
Energy-Efficient Access Point Deployment for
Industrial IoT Systems

Xiaowen Qi1[0009−0005−0025−7011], Jing Geng2[0000−0001−9256−2075], Mohamed
Kashef2[0000−0002−6619−3509], Shuvra S. Bhattacharyya1[0000−0001−7719−1106],

and Richard Candell2[0000−0002−6679−8823]

1 University of Maryland, College Park MD 20740, USA {xqi12, ssb}@umd.edu
2 National Institute of Standards and Technolog, Gaithersburg MD 20899, USA

{jing.geng, mohamed.kashef, richard.candell}@nist.gov

Abstract. Internet of Things (IoT) technologies have impacted many
fields by opening up much deeper and more extensive integration of
communications connectivity, sensing, and embedded processing. The
industrial sector is among the areas that have been impacted greatly
— for example, IoT has the potential to provide novel capabilities for
more effective tracking, control and optimization of industrial processes.
To maintain reliable embedded processing and connectivity in indus-
trial IoT (IIoT) systems, including systems that involve intensive use of
smart wearable technologies, energy consumption is often a critical con-
sideration. With this motivation, this paper develops an energy-efficient
deployment strategy for access points in IIoT systems. The developed
strategy is based on a novel genetic algorithm called the Access Point
Placement Genetic Algorithm (AP2GA). Simulation results with our pro-
posed deployment strategy demonstrate the effectiveness of AP2GA in
optimizing energy consumption for IIoT systems.

Keywords: Green Communication · Wireless Industrial IoT · Genetic
Algorithm

1 Introduction

Wireless communications technologies are of increasing interest in industrial en-
vironments because of their important potential benefits compared to full re-
liance on wired communications [3]. As such, Industrial Internet of Things (IIoT)
is playing a huge role in industry due to the connectivity capabilities provided
by wireless technology, revolutionizing the sector. For example, various sensors
can be deployed to monitor temperature, humidity, and vibrations of machines
to create safer production environments and to report early warnings of pos-
sible malfunctions. By seamlessly connecting various devices and sensors, IIoT
enables more efficient data collection, analysis, and process control, bringing
productivity into higher levels.

However, with ever-increasing system complexity, the increasing amounts of
energy consumed by wireless communication devices has attracted significant
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attention from both academia and industry. The large amount of energy con-
sumption also poses challenges to the environment, as renewable green energy is
typically not used as a power source for wireless networks [2].

The energy consumption attributable to Information and Communication
Technology (ICT) has exhibited large increases with the advent of new tech-
nologies, such as Fifth Generation (5G) and Multiple-Input and Multiple-Output
(MIMO), as such technologies require more power consumption to increase re-
sponse speed and accommodate more users. Therefore, innovation in green com-
munications technologies is in urgent need.

To help address this need, we propose and demonstrate a systematic Access
Point (AP) deployment strategy for energy-efficient IIoT systems. The remain-
der of this paper is organized as follows. Section 2 discusses background and
related literature about AP deployment strategies. Section 3 explains the pro-
posed energy-efficient AP deployment strategy. Section 4 reviews the factory
system flow model used in our simulation experiments. Section 5 presents the
results of the proposed strategy, which are obtained from the aforementioned
simulation experiments. Finally, the paper is concluded in Section 6.

2 Background and Related Work

In wireless networks, an AP plays a crucial role by providing wireless connectivity
and forwarding communication between devices or even networks as a relay
node. To effectively support these functionalities and meet users’ requirements,
proper deployment of APs is essential. In this paper, by deployment of APs, we
specifically mean the physical placement of the APs for operation in a given site.

A range of approaches regarding AP deployment has been proposed in the
literature, with a goal of seeking optimal positions based on various objectives,
such as reducing the number of APs used [8] or improving network perfor-
mance [6, 10,12–14].

