
A Data Collection Platform for Network
Management

Amar Abane
NIST

Gaithersburg, USA
amar.abane@nist.gov

Abdella Battou
NIST

Gaithersburg, USA
abdella.battou@nist.gov

Abderrahim Amlou
NIST

Gaithersburg, USA
abderrahim.amlou@nist.gov

Tao Zhang
NIST

Gaithersburg, USA
tao.zhang@nist.gov

Abstract—Network management relies on extensive monitoring
of network state to analyse network behavior, design optimiza-
tions, plan upgrades, and conduct troubleshooting. Network
monitoring collects various data from network devices through
different protocols and interfaces such as NETCONF and Syslog,
and from monitoring tools such as Zeek and Osquery. To unify
and automate the monitoring workflow across the network, this
paper identifies and discusses the data collection requirements for
network management, reviews different monitoring approaches,
and proposes an efficient data collection platform that addresses
the requirements through an extensible and lightweight protocol.
The platform design is demonstrated through an adaptive col-
lection of data for network management based on digital twin
technology.

Index Terms—network monitoring, network management,
publish-subscribe, digital twin network

I. INTRODUCTION

Recent advancements in network management have led to
the development of Network Management Systems (NMS)
with inventory management, network topology visualization,
configuration assistance, and network diagnostics. However,
as network complexity and service diversity increase, con-
figuration and management errors become more frequent and
identifying the root cause of issues becomes more challenging.

To address these issues, various network analysis and trou-
bleshooting tools have emerged to improve network manage-
ment by processing all kinds of network data with artifi-
cial intelligence (AI) and machine learning (ML) techniques.
Therefore, data collected from the network is crucial for the
effectiveness of these techniques. This data may include device
configuration and status, alarms, topology, port/link status, ac-
tivity logs, traffic and flow statistics, and user information, and
service performance. Network data is typically collected using
monitoring tools through a multistage process that involves
measuring, transmitting, aggregating, presenting, and storing
the data [1]. However, the current monitoring approaches have
limitations in gathering network data (see Section III). For
example, measurement platforms [2] concentrate solely on
the communication performance metrics, such as end-to-end
latency. Telemetry interfaces such as NetFlow are inadequate
in capturing device configurations. Management protocols
are restricted to device configuration data and do not cater
to devices’ performance data, or have a limited support of
telemetry such as gNMI [3]. Furthermore, the frequency and

conditions for collecting each type of data are different, as
well as the data format as discussed later.

Hence, a need arises for a more general and flexible network
monitoring methodology. In this paper, we propose a network
monitoring platform design that addresses these requirements.
The platform allows to gather all necessary network data from
diverse sources, without the bottlenecks posed by centralized
monitoring. The platform enables flexible and automated data
collection with minimal communication overhead.

This paper is structured as follows. Section II identifies
the main requirements in modern network monitoring. In
Section III, popular monitoring solutions and approaches are
discussed. Section IV presents the design of the proposed data
collection platform. Section V discusses a use case for the
platform considering the emerging concept of Digital Twin
for network management. Section VI concludes the paper.

II. NETWORK MONITORING REQUIREMENTS

Network monitoring starts with data collection, where in-
formation is requested from network devices and mapped
into an information model, either tool-specific or general
(such as JSON). The formatted data is transmitted to the
management station where it undergoes aggregation, filtering,
and representation according to the network data model. The
network data is then used for various management purposes
and some of it may be stored for auditing and long-term
analysis.

A network monitoring platform should facilitate data col-
lection, aggregation, and storage, including integration of
tools that request the data [1]. Moreover, the data to collect
varies in type, frequency, volume, and sources [4]. Hence, a
suitable monitoring must be able to handle these diverse data
types with a uniform workflow for efficient processing and
presentation of data. The workflow should also be extensible
to support new monitoring tools and parameters.

