσ, (B2)

where H is the Hamiltonian, and dρ
dt |relax describes the relax-

ation. Also, L is the Lindblad matrix, L=L(L) +L(R), with L
for Liouville and R for relaxation. We model the relaxation as
being due to spontaneous emission, which is a practical lower
bound (i.e., in the absence of Purcell confinement effects).
Without a buffer gas, collisions do not add significantly to
decoherence rates. The elements ofL(L) are given as

L(L)i j ,k` =−iHikδ j` + iH` j δik, (B3)

where the indices i, j , k, ` run over the set of atomic basis
states, H is the Hamiltonian matrix, and δ is the Kronecker
δ. This equation is equivalent to Eq. (5) of Ref. [29]. The
relaxation termL(R) has nonzero elements for

L(R)kk,kk =−0,L
(R)
i i,kk = Oik0,L(R)k`,k` =−

1

2
0, (B4)

where i is in the ground state manifold, and k and ` are in
the excited state manifold. In Eq. (B4), 0 is the decay rate,
and O is a matrix of branching ratios. The final line gives the
decay of coherences under the assumption that these are due to
spontaneous emission [24].

In each time step, the solution is

σ(t + δt)= exp(Lδt)σ (t), (B5)

assuming L is constant throughout the time step δt . In this
work, we consider only laser fields of constant amplitude, so that
assumption holds. The matrix exponential applied to a vector V
is found through its Taylor series in the form used in Horner’s
method, namely,

exp(M)V ≈ V +M
(

V +
M
2

(
V +

M
3

(
V +

M
4

V
)))

,

(B6)
here given to fourth order. We retain 30 terms, which puts a
limit on the allowed time step given the energy splittings. Also
we take M =Lδt and V = σ . For a Hamiltonian including an
electric field,

H(t)= H0 + E(t)d , (B7)

where H0 is the unperturbed atomic Hamiltonian, known for
the subspace, and d is the dipole operator. If we were to treat
all magnetic sublevels, this would be completely known for a
vector electric field, e.g., as given in Refs. [19,20]. In this paper,
the electric field is taken to be a scalar, and we use assumptions
given at the end of Section 2 to avoid including the degenerate
magnetic sublevels explicitly.
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