In [8], the authors apply a continuous optimization technique known as A
new Global OPtimization algorithm (AGOP) to minimize the number of APs
used to cover a service area containing obstacles. The authors of [6] employ
a multiobjective Tabu algorithm to search the set of candidate locations. The
algorithm jointly considers coverage, interference, and Quality of Service (QoS).
The final selection is made based on the most important factor to the end user.
In [10], AP deployment and channel allocation are optimized together with a
computationally-efficient local search algorithm to maximize system throughput
and achieve fair resource sharing. In order to reflect the dynamic movement
of users in an indoor wireless local area network (WLAN) system, the authors
of [12] first use statistical theory to model the location and probability of the
user distribution, and then model and solve the corresponding AP deployment
problem with the fuzzy C-clustering algorithm.

In addition to the above algorithms, Genetic Algorithms (GAs) have also
been widely used in identifying efficient AP deployment locations, especially un-
der relevant multi-objective constraints. GAs are heuristic optimization methods
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inspired by Darwin’s Theory of Evolution. They form an important sub-class of
evolutionary algorithms [1]. A GA iteratively evolves to a solution of the given
problem by using principles of natural selection. GAs have been shown to perform
well on complex optimization problems where it is infeasible to derive optimal
solutions with manageable time-complexity [1].

In [13], the authors take non-uniform user distribution into account, using
a GA to cooperatively optimize the coverage, number of APs, and interference.
In [14], an optimized placement of APs is selected with a GA such that the trans-
mit power and overlap rate are minimized under the constraint of full coverage.
The average transmit power is substantially optimized; it is reduced by about
61%. However, this average value may not be very useful in real-life situations,
since it is possible that the device in the system with the smallest transmit
power only processes a limited amount of traffic. The communication energy
consumption would be a better metric to consider to more accurately inform
system analysis and optimization.

Motivated by the above observations, we propose a novel energy-efficient
AP placement method. The method mutually considers non-uniform user dis-
tribution and unbalanced communication activity on the premise of complete
coverage. Our method considers total communication energy consumption as a
key metric to guide the optimization process. This is a complex optimization
problem, and a GA is designed to derive an efficient deployment setup for a
given deployment scenario.

3 Proposed Methods

In the problem formulation that is addressed in this work, the energy cost to
be optimized refers to the energy consumed by communication activities that
occur during normal operation of the IIoT system. Specifically, the problem
definition targeted in this work is the optimization of communication energy
given a placement of networked devices, which may be unevenly distributed,
and a characterization of the traffic demand for each device.

The communication energy considered in this paper refers to the transmis-
sion energy. Energy associated with communication reception for the devices is
not taken into account in the methods developed in the paper, as it is common
in related analysis contexts to focus on transmission power, and consideration
of the transmission energy provides an approximation of the overall energy con-
sumption due to communication. Incorporation of models for reception energy
into the developments of this paper is an interesting direction for future work.

To save energy, we consider optimal placement of the APs so that they can
deliver packets to all stations (STAs) in an area with an appropriate transmit
power according to their activity rates. The fitness function can be mathemati-
cally expressed as follows:
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min
xi,yi,αi,j

n∑
i=1

s∑
j=1

1i,jαi,jti,jβi,j (1)

s.t. C1 : (xi, yi) ∈ Q

C2 :

n∑
i=1

1i,j = 1, ∀ j ∈ [1, s]

C3 : αmin ≤ αi,j ≤ αmax , ∀ i ∈ [1, n], ∀ j ∈ [1, s]

C4 : αi,j +Gi,j − Li,j ≥ α0, ∃ i ∈ [1, n], ∀ j ∈ [1, s]

Here, n and s denote the number of used APs and STAs respectively, (xi, yi) is
the position of AP i, 1i,j indicates whether STAj is associated to AP i, αi,j , ti,j ,
βi,j are the used transmit power, transmission time, and total communication
activity rate (including both downlink and uplink activity) occurring in the link
between AP i and STAj respectively, Q constrains the service area, αmin and
αmax set the lower and upper bound for the transmit power, Gi,j and Li,j are the
antenna gains and losses of the communication link between AP i and STAj , and
α0 refers to the receiver sensitivity of signal detection. For simplicity we assume
a single transmit power setting for both directions of a link; the framework can
readily extended to handle differing transmit power values.

The antenna gains add both the transmitter antenna gain and receiver an-
tenna gain. Similarly, the loss Li,j of each link contains three components: cable
and connector losses on both sides, path loss, and miscellaneous losses such as
fading margin. The propagation loss is estimated using the log-distance path loss
model:

L = L0 + 10γlog10(
d

d0
), (2)

where L0 is the path loss at the reference distance d0, γ is the decay component,
and d is the distance between transmitter and receiver.