To minimize resource consumption, the platform must have
a lightweight design with minimal communication and pro-
cessing overheads. Increasing monitoring frequency can lead
to higher resource consumption and data generation. Hence,
the platform should have the ability to dynamically adapt mon-
itoring frequency and metrics based on resource availability.
Monitoring flexibility includes the scheduling of probes and

U.S. Government work not protected by U.S. copyright

20
23

 2
0t

h
A

C
S/

IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r S

ys
te

m
s a

nd
 A

pp
lic

at
io

ns
 (A

IC
C

SA
) |

 9
79

-8
-3

50
3-

19
43

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

IC
C

SA
59

17
3.

20
23

.1
04

79
23

6

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

the ability to choose between periodic, on-demand, and event-
based monitoring. To improve efficiency, the data delivery
model should be leveraged to avoid duplicate messages.

Each data item obtained from monitoring should have
unique identification and associated metadata about the origi-
nating request [4]. This information is used by storage systems
to retrieve data when needed. Enriching collected data with
user-specific labels is also useful to improve search capabili-
ties.

Security is critical and encompasses authenticating data
sources and consumers, and managing which users are autho-
rized to access each set of collected data. Whereas securing
monitoring workflow is manageable in environments with a
limited set of data sources and consumers, it becomes more
challenging as the platform flexibility increases. A schema to
define and enforce policies is required to provide fine-grained
control over authorization and access control while keeping a
reasonable complexity for certificate and key management.

III. BACKGROUND

Four broad categories of monitoring approaches gained
recognition in recent years. These approaches are inspiring
for the design of a network monitoring platform that meet the
demands outlined above.

A. Internet measurement

There are several platforms that offer public monitoring on
the global scale of Internet. One such platform is RIPE Atlas
[5], which leverages probe devices hosted by users across
the Internet to collect data on network connectivity using
predefined probes. The data collected is made publicly acces-
sible and users can conduct custom measurements. Each probe
relies on registration servers to identify its controller, which
manages the probe by sending a schedule for measurements
and receiving results. The results are then centrally processed,
enriched, and stored.

Another popular network measurement toolkit is Perf-
SONAR [2], designed to identify end-to-end network problems
through measures such as bandwidth utilization, latency, and
packet loss. Its architecture is divided into three layers, with
various types of probes at the lowest layer, web services to
invoke probes in the middle layer, and a user API at the highest
layer to trigger measurements and access results.

While RIPE Atlas and PerfSONAR offer valuable network
monitoring capabilities, their functionality is limited by pre-
defined probes and do not offer an architectural foundation
for efficient data distribution among multiple producers and
consumers.

B. Measurement facilitators

Several platforms provide flexible large scale network moni-
toring solutions by addressing specific aspects such as storage,
interoperability, or scalability.

M-Lab [6] is a server infrastructure that facilitates mea-
surement data exchange through effective resource allocation

policies. Several network monitoring tools leverage M-Lab
servers for measurement coordination and data ingestion.

mPlane [7] is a scalable infrastructure for distributed Inter-
net measurement. The platform offers flexibility in monitoring
through its support for single, iterative, and coordinated mea-
surements, and enables dynamic integration of user-defined
measurements through a probe’s capability description and
request mechanism. However, its point-to-point communica-
tion design limits the potential of its workflow and message
scheme.

The authors in [4] propose a data collection method for
Digital Twin Network (DTN), where the data streaming com-
ponent informs the DTN of the data it can collect from network
devices. The DTN sends commands to the data streaming
component to request the desired data. However, this approach
does not address other critical considerations such as efficient
data delivery and data identification.

C. Standardization efforts

The standardization of network monitoring is being ad-
vanced through the efforts of consortiums and working groups.
One such effort is the gNMI protocol [3], which offers a
vendor-neutral interface for device management. It provides a
unified service for both configuration and telemetry, enabling
clients to exchange capabilities and retrieve data or subscribe
to events from devices. However, the use of the same interface
for both telemetry and configuration may result in suboptimal
data delivery. While monitoring data can tolerate best-effort
delivery with some data loss and duplication, management
commands necessitate reliable and consistent data delivery.
Additionally, gNMI currently lacks support for essential net-
work diagnostic tools such as Ping and Traceroute, despite
their availability through the gNOI protocol, the gNMI com-
plement for network operation.

