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Abstract

The computation of the elastic shape registration of two simple surfaces in 3−dimensional
space and therefore of the elastic shape distance between them has been investigated by
Kurtek, Jermyn, et al. who have proposed algorithms to carry out this computation. These
algorithms accomplish this by minimizing a distance function between the surfaces in
terms of rotations and reparametrizations of one of the surfaces, the optimization over
reparametrizations using a gradient approach that may produce a local solution. Now min-
imizing in terms of rotations and a special subset of the set of reparametrizations, we pro-
pose an algorithm for minimizing the distance function, the optimization over reparametriza-
tions based on dynamic programming. This approach does not necessarily produce an op-
timal solution for the registration and distance problem, but perhaps a solution closer to
optimal than the local solution that an algorithm with a gradient approach for optimizing
over the entire set of reparametrizations may produce. In fact we propose that when com-
puting the elastic shape registration of two simple surfaces and the elastic shape distance
between them with an algorithm based on a gradient approach for optimizing over the en-
tire set of reparametrizations, to use as the input initial solution the optimal rotation and
reparametrization computed with our proposed algorithm.

Keywords

dynamic programming; elastic shape distance; homeomorphism; rotation matrix; shape
analysis; singular value decomposition.
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1. Introduction

In this paper, we address the problem of computing the elastic shape registration of two sim-
ple surfaces in 3−dimensional space or equivalently the problem of computing the elastic
shape distance between two such surfaces. Similar work has been carried out by Kurtek,
Jermyn et al. [6, 10]. We do this first through the careful development, independently of
analogous work in [6, 10], of the mathematical framework necessary for the elastic shape
analysis of 3−dimensional surfaces, which culminates with the definition and justification
of the distance between two such surfaces. This distance, and therefore the registration, is
the result of minimizing a distance function in terms of rotations and reparametrizations of
one of the surfaces. Finally, we propose an algorithm that minimizes the distance function
in terms of rotations and a special subset of the set of reparametrizations, the optimization
over reparametrizations based on Dynamic Programming. Obviously this approach does
not necessarily produce an optimal solution for the registration and distance problem, but
perhaps a solution closer to optimal than the local solution that an algorithm with a gradient
approach for optimizing over the entire set of reparametrizations, such as those proposed
in [6, 10], may produce. In fact we propose that when computing the elastic shape registra-
tion of two simple surfaces and the elastic shape distance between them with an algorithm
based on a gradient approach for optimizing over the entire set of reparametrizations, to
use as the input initial solution the optimal rotation and reparametrization computed with
our proposed algorithm.

Given that S1 and S2 are the two surfaces under consideration, we assume they are simple,
that is, we assume elementary regions D and E in the xy plane (R2) exist together with
one-to-one functions c1 and c2 of class C1, c1 : D →R3, c2 : E →R3, such that S1 = c1(D)
and S2 = c2(E). We then say that c1 and c2 parametrize or are parametrizations of S1 and
S2, respectively, with domains D and E, respectively, and that S1 and S2 are parametrized
surfaces relative to c1 and c2, respectively, with domains D and E, respectively. We note
that an elementary region in the xy plane is one defined by restricting one of x and y to
be between or equal to one of two continuous functions of the remaining variable, the
remaining variable restricted to be in a bounded closed line segment. Actually, for the
sake of simplicity, starting in Section 4 of this paper, we restrict ourselves to exactly one
elementary region, namely [0,1]× [0,1], the unit square in the xy plane (R2). Accord-
ingly, starting in Section 4, we take D = E = [0,1]× [0,1], and since in practice we can
only work with discretizations of the surfaces S1, S2, given by c1, c2, D, E above, we as-
sume that for positive integers M, N, not necessarily equal, and partitions of [0,1], {ri}M