Fig. 1 illustrates the communication activities in a simple network consist-
ing of two STAs and one AP. Different colors (i.e., blue and black) are used
to distinguish different directions of transmission. Dashed lines represent ex-
pected/imagined communication paths, while solid lines represent the corre-
sponding actual occurring communication paths. Suppose STA1 needs to send
3 messages to STA2. After receiving and analyzing the messages, STA2 sends a
message back to STA1. The intermediate AP AP1 acts as a relay node to per-
form the above operations. In this case, β1,1 = 3(uplink) + 1(downlink) = 4 and
β1,2 = 1(uplink) + 3(downlink) = 4. Note that they are equal because there are
only two links existing in this scenario. α1,1 is the transmit power used by STA1

and AP1, and t1,1 is the transmission time of packets in the link between AP1

and STA1. α1,2 and t1,2 have similar meaning but between AP1 and STA2.
If the constraints C1 , C3 , and C4 are jointly satisfied, then STAj is effi-

ciently covered by AP i in the given environment. Depending on the settings, it
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Fig. 1: An illustration of communication activity between two STAs.

is possible that an STA is covered by multiple APs. The constraint C2 takes
this situation into account and restricts an STA to only communicate with the
AP offering the best cost.

We have developed a GA to solve the multivariate optimization problem for-
mulated above, and we refer to our GA-based AP placement approach as the
AP Placement GA (AP2GA). We have developed a prototype implementation
of AP2GA using the DEAP Framework for GA implementation [4]. AP2GA
iterates through a series of genetic operations to evolve the population (cur-
rent set of candidate solutions). After a pre-determined number of iterations,
AP2GA produces its final population, and from the final population, a solution
with maximum fitness (see Equation 1) is selected as the final solution to the
optimization process. Fig. 2 illustrates this operation of AP2GA in a flowchart.

Fig. 2: A flowchart of the proposed deployment strategy.
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AP2GA starts by randomly initializing a set of candidate solutions, which
will form the initial population for the optimization process. Each candidate
solution in a GA population is referred to, in its encoded form, as a chromosome.
A candidate solution in a GA population is also referred to as an individual. Each
chromosome in the population consists of a set of genes (bits) that encode xi, yi,
and αi,j (i = 1, . . . , n, j = 1, . . . , s) in binary format. The crossover and mutation
operations, which are used to evolve the population, operate directly on the bits
of the chromosome. A gene bit-string is initialized under the constraints C1 and
C3 , and its length depends on a user-specified precision value.

After that, the fitness function is called iteratively for each individual. Based
on the obtained fitness score, a tournament selection process is used to select
parents to breed offspring. There is a feasibility check to see if each individual
violates any constraint. If so, a large penalty value is added to the fitness score of
the individual. The subsequent tournament selection process selects the parents
to breed offspring based on the fitness score, so invalid individuals with large
fitness scores are less likely to be selected for survival. In our formulation, higher
fitness scores correspond to lower-quality solutions, so more “fit” individuals
(higher levels of fitness) in the GA population correspond to lower fitness scores.

A two-point crossover follows to exchange information between the selected
parents. As the name suggests, two crossover points are randomly chosen and the
genes in-between are swapped to reproduce different offspring (derived candidate
solutions) with different bit patterns as chromosomes. Subsequently, mutation
is applied on the chromosomes. Mutation refers to the unpredictable change
in certain genes during the genetic process, which is not guaranteed to have a
positive or negative influence on fitness, but will enhance genetic diversity in
the population [7]. The above process of evaluation and genetic manipulation
(selection, crossover, and mutation) is repeated until a pre-determined number
of generations has been reached.

4 Factory System Modeling

We extend our previously proposed factory process-flow model to evaluate our
new deployment strategy [5]. An illustration is shown in Fig. 3.

Fig. 3: The factory process flow model that we use in our experiments.