D. Cloud monitoring and logging

The utilization of monitoring tools integrated within cloud
platforms [8] has become widespread for monitoring appli-
cations and resources, including virtual private cloud (VPC)
networks. These monitoring tools gather performance data,
resource utilization metrics, and logs from various sources
including the cloud provider’s systems, managed products,
applications, and VMs with agents installed. The collected data
is pushed and processed through a monitoring suite, where it
undergoes filtering, ingestion, labeling, and storage. The stored
data can be further analyzed, visualized, and processed through
user-defined alerts and metrics.

The data collection process is typically achieved via HTTP
endpoints to which the monitored sources continuously push
data. Although this approach is simple, with a centralized
REST API, it does not offer a control over data collection
beyond filtering the data at ingestion stage. On the other hand,
cloud monitoring tools benefit from the security provided by
cloud platforms through the use of flexible identity and access
management (IAM). IAM allows for precise control over users
and services access to data and resources.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

IV. PROPOSED PLATFORM

The proposed platform is named ”CaSpeR”, which
stands for Capability-Specification-Result/Receipt, reflecting
the message sequence that outlines the data collection work-
flow. This section describes the design of the platform. For the
purpose of clarity, technical considerations such as encoding
format and a detailed discussion of message structure have
been omitted.

A. Overview

The data collection platform design aims to streamline the
acquisition of heterogeneous data through three key features.
Firstly, it encompasses source discovery, data request and
retrieval, and automated data processing to efficiently describe
and integrate the data. Secondly, the design offers a scalable
solution through a flexible scheme that balances the level
of granularity in data request and the associated overhead.
Lastly, the architecture is designed for easy implementation
and minimal impact on network resources by allowing for
seamless integration with the management and control plane.

The architecture of the proposed platform shares the design
principles of the mPlane [7]. These principles include adopting
a unified protocol for data description, requests, and results.
Its protocol facilitates the discovery of monitoring capabilities
and enables seamless coordination of their execution. Addi-
tionally, the architecture leverages self-contained and idempo-
tent messages, ensuring that every message carries sufficient
information to identify the monitoring task it relates to and
can be easily detected and ignored in case of duplicity.

While these design principles simplify the architecture and
provide flexibility in controlling monitoring tasks, they do not
address all the requirements for effective data collection. To
fully realize the potential of this approach, crucial enhance-
ments have been introduced to increase flexibility, enhance
data semantics, and improve data distribution. These enhance-
ments include: (i) the use of a publish-subscribe model for
exchanging messages, which reduces communication overhead
and enables diverse data dissemination options compared to
point-to-point protocols, (ii) allowing data sources to manage
the local execution of monitoring tasks through request ag-
gregation and adjustment based on the solicitation level, and
(iii) providing expressive data description through the use of
semantics and application-defined labels.

B. Workflow

The platform comprises two main components that com-
municate through messaging: services and clients. The service
collects data and the client requests it.

Three types of services are considered in the platform:

• Probe services (or agents) perform basic data collection
tasks, such as track the status of a component, run
measurements, or read data from a device.

• Sink services interface with a data store to save and
retrieve data results or provide graphical visualization.

• Aggregators are services that also act as clients to other
services. They collect data from multiple services, break-
ing down a complex data collection task into simpler
ones, and producing aggregated results. Depending on
their level of intelligence, aggregators may also provide
automated iterative monitoring, data transformation and
correlation, etc.

In this platform, services broadcast capability messages to
describe the data they are able to collect and the information
required for data retrieval. Each data collection task should be
represented by a separate capability. Clients receive capabil-
ities and use them to request data by sending a specification
message to the relevant service. The service responds with
a receipt message indicating acceptance or rejection. If the
specification is accepted, the collected data is disseminated
through one or multiple result messages. The service executes
the specification to the best of its ability and may adjust the
execution.

Clients and services interact in the platform without es-
tablishing end-to-end sessions. Messages are exchanged via
publish-subscribe topics. This model is chosen for its effi-
ciency in disseminating messages to large groups of clients and
services, reducing data duplication, and minimizing control
messages.