i=1,
r1 = 0 < r2 < .. . < rM = 1, {t j}N

j=1, t1 = 0 < t2 < .. . < tN = 1, not necessarily uniform, c1
and c2 are given as lists of M×N points in S1 and S2, respectively, the lists corresponding
to c1(ri, t j) and c2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, respectively, and for k = 1,2, given in
the order ck(r1, t1), ck(r2, t1), . . ., ck(rM, t1), . . ., ck(r1, tN), ck(r2, tN), . . ., ck(rM, tN). Points
(0,0), (1,0), (1,1), (0,1) are the corners of the unit square, and for k = 1,2, we can think
of ck(0,0), ck(1,0), ck(1,1), ck(0,1) as the ‘corners’ of the surface Sk. For the purpose
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Fig. 1. Two views of the boundaries of the same two surfaces in 3-dimensional space, each of
sinusoidal shape. Their shapes are essentially identical; thus the elastic shape distance between
them should be essentially zero.

of comparing the shapes of the two surfaces, for each ‘corner’ of S2 we adjust the list of
points for c2 so that the ‘corner’ is the first point in the list, and use this list together with
the list for c1 to compute a tentative elastic shape distance and registration between the
surfaces. A similar computation is also carried out for the same ‘corner’ with the adjusted
list for c2 in the ‘reversed’ direction (the list for c2 in the ‘reversed’ direction is given in
the order c2(r1, t1), c2(r1, t2), . . ., c2(r1, tN), . . ., c2(rM, t1), c2(rM, t2), . . ., c2(rM, tN)). As S2
has four ‘corners’, eight tentative elastic shape distances are then obtained and the smallest
among them determines the correct elastic registration of the surfaces. Of course if enough
information about the surfaces is available some of the computations of the tentative elastic
shape distances can be avoided and depending on which take place, M may have to equal
N, the partitions {ri}M

i=1 and {t j}N
j=1 may have to be equal, and one or both of them may

have to be uniform. For simplicity, in the rest of the paper, given two simple surfaces S1,
S2, as above, we assume the list for c2 suffices as it is, so that only one tentative elastic
shape distance (the correct one) is computed.

Being able to compute the elastic shape registration of two surfaces in 3-dimensional space
and the elastic shape distance between them could be useful in studying geological terrains,
surfaces of anatomical objects such as facial surfaces, etc. See Figure 1 that depicts two
such surfaces (actually their boundaries), each of sinusoidal shape. (Note that in the plots
there, the x−, y− and z− axes are not to scale relative to one another).

In Section 2 of this paper, we define homeomorphisms and present some known results
about them useful in the context of parametrized simple surfaces in 3−dimensional space.
In particular, we prove the well-known result that the area of one such surface does not
change if its parametrization is changed. In Section 3, inspired by the definition of the
shape function of a parametrized curve in d−dimensional space, d any positive integer,
and known results about it, we define the shape function of a parametrized simple sur-
face in 3−dimensional space and present some fundamental results about this function. In
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Section 4, given two parametrized simple surfaces of unit area in the form of their shape
functions, we associate with them a double integral in terms of rotations of one of the
surfaces, and C1 homeomorphisms with Jacobians of positive determinant, each homeo-
morphism corresponding to a reparametrization of the same surface. We then define the
elastic shape distance between the two surfaces as the result of minimizing this double
integral with respect to the aforementioned rotations and homeomorphisms, and justify it
accordingly. In Section 5, given two parametrized simple surfaces of unit area, again in the
form of their shape functions, for a fixed rotation, we describe the computation, based on
Dynamic Programming, of a homeomorphism for partially minimizing the aforementioned
double integral, that is, for partially computing the elastic shape registration of the two sur-
faces. In Section 6, for a fixed homeomorphism, we describe the computation of a rotation
matrix for approximately minimizing the integral, that is, for approximately computing the
rigid alignment of the two surfaces. In Section 7, we note that the elastic shape distance
between the two surfaces, still in the form of their shape functions, can also be computed in
terms of another double integral that allows for one surface to be reparametrized while the
other one is rotated. We then present a procedure for partially minimizing this other inte-
gral, Procedure DP-surface-min, that alternates computations of optimal homeomorphisms
using Dynamic Programming as described in Section 5, and optimal rotation matrices as
described in Section 6. Finally, in Section 8, we present results obtained with an imple-
mentation of our methods.