Five types of functional units (actors) are used in the system: part generator,
rail, machine, controller, and part sink, where they cooperatively model a basic
work cell in a production environment. Each actor effectively encapsulates a
finite state machine, where each state (mode) of the actor corresponds to a



Energy-Efficient Access Point Deployment for Industrial IoT Systems 7

specific sub-function executed by the actor. The raw components produced by
the part generator undergo processing by machines that add features, and are
ultimately stored in the part sink once all processing is completed. There are two
types of edges shown in the figure: the one-way black edges represent physical
links, including both physical entity transport and any associated information
flow, while the two-way blue edges represent the transfer of data across wireless
communication links.

Rails, machines, and controllers in the environment are equipped with com-
munication devices. Rails and machines report their status to the controller
whenever mode transitions happen. After receiving state information, the re-
sponsible dual-rail-single-machine (DRSM) controller performs some computa-
tion and sends instructions back to the actors to which it is connected. Addition-
ally, there is a special controller, called a simple controller, as shown in the lower
right side of Fig. 3. The simple controller records the capacity information of the
part sink and controls the release of the last rail. Thus, the modeled workflow
can run smoothly with continuous information exchange.

Communication capability is enabled by a specific type of actor called a com-
munication interface actor. Communication tasks are divided into sending and
receiving sub-tasks, which are undertaken by the send interface actor (SIA) and
receive interface actor (RIA), respectively. For more details on the factory sys-
tem modeling approach that we build upon in this paper, including the modeling
of communication functionality, we refer the reader to [5, 9].

In [5,9], it is assumed that the machines used in the factory floor are homo-
geneous. However, in general the operation of a factory may involve the cooper-
ative work of different types of machines, which are specialized for diverse tasks.
This diversity generally results in varying processing times and varying levels
of communication traffic. Therefore, unbalanced processing and communication
activities need to be considered for more general system modeling scenarios.

5 Experiments

In this section, we present simulation results that demonstrate the effectiveness
of the proposed AP2GA approach. Our simulations are carried out using ns-
3 [11].

The service area for our simulated systems is 20 m x 20 m. There is a total of
13 actors involved in the factory system model of which 11 of the actors involve
data communication to other actors (the part generator and part sink do not
involve data communication in this model). The communication relationships
between the actors are illustrated in Fig. 3.

Each actor is characterized by an activity rate, which characterizes both the
outgoing and incoming traffic for the actor. Except for the first rail, each rail
has a fixed activity rate of 5 messages/cycle. Here, by a “cycle”, we meant the
entire processing of a single part through the entire factory pipeline, from the
part source to the part sink. Three types of machines are used, and they have
activity rates of 8, 6, and 3 messages/cycle, representing high activity, medium
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activity, and low activity, respectively. The activity rate of a DRSM controller
D is the sum of the activity rates of the two rails and one machine that are
connected to D, while the simple controller is only responsible for the last rail.

Considering the different volumes of machines and different lengths of convey-
ors that are typically found in practice, the spacing between actors is nonuniform
in our experiments.

We apply the same channel configuration across the entire system model.
Unless otherwise stated, the activity rate and placed location of each actor is
as listed in Table 1, and other aspects of the simulation setup are as listed in
Table 2.

Regarding the threshold for signal detection, two similar values are used in
related literature: -65 dBm [13], and -70 dBm [14]. We used the value of -65 dBm
to account for the severe multipath fading typical in industrial environments.

Table 1: Communication activity rate and position for each actor. The units for
the activity rate are messages/cycle.

Actor R1 M1 R2 M2 R3 M3

Activity 3 8 5 6 5 3
Position (0, 0) (0, 2) (0, 5) (0, 7) (0, 9) (0, 15)

Actor R4 C1 C2 C3 SC 1

Activity 5 14 11 8 2
Position (0, 18) (1, 2) (1, 6) (1, 14) (1, 17)

Table 2: Other simulation parameters.
Parameter Value

Number of GA generations 1000
Population size 300
Crossover rate 0.5
Mutation rate 0.2

Tournament selection size 10
Number of bits in each variable 6

Maximum transmit power of AP (αmax ) 17 dBm
Minimum transmit power of AP (αmin) 0 dBm

Path loss exponent (γ) 3
Reference distance (d) 1 m

Threshold for signal detection (α0) -65 dBm

Two scenarios are intensively considered in our experiments: (1) all devices
are cable-connected to their power supplies, and (2) all devices are powered by
batteries.
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5.1 Devices with Cable-Connected Power Supplies

In this simulation, the goal of our deployment strategy is to minimize the com-
munication energy consumption of the network. The position of each actor is
listed in Table 1. The actors are non-uniformly distributed in this layout.