Multiple services can offer the same capability, and a single
client can submit specifications to multiple services. Similarly,
a single service can distribute results to multiple clients. This
decoupled interaction allows each service to manage the local
execution of specifications to optimize resource utilization.

C. Message types

Each message conveys all necessary information for its
processing, including the derivation of the topic name to
receive or publish the next message (see SectionIV-F). Figure 1
depicts an abstracted structure of the message types. The type
attribute refers to the nature of the data collection task being
described by the capability, which can range from real-time
measurements (measure) to reading static data (collect) or
database retrieval (query). The endpoint is a structured name
that contains the namespace in which the capability is defined
(e.g., /casper/useast-1/datacenter-1), the name of the capability
(e.g., probe-port), and the identifier of the service or group of
services providing the capability (e.g., switch-1).

Execution parameters supported by the capability are listed
in the parameters section, which is a map containing parameter
names and types. The allowed temporal scope is defined in
the schedule section, which is a formatted string indicating
start and stop time, period, etc. Parameters and schedule are
filled with actual values by the specification message. The
result-keys section defines the metrics or attributes that can
be returned by the capability, and the specification message
selects the metrics requested from the service. In result
messages, result-values is a two-dimensional array containing
values corresponding to the result-keys. Remaining fields will
be introduced in later sections.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Structure of the main messages. (=) means that the field and its
value are copied from the previous message, (+) means that the field can
be added in the current message, (|) means that the field is kept from the
previous message and its value is defined/updated in the current message, (∧)
denotes a field with a specific value for each message. Combination of signs
represents an alternative.

Figure 2 displays the relationships between messages. A
specification carries all relevant information from the ref-
erenced capability. A receipt includes information from the
linked specification and updated information about the ex-
pected result messages. A result contains information from
the specification used to generate it. The interrupt, redemption,
result, and termination messages all provide information on the
task requested by the original specification. Beside capability,
specification, result, and receipt, the workflow includes other
message types. An Interrupt is used to inform a service
to terminate the execution of a specification. A client asks
a service to resend results of a specification by sending a
Redemption message. A Termination message is published by
a service to inform specification execution is terminated. An
Exception is sent by clients/services to signal workflow errors.

D. Data Collection Management

An operation is the data collection process requested by a
specification. Each operation has a unique fingerprint, which
is a hash of the type, endpoint, parameters, and result-keys
defined in the specification. The fingerprint is used to group
messages related to a specific operation. If the fingerprint
cannot be computed from a message due to a modified field,
its value is explicitly included in the message.

Each operation has an implicit id which is generated by
combining the fingerprint with a client-generated nonce, al-
lowing the client to differentiate between multiple executions
of the same operation. The combination of the fingerprint and
id, along with the client’s identity information, is known as
the session, and is used by the service to manage operations
execution.

The use of the fingerprint, id, and session in messages
between the service and client allows for a balance between
resource consumption, monitoring accuracy, and scalability.
The service can adjust the requested operation as long as it
complies with the specification. For example, if a specification
requests a probe every 10 minutes, the service can fulfill it
with an operation that produces results every 5 minutes. The
service can determine if a similar operation is already running
by using the fingerprint, and if so, adjust its schedule to meet
the new specification. This is known as schedule adjustment.

The receipt informs the client of the expected result-keys
and the topic on which the result messages will be published. If
the service performs schedule adjustment, it updates the nonce
in the receipt, and publishes the results for all specifications
that are aggregated in the same task, either via the same topic
or in separate topics for each specification. The service has
the option to skip schedule adjustment or to perform it and
still publish results in separate topics.

E. Result Management

The receipt is used by the clients to associate the results with
a specific operation id. To present results in a concise format,
the service may opt to split the result-keys across multiple
result messages, a process referred to as result splitting. In
this case, the service updates the result-keys in each message to
match the corresponding result-values and includes the original
operation fingerprint for identification purposes (see Figure 1).