2. Homeomorphisms and the Area of a Surface

In this section we present three known results. The first two are about homeomorphisms
useful in the context of parametrized surfaces in 3−dimensional space, and the third one is
about the computation of the area of one such surface. We note that a homeomorphism is
a one-to-one continuous function from a topological space onto another that has a continu-
ous inverse function. Since simply connected domains are addressed in the first two results
that follow, we also note that a simply connected domain is a path-connected domain where
one can continuously shrink any simple closed curve into a point while remaining in the
domain. For two-dimensional regions, a simply connected domain is one without holes
in it. The first result that follows is a standard result in the field of topology.

Theorem 1: If X and Y are homeomorphic topological spaces, then X is simply connected
if and only if Y is simply connected.

Theorem 2: Given D, a compact simply connected subset of R2, and h : D → R2, a home-
omorphism, then h maps the boundary of D to exactly the boundary of h(D).

Proof: Clearly h(D) is closed as it is a compact subset of R2, and by Theorem 1 it is simply
connected in R2. Let p be a point in the boundary of D. Then h restricted to D \ {p} is
a homeomorphism onto h(D) \ h(p). Since D \ {p} is simply connected, it must be that
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h(D)\h(p) is simply connected as well so that h(p) cannot be in the interior of h(D), thus
must be in its boundary. On the other hand, if q is in the boundary of h(D), then through
a similar argument since q is in h(D) (h(D) is closed), it can be shown that h−1(q) is in
the boundary of h−1(h(D)) = D. Thus h maps the boundary of D to exactly the boundary
of h(D). □

In what follows, given a surface S in 3−dimensional space, elementary regions D, E
in R2, and one-to-one functions c, p of class C1, c : D → R3, p : E → R3, c(D) = S,
p(E) = S, so that c and p are parametrizations of S with domain D and E, respectively,
we say p is a reparametrization of c or that p reparametrizes S (given as an image of
c), if p = c ◦ h for a C1 homeomorphism h from E onto D. For (u,v) in D, writing
c(u,v) = (x(u,v),y(u,v),z(u,v)), then given a point (u0,v0) in D, the vector tangent to
the surface S at c(u0,v0) in the u direction is given by

∂c
∂u

(u0,v0) = (
∂x
∂u

(u0,v0),
∂y
∂u

(u0,v0),
∂ z
∂u

(u0,v0)),

and in the v direction by

∂c
∂v

(u0,v0) = (
∂x
∂v

(u0,v0),
∂y
∂v

(u0,v0),
∂ z
∂v

(u0,v0)).

We say the surface S is regular (relative to the parametrization c) if at every point c(u0,v0)
in S the cross product ∂c

∂u(u0,v0)× ∂c
∂v(u0,v0) is nonzero. We note that if S is regular, then at

every point c(u0,v0) in S, ∂c
∂u(u0,v0)× ∂c

∂v(u0,v0) is a nonzero vector normal to S at c(u0,v0).

With c, D, S, ∂c
∂u(u0,v0), ∂c

∂v(u0,v0) as above, S regular (relative to c), the surface area A(S)
of the parametrized surface S is given by

A(S) =
∫ ∫

D
||∂c

∂u
(u,v)× ∂c

∂v
(u,v)||dudv

where || · || is the 3-dimensional Euclidean norm.