First, we do not take into account the non-uniform distribution of actors, nor
do we take into account unbalanced communication activity, and we place the AP
at the center position (0.50, 10.00) of the pipeline. This center position is a simple
and intuitive choice if we do not take into account non-uniform distribution and
unbalanced communication, as described above. We execute the simulator for
1000 cycles and record the obtained energy consumption.

Next, we execute AP2GA to take into account the non-uniform actor distri-
bution and unbalanced communication activity, and derive an optimized position
for a single AP. The resulting AP position is (0.70, 7.90). We move the AP to this
position in our simulation model, and again execute 1000 simulation cycles. We
compare the energy consumption brought by (1) deploying the AP in the center
position (“middle”), and (2) deploying the AP based on the result produced by
AP2GA. The results are shown in Fig. 4.

Fig. 4: Energy consumption in different locations.

In Fig. 4, the total energy consumption is the summation of the energy con-
sumed by both the AP and the STAs. The AP column represents the overall
downlink energy consumption, while the STAs column represents the overall up-
link energy consumption. Since the maximum/minimum allowed transmit power
and available power levels are all set to be the same for every communication
node in the simulation model, the differences in the energy consumption between
the downlink and uplink come from the uneven inflow and outflow the actors.



10 X. Qi et al.

It can be clearly seen from Fig. 4 that even for this relatively simple and
small-scale example, AP2GA results in a significant reduction in total energy
consumption compared to the simple/intuitive strategy of placing the AP at
the center position. The relative energy savings provided by AP2GA is about
10%, which will amount to significant absolute energy savings over long-term
operation. Since the uneven outgoing and incoming traffic makes the down-
link bear more long-distance workload, there is more significant reduction in
the energy consumed by the AP. For example, when Rail 2 sends packets to
DRSM Controller 1, the downlink transmission distance (from the AP to the
controller) is longer than the uplink transmission distance (from the rail to the
AP).

5.2 Battery-Powered Devices

In Section 5.1, we optimized the total energy consumption supposing that all of
the STAs and the AP are cable connected to power supplies. However, due to
their low-price and easy installation, an increasing proportion of communication
devices in industrial environments are powered by batteries.

When battery-powered communication devices are employed, it is important
to consider the network durability when designing and configuring the network.
Intuitively, by network durability, we mean the length of time that the network
remains operational as batteries in the communication devices are drained. There
are various ways to measure the network durability depending on the particular
kinds of operational scenarios that are of interest. Since our scenario requires
the mutual work of all devices in the network, we use a measure of network
lifetime to assess durability, and we regard the time until one STA’s battery is
drained as the network lifetime. That is, the network lifetime is the time from
the beginning of operation until the time when the first STA stops operating
due to insufficient energy availability.

Assuming that all devices have the same battery capacity, maintaining a long
network lifetime requires that all devices consume energy at approximately the
same average rate — that is, the variance of energy consumption across the
battery-powered devices should be low. To assess energy consumption variance,
we plotted the energy consumption of each STA under both the center-position
and AP2GA-based AP deployment obtained from case 1 in Fig. 5a, and tabulated
their corresponding standard deviations (“Std.”) values in Table 3.

Table 3: Standard deviation of STA energy consumption.
Label center pos. AP2GA pos. 1 with cables AP2GA pos. 2 with battery

AP Position (0.50, 10.00) (0.70, 7.90) (-0.16, 8.57)
Std. 1.74 1.38 1.26

From Fig. 5a, we can see that the energy consumption of the STAs is unbal-
anced in both deployment scenarios — center-position and AP2GA-based. Peaks
appear on different devices depending on the combination of communication dis-
tance and activity rate. However, the distribution of STA energy consumption
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(a) In cable-connected configuration and
AP2GA position 1.

(b) In AP2GA position 2 with constraint
C5 (Equation 3).

Fig. 5: Energy consumption levels of the different STAs under different AP de-
ployment configurations.

under AP2GA-based deployment from case 1 has better performance in terms
of standard deviation.

To prolong network lifetime and ameliorate the imbalance described above,
the dispersion of STA energy consumption can be taken into account in AP2GA.
For this purpose, a maximum value for the standard deviation stdmax can be
imposed as another constraint:

C5 :

√∑s
j=1(ej − µ)2

s
≤ stdmax , where ej = αi,jti,jβj , µ =

∑s
j=1 ej

s
. (3)

Moreover, when optimizing deployment for battery-powered devices, the ac-
tivity rates used in the AP2GA are changed to only include the outgoing traffic
for each device (i.e. βi,j → βj). In our formulation, the updated fitness function
measures the total transmission energy consumed by all STAs in the network,
rather than the combination for all the STAs together with the AP, which was
assumed in Section 5.1.

Through simulation experiments, we empirically determined that for our de-
ployment case study, an effective maximum standard deviation value — for use
in Equation 3 — is stdmax = 1.3. We executed AP2GA to find optimized deploy-
ment positions for this value of the maximum standard deviation. Then for the
resulting deployment, we ran a simulation for 1000 cycles and plotted the energy
consumption, as shown in Fig. 5b. In comparison with Fig. 5a, we can see that the
results in Fig. 5b are more concentrated and the peak value has decreased. The
standard deviation of 1.26, which results from imposing stdmax = 1.3, represents
a significant improvement compared to 1.74, which is the standard deviation
measured from center-position deployment.
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AP2GA can be applied in or extended for a wide variety of design space
exploration scenarios to incorporate different combinations of decisions that are
involved in deploying communication devices. For example, in our experiments,
we assumed that the STAs have identical battery capacities. This condition
can be relaxed to explore design spaces where batteries of different types are
considered — ranging from small and less costly low-capacity batteries to large
and more costly high-capacity batteries. The AP2GA fitness function may be
extended in such a case to consider the cost of the deployment as well as the
energy consumption, while taking into account the different available battery
types. A candidate network configuration C would then include an an assignment
of battery types to the STAs. Various candidate configurations C1, C2, . . . , Cn

can be optimized using AP2GA and evaluated through simulation to determine
a single configuration to select among those that are evaluated. Such extension of
AP2GA to assist with more general or comprehensive design space exploration
is an interesting direction for future work.

5.3 Summary

In summary, from the study and experimental results presented in this paper,
two main findings and implications emerge. First, in environments where users
are unevenly distributed and their communication traffic varies, proper deploy-
ment of APs can significantly reduce the transmission energy consumption of
the entire network. Second, the original formulation of AP2GA can be readily
extended to other energy-related scenarios by manipulating selected parameters
and introducing additional constraints. Averaging the transmission energy of
battery-powered devices is an example, and there are many additional possibil-
ities for performing other types of design space exploration.

6 Conclusion

In this paper, we have introduced an energy-efficient AP deployment strategy
for industrial Internet of things (IIoT) environments. The developed strategy,
which is based on a novel genetic algorithm called the Access Point Placement
Genetic Algorithm (AP2GA), optimizes energy consumption in an environment
with uneven distribution of communication stations that can have varying levels
of communication traffic. Simulation results involving two factory process flow
scenarios demonstrate the effectiveness of the AP2GA approach in improving the
energy efficiency of AP deployments. For environments in which stations have
cable-connected power supplies, we demonstrate the use of AP2GA in optimizing
total energy consumption, while in environments that involve battery power, we
demonstrate the use of AP2GA in maximizing the operational network lifetime.
A current limitation of AP2GA is that the algorithm assumes a single communi-
cation channel configuration, which is used uniformly in the modeled industrial
environment. Interesting directions for future work include incorporating diverse
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channel configurations, and also extending the approach to consider additional
metrics, such as communication throughput and deployment cost.

Declaration of Generative AI and AI-assisted technologies in the writ-
ing process. During the preparation of this work the authors used ChatGPT in
order to correct possible grammatical errors and improve the readability of the
paper. After using this tool/service, the authors reviewed and edited the content
as needed and take full responsibility for the content of the publication.

Disclaimer Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available for
the purpose.
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