The flow section is used to control the publishing of results.
The service can set the flow to ”stream” in the capability to
indicate real-time streaming of results or ”batch” to indicate
that results will be published once the operation is completed,
either through a single or multiple messages. Depending on the
nature of the operation and the available resources, a service
can enforce one flow option, or allow the client to select
the delivery mode in the specification. Upon receipt of result
messages, the client can organize and reassemble the results
based on the operation type, fingerprint, and id.

The metadata section helps in handling the results. The
metadata type can be set to ”point” to indicate that each result
message represents a single point of data from the operation.
In this case, the client can reconstruct the full operation data
using the operation id. If the metadata type is set to ”table”, it
indicates that each result message contains the complete data
collected during the operation. The metadata format specifies
how result-keys and result-values should be displayed in a
chart, using chart definition languages such as Vega-lite [9].
The metadata labels carry user-defined key-value information
for tagging results. Labels defined by the service are included
in subsequent specifications, receipts, and results. User-defined
labels are set in the specification, kept in the corresponding
receipt but not in the results as they may be shared among
multiple clients.

F. Messaging topics

Figure 2 displays the relationships between message types
and the topics where they are published. Capabilities
are published in the ”capability” topic, while the
specification, interrupt, and redemption messages are
published in the topic derived from the capability’s
endpoint (i.e. ”<endpoint>.control”). The receipt is
published in the topic derived from the specification (i.e.
”<endpoint>.receipt.<fingerprint>.<nonce>.<timestamp>”).
The topics where results and termination messages
are published are derived from the receipt (i.e.
”<endpoint>.results.<fingerprint>”).

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Message relationships and topics derivation. Red arrow from A to B
indicates that message B derives from A. Dashed arrow from A to B indicates
that topic B is inferred from message A. Each message is published in the
topic represented with the same color.

G. Security

The security of CaSpeR communications is independent of
the messaging system being used. As depicted in Figure 3, an
Authorization Server (AS) enables the administrator/owner to
control which permissions (publish-specification, read-result,
publish-result) are granted to each identity (client and service)
for each capability. Clients and services are authenticated
through their own accounts managed by the administrator
on the AS. Access control is based on roles. A role groups
together a set of permissions necessary for participating in the
workflow.

Three base roles are defined. The specification-sender role
enables clients to request new operations and includes publish-
specification and read-result permissions. The result-reader
role, allows clients to only access data from ongoing specifica-
tions and includes only the read-result permission. The result-
publisher role, enables services to publish data and includes
the publish-result permission. Additional roles can be created
for more fine-grained access control. The administrator/owner
can grant and revoke roles for each identity. A policy links an
identity, a role, and a set of capabilities using the hierarchical
naming structure of the endpoint.

The security scheme combines HTTPS between the AS
and clients/services, and self-secured encrypted messages to
provide authentication and authorization (see Figure 3). The
self-secured encryption scheme is similar to the role-based
security framework demonstrated in Named Data Networking
[10].

Each client and service has a certificate signed by the
AS. Clients and services sign each message along with its
endpoint, allowing the receiver to verify its authenticity. A
service checks the signature of a specification (or interruption,
redemption) and the client’s certificate, and uses the verified
identity to retrieve the client’s role from the AS. The service
can then accept or reject the specification (or interruption, re-
demption) based on the permissions allowed for the namespace
to which the specification endpoint belongs. Similarly, a client

checks the message signature and verifies that the service is
authorized to produce messages for a given endpoint.

The AS manages symmetric content encryption/decryption
keys (CK) for each namespace. Services and clients retrieve
the CKs for namespaces they have access to based on their
roles. Note that, with this scheme, if a client has a result-
reader role, it can also decrypt specifications related to the
capability. However, this does not pose a significant security
threat since message derivation from a capability is clearly
defined in the protocol.

Fig. 3. CaSpeR security scheme.

V. CASE STUDY: ADAPTIVE DATA COLLECTION FOR
DIGITAL TWIN

The concept of Digital Twin Network (DTN) has emerged to
improve network management and automation using modeling,
emulation, and AI/ML techniques [11]. A DTN is a real-time
digital representation of a physical network, which can be used
to design and evaluate network optimization, plan network
upgrades, conduct ”what-if” analysis, and troubleshoot the
network [12].

We discuss in the following how the Casper platform can be
used to collect network data for a DTN. In this case study, the
DTN is a client and the data is produced by various sources
in the network acting as services.

A. Basic data collection

The DTN collects a variety of data from network equipment
from different vendors, which use different protocols. The
platform provides a uniform interface for DTN services and
applications to access this data, hiding the protocol specifics.

To build a digital version of the network, a DTN needs
to continuously collect network topology (via port and link
status), device configuration, alarms and logs, and various
measurements reflecting network performance such as service
Key Performance Indicators (KPIs) and device telemetry.

Network performance data is collected periodically. The
capability advertised by the corresponding service has the type
”measure”, and uses the ”point” metadata type. Data is sent
to the DTN as a stream, with the collection frequency defined
in the specification’s schedule section.

Real-time updates of network topology changes are crit-
ical for effective operation of the DTN. The corresponding
capability has the type ”measure”, and uses the ”point ”

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

metadata type. The ”on-event” option in the ”schedule” section
of the specification allows for real-time reception of topology
changes.

Device configuration data is locally stored on the device and
collected by a service, which advertises it using a ”collect”
capability with a ”table” metadata type. In a device, some
configurations change on a daily basis, and others change
rarely or less frequently [13]. To handle that, the DTN
sends two specifications for the same capability, one for the
infrequent changes and one for the frequent changes. Both
specifications set the flow section to ”batch”. To collect data
from all devices while reducing the number of exchanged
messages, one capability can be implemented to collect data
from more than one device, using one column in the result-
keys for the device name and specifying the device(s) to collect
data from in the parameters section.

Logs and alarms are parsed at the service and described
using a collect capability with ”table” metadata type. The DTN
can have logs published periodically and alarms received in
real-time.

B. Adaptive data collection

In a real-world production network, such as an enterprise
data center, the amount of data generated can grow rapidly,
making it infeasible to continuously collect and process all
of it. While flows and packets are effective in capturing
network behavior, the resources required to handle them can
quickly increase. Connectivity tests like Ping and Traceroute
are convenient to handle and offer valuable information for
troubleshooting, but they also add to network traffic and
require precise source and destination network addresses to
generate meaningful results. On the other hand, device alarms
and telemetry can be obtained and analyzed with minimal
communication and processing overhead, and can be continu-
ously collected for a significant portion of the network.

The Casper platform allows to realize an adaptive data
collection strategy that leverages these observations to request
expensive-to-collect data only when necessary. The aggregator
services perform iterative data collection, and can be rapidly
deployed using VMs or containers and integrated with the
data collection workflow. The aggregator services first analyze
performance telemetry and alarms to detect potential network
issues. If a problem is detected, they evaluate and investigate
it by testing connectivity using Ping and Traceroute, and then
collect specific flows and packets [14].

C. Data replication

Given the limited capacity of the DTN to handle real-
time network data, lower-cost storage tiers with data retention
policies can be employed for long-term storage of the collected
data. This historical data can be useful for training ML models
[12] or for replaying previous network events [11].

The platform’s workflow and message idempotency allow
for easy replication of the requested data in independent data
repository systems without additional processing overhead at
the service or the need for explicit client-service connections.

While a DTN system can automate monitoring and opera-
tion, human expertise is still crucial in production networks.
To aid in this, sink services with graphical user interfaces can
be deployed with minimal overhead as they consume copies
of the data that is sent to the DTN.

VI. CONCLUSION

Collecting large amounts of heterogeneous data becomes
necessary for modern network management tools, whereas
it used to be an additional feature in traditional NMS and
Software-Defined Networking (SDN) solutions. Therefore,
data collection needs a dedicated workflow instead of being
implemented alongside control protocols as it has been so
far. This need is addressed by proposing an extensible data
collection platform that encapsulates the various interfaces
used in network monitoring.

The platform can also be used for other telemetry purposes.
For example, it is currently used for optical quantum network
metrology [15].

REFERENCES

[1] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring:
Present and future,” Computer Networks, vol. 65, pp. 84–98, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S138912861400111X

[2] The perfSONAR Project and contributors, “perfSONAR.” [Online].
Available: https://www.perfsonar.net/

[3] R. Shakir, A. Shaikh, P. Borman, M. Hines, C. Lebsack, and
C. Morrow, “gRPC Network Management Interface (gNMI),” Internet
Engineering Task Force, Internet-Draft draft-openconfig-rtgwg-gnmi-
spec-01, Mar. 2018, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-openconfig-rtgwg-gnmi-spec/01/

[4] C. Zhou, D. Chen, P. Martinez-Julia, and Q. Ma, “Data Collection
Requirements and Technologies for Digital Twin Network,” Internet
Engineering Task Force, Internet-Draft draft-zcz-nmrg-digitaltwin-data-
collection-01, Nov. 2022, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-zcz-nmrg-digitaltwin-data-collection/01/

[5] RIPE Atlas, “RIPE Atlas.” [Online]. Available: https://atlas.ripe.net/
[6] Measurement Lab, “The M-Lab NDT data set,” https:

//measurementlab.net/tests/ndt, (2009-02-11 – 2015-12-21), bigquery
table measurement-lab.ndt.download.

[7] B. Trammell, P. Casas, D. Rossi, A. Bär, Z. B. Houidi, I. Leontiadis,
T. Szemethy, and M. Mellia, “mplane: an intelligent measurement plane
for the internet,” IEEE Communications Magazine, vol. 52, no. 5, pp.
148–156, 2014.

[8] Google, Inc., “Cloud Monitoring.” [Online]. Available: https://cloud.
google.com/monitoring

[9] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE Trans. Visualization
and Comp. Graphics (Proc. InfoVis), 2017. [Online]. Available:
http://idl.cs.washington.edu/papers/vega-lite

[10] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An overview of security support in named
data networking,” IEEE Communications Magazine, vol. 56, no. 11, pp.
62–68, 2018.

[11] C. Zhou, H. Yang, X. Duan, D. Lopez, A. Pastor, Q. Wu,
M. Boucadair, and C. Jacquenet, “Digital Twin Network:
Concepts and Reference Architecture,” Internet Engineering
Task Force, Internet-Draft draft-irtf-nmrg-network-digital-twin-arch-
02, Oct. 2022, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-irtf-nmrg-network-digital-twin-arch/02/

[12] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
D. López, A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong, V. Ram,
S. Xiao, X. Shi, X. Cheng, A. Cabellos-Aparicio, and P. Barlet-Ros,
“Digital twin network: Opportunities and challenges,” 2022. [Online].
Available: https://arxiv.org/abs/2201.01144

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

[13] H. Hong, Q. Wu, F. Dong, W. Song, R. Sun, T. Han, C. Zhou, and
H. Yang, “Netgraph: An intelligent operated digital twin platform for
data center networks,” in Proceedings of the ACM SIGCOMM 2021
Workshop on Network-Application Integration, ser. NAI’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
26–32. [Online]. Available: https://doi.org/10.1145/3472727.3472802

[14] Y. Zhu, D. Chen, C. Zhou, L. Lu, and X. Duan, “A knowledge graph
based construction method for digital twin network,” in 2021 IEEE
1st International Conference on Digital Twins and Parallel Intelligence
(DTPI), 2021, pp. 362–365.

[15] A. Abane, D. Anand, A. Amlou, L. A. Oucheggou, Y.-S. Li-Baboud,
A. Battou, J. Bienfang, I. Burenkov, P. Kuo, A. Migdall, S. Polyakov,
A. Rahmouni, P.-S. Shaw, O. Slattery, and T. Gerrits, “Optical quantum
network metrology,” 2022.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 13,2024 at 03:36:35 UTC from IEEE Xplore. Restrictions apply.