With c, D, p, E, S, ∂c
∂u(u0,v0), ∂c

∂v(u0,v0), h as above so that p is also a parametrization of
S with domain E, and p is a reparametrization of c, p = c◦h, the result that follows shows
the surface area A(S) of S does not change if it is computed with the parametrization p of S
with domain E instead of the parametrization c of S with domain D. For (r, t) in E, writing
h(r, t) = (u(r, t),v(r, t)), and letting ∂ (u,v)

∂ (r,t) be the determinant of the Jacobian of h, ∂ (u,v)
∂ (r,t) is

assumed to be nonzero on E. Finally, for (r, t) in E, writing p(r, t) = (x̂(r, t), ŷ(r, t), ẑ(r, t)),
then given a point (r0, t0) in E, the vector tangent to the surface S at p(r0, t0) in the r
direction is given by

∂ p
∂ r

(r0, t0) = (
∂ x̂
∂ r

(r0, t0),
∂ ŷ
∂ r

(r0, t0),
∂ ẑ
∂ r

(r0, t0)),
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and in the t direction by

∂ p
∂ t

(r0, t0) = (
∂ x̂
∂ t

(r0, t0),
∂ ŷ
∂ t

(r0, t0),
∂ ẑ
∂ t

(r0, t0)).

Theorem 3: Given c, D, p, E, S, ∂c
∂u(u0,v0), ∂c

∂v(u0,v0),
∂ p
∂ r (r0, t0),

∂ p
∂ t (r0, t0), h, ∂ (u,v)

∂ (r,t) as
above, then S is regular relative to p and∫ ∫

E
||∂ p

∂ r
(r, t)× ∂ p

∂ t
(r, t)||dr dt =

∫ ∫
D
||∂c

∂u
(u,v)× ∂c

∂v
(u,v)||dudv.

Proof: With (u(r, t),v(r, t)) = h(r, t), then

p(r, t) = c(h(r, t)) = c(u(r, t),v(r, t)),

so that
∂ p
∂ r

=
∂c
∂u

∂u
∂ r

+
∂c
∂v

∂v
∂ r

,
∂ p
∂ t

=
∂c
∂u

∂u
∂ t

+
∂c
∂v

∂v
∂ t

.

Thus

∂ p
∂ r

× ∂ p
∂ t

= (
∂c
∂u

∂u
∂ r

+
∂c
∂v

∂v
∂ r

)× (
∂c
∂u

∂u
∂ t

+
∂c
∂v

∂v
∂ t

)

= (
∂c
∂u

× ∂c
∂v

)(
∂u
∂ r

∂v
∂ t

)+(
∂c
∂v

× ∂c
∂u

)(
∂v
∂ r

∂u
∂ t

)

= (
∂c
∂u

× ∂c
∂v

)(
∂u
∂ r

∂v
∂ t

− ∂v
∂ r

∂u
∂ t

)

= (
∂c
∂u

× ∂c
∂v

)
∂ (u,v)
∂ (r, t)

so that S is regular relative to p since both ∂c
∂u ×

∂c
∂v and ∂ (u,v)

∂ (r,t) are nonzero on E, and

∫ ∫
E
||∂ p

∂ r
× ∂ p

∂ t
||dr dt =

∫ ∫
E
||(∂c

∂u
× ∂c

∂v
)

∂ (u,v)
∂ (r, t)

||dr dt

=
∫ ∫

E
||∂c

∂u
× ∂c

∂v
|| |∂ (u,v)

∂ (r, t)
|dr dt

=
∫ ∫

D
||∂c

∂u
× ∂c

∂v
||dudv

by the change of variables formula. □
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3. The Shape Function of a Parametrized Surface

In this section we define the shape function of a parametrized surface in 3-dimensional
space and present some fundamental results about this function. A similar definition and
similar results have been presented in [2, 4, 7, 14, 15] in the context of the shape function
of a parametrized curve in d−dimensional space, d any positive integer. Accordingly, in
[2, 4, 7, 14, 15], given β : [0,1]→ Rd of class C1, a parametrization of a curve in Rd , the
shape function q of β , i.e., the shape function q of the curve that β parametrizes relative to

β , q : [0,1]→ Rd , is defined by q(t) = β̇ (t)/
√

||β̇ (t)||, t ∈ [0,1] (d−dimensional 0 if β̇ (t)
equals d−dimensional 0). It follows then that q is square integrable as∫ 1

0
||q(t)||2dt =

∫ 1

0
||β̇ (t)/

√
||β̇ (t)|| ||2dt =

∫ 1

0
||β̇ (t)||dt

which is the length of the curve that β parametrizes, where || · || is the d−dimensional
Euclidean norm. Note that in what follows we ignore the usual definition of a diffeomor-
phism and refer to homeomorphisms on [0,1] as diffeomorphisms in order to distinguish
them from homeomorphisms on elementary regions in the plane. Again with q the shape
function of β and Γ the set of C1 orientation-preserving diffeomorphisms of [0,1] so that
for γ ∈ Γ then γ̇ ≥ 0 on [0,1], it then follows that for γ ∈ Γ the shape function of the
reparametrization β ◦ γ of β is (q,γ) = (q◦ γ)

√
γ̇ . With ||q||2 = (

∫ 1
0 ||q(t)||2dt)1/2, we also

note that given β1, β2 : [0,1]→Rd of class C1, parametrizations of curves in Rd with shape
functions q1, q2, respectively, then ||(q1,γ)− (q2,γ)||2 = ||q1 − q2||2 for any γ ∈ Γ, and
from this, with Γ0 = {γ ∈ Γ, γ̇ > 0 on [0,1]}, it has been demonstrated [2, 14] that ignoring
rotations, the number infγ∈Γ0 ||q1 − (q2,γ)||2 can then be used as a well-defined distance
between the two curves that β1, β2 parametrize, β1 and β2 both normalized to parametrize
curves of length 1.

With c, D, S, ∂c
∂u , ∂c

∂v as in the previous section, S regular (relative to c), following the idea
of the definition of the shape function of a parametrized curve in d−dimensional space as
described above, we define the shape function q of the parametrization c of S with domain
D, i.e., the shape function q of the surface S relative to its parametrization c with domain D,
q : D → R3, so that ∫ ∫

D
||q(u,v)||2dudv =

∫ ∫
D
||∂c

∂u
× ∂c

∂v
||dudv

which is the surface area of S. This is easily seen to be indeed the case if we define the
shape function q of c on D by

q = (
∂c
∂u

× ∂c
∂v

)/

√
||∂c

∂u
× ∂c

∂v
||.
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We do define q this way and note that this definition of the shape function of a surface
relative to a parametrization of the surface, is slightly different from the one in [10] but
similar to the one in [6]. We also note that if we allow ∂c

∂u ×
∂c
∂v to be 3−dimensional zero

at certain points, then q is defined to be 3−dimensional zero at those points.

With c, q, D, S as above, the following result, similar to the one mentioned above in the
context of the shape function of the parametrization of a curve in d−dimensional space,
shows how to compute the shape function of a reparametrization of c from the shape func-
tion q of c. Here p is the reparametrization of c, i.e., for an elementary region E in R2, p
is a parametrization of S with domain E, and p = c◦h for a C1 homeomorphism h from E
onto D. Assuming ∂ (u,v)

∂ (r,t) ≥ 0 on E, ∂ (u,v)
∂ (r,t) the determinant of the Jacobian of h, we define a

function on E into R3, which we denote by (q,h), as follows:

(q,h)≡ (q◦h)

√
∂ (u,v)
∂ (r, t)

.

Theorem 4: Given c, q, D, p, h, E, S, ∂ (u,v)
∂ (r,t) as above, the shape function on E of the

reparametrization p = c◦h of c is then (q,h).
Proof: With (u(r, t),v(r, t)) = h(r, t), so that

p(r, t) = c(h(r, t)) = c(u(r, t),v(r, t)),

then on E, as established in the proof of Theorem 3, we have

∂ p
∂ r

× ∂ p
∂ t

= (
∂c
∂u

× ∂c
∂v

)
∂ (u,v)
∂ (r, t)

.

Thus, if q̂ is the shape function of p on E, from the definition of a shape function it must
then be that

q̂ = (
∂ p
∂ r

× ∂ p
∂ t

)/

√
||∂ p

∂ r
× ∂ p

∂ t
||

= (
∂c
∂u

× ∂c
∂v

)
∂ (u,v)
∂ (r, t)

/

√
||(∂c

∂u
× ∂c

∂v
)

∂ (u,v)
∂ (r, t)

||

=
(
(

∂c
∂u

× ∂c
∂v

)/

√
||∂c

∂u
× ∂c

∂v
||
) √∂ (u,v)

∂ (r, t)

= (q◦h)

√
∂ (u,v)
∂ (r, t)

= (q,h).

□
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Other results about shape functions of parametrized surfaces, similar to results about shape
functions of parametrized curves in d−dimensional space [2, 14], can be developed. Given
c, q, p, h, D, E, S, ∂ (u,v)

∂ (r,t) as above, q the shape function of c, p = c◦h, h a C1 homeomor-

phism from E onto D, ∂ (u,v)
∂ (r,t) the determinant of the Jacobian of h, assuming now ∂ (u,v)

∂ (r,t) > 0

on E, so that ∂ (r,t)
∂ (u,v)(u,v) = (∂ (u,v)

∂ (r,t) (r, t))
−1, ∂ (r,t)

∂ (u,v) the determinant of the Jacobian of h−1

on D, then with (q,h) as defined above, one such result is that ((q,h),h−1) = q on D. This
result together with the theorem that follows are of importance in the next section for jus-
tifying the definition of the distance between surfaces in a manner similar to the way the
definition of the distance between curves in d−dimensional space is justified [2, 14]. The
theorem shows homeomorphisms act by isometries on shape functions of parametrized sur-
faces.

Theorem 5: Given D, E, h, ∂ (u,v)
∂ (r,t) as above, ∂ (u,v)

∂ (r,t) ≥ 0 on E; S1, S2 surfaces, c1, c2

parametrizations of S1, S2, respectively, both with domain D; p1, p2 parametrizations of
S1, S2, respectively, both with domain E; p1, p2 reparametrizations of c1, c2, respectively,
p1 = c1 ◦ h, p2 = c2 ◦ h; q1, q2, q̂1, q̂2 the shape functions of c1, c2, p1, p2, respectively,
then

||q̂1 − q̂2||2,E ≡
(∫ ∫

E
||q̂1 − q̂2)||2dr dt

)1/2

=
(∫ ∫

D
||q1 −q2||2dudv

)1/2

≡ ||q1 −q2||2,D.

Proof: From Theorem 4, q̂1 = (q1,h), q̂2 = (q2,h), thus

||q̂1 − q̂2||22,E =
∫ ∫

E
||q̂1 − q̂2||2dr dt

=
∫ ∫

E
||(q1,h)− (q2,h)||2dr dt

=
∫ ∫

E
||(q1 ◦h)

√
∂ (u,v)
∂ (r, t)

− (q2 ◦h)

√
∂ (u,v)
∂ (r, t)

||2dr dt

=
∫ ∫

E
||(q1 ◦h)− (q2 ◦h)||2 ∂ (u,v)

∂ (r, t)
dr dt

=
∫ ∫

D
||q1 −q2||2dudv

= ||q1 −q2||22,D

by the change of variables formula. □

8



NIST TN 2274
November 2023

4. The Elastic Shape Distance between Surfaces

In this section we define and justify the elastic shape distance between two surfaces of
unit area. This is done at first in terms of C1 homeomorphisms with Jacobians of positive
determinant (each homeomorphism defines a reparametrization of one of the surfaces), and
later in terms of rotations as well. Given that S1 and S2 are the two surfaces, we assume
they are simple and are parametrized by functions with the same domain, i.e., an elementary
region D in the xy plane exists together with parametrizations c1 and c2 with domain D of
S1 and S2, respectively, c1 : D → R3, c2 : D → R3, S1 = c1(D), S2 = c2(D). Letting Σ0

be the set of all C1 homeomorphisms h, from D onto D, with ∂ (u,v)
∂ (r,t) > 0 on D, ∂ (u,v)

∂ (r,t) the
determinant of the Jacobian of h, given that q1 and q2 are, respectively, the shape functions
of c1 and c2, then using arguments similar to arguments for justifying the definition of the
distance between curves in d−dimensional space found in [2, 14], ignoring rotations, it can
be demonstrated that the number

infh∈Σ0||q1 − (q2,h)||2,D = infh∈Σ0

(∫ ∫
D
||q1 − (q2,h)||2dr dt

)1/2
=

infh∈Σ0

(∫ ∫
D
||q1 − (q2 ◦h)

√
∂ (u,v)
∂ (r, t)

||2dr dt
)1/2

can be used as a well-defined distance between the surfaces S1 and S2, c1 and c2 both
normalized to parametrize surfaces of area equal to 1. Note that the arguments for justifying
this definition of the distance between the two surfaces are in part based on Theorem 5 in
the previous section and the result described in the paragraph preceding Theorem 5.

That rotations as well act by isometries on shape functions of parametrized surfaces is
justified as follows. With q1, q2 as above, assuming R is a 3−dimensional rotation matrix,
i.e., R ∈ SO(3), SO(3) the group of 3× 3 orthogonal matrices of determinant equal to 1,
then because R is orthogonal, it follows easily that

||Rq1 −Rq2||2,D =
(∫ ∫

D
||Rq1 −Rq2)||2dudv

)1/2

=
(∫ ∫

D
||q1 −q2||2dudv

)1/2

= ||q1 −q2||2,D.

Also as established in [14] for shape functions of parametrized curves in d−dimensional
space, it follows by similar arguments that given h∈ Σ0, R∈ SO(3), D an elementary region
in the xy plane, q a shape function of a surface parametrized by a function c from D into
R3, then (Rq,h) = R(q,h). That is, the actions on shape functions of homeomorphisms in
Σ0 and matrices in SO(3) commute. For the sake of completeness we actually present the
details of the justification of this fact in what follows. However, for this purpose, we first
present a well-known formula about rotations and cross products of vectors in R3 together
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with its justification, again for the sake of completeness.

Lemma: Given vectors x, y in R3, R in SO(3), then R(x× y) = Rx×Ry.

Proof: Here given a, b, c in R3, we use the identity a · (b× c) = det[a b c], where · and
det denote the inner product and determinant operations, respectively. In addition, for
j = 1,2,3, we let e j be the jth unit vector in R3, and given w in R3, we let (w) j denote the
jth coordinate of w. Since detR = 1 and RRT equals the identity matrix, we then have for
j = 1,2,3,

(R(x× y)) j = e j ·R(x× y) = eT
j R(x× y) = (RT e j)

T (x× y)

= RT e j · (x× y) = det[RT e j x y]
= detR det[RT e j x y] = detR [RT e j x y]
= det[RRT e j Rx Ry] = det[e j Rx Ry]
= e j · (Rx×Ry) = (Rx×Ry) j.

Thus R(x× y) = Rx×Ry. □

With h, R, q, c as above, in order to show (Rq,h) = R(q,h), we first show that the shape
function of Rc on D, say q̂, is Rq. From the definition of a shape function and the lemma
then

q̂ = (
∂Rc
∂u

× ∂Rc
∂v

)/

√
||∂Rc

∂u
× ∂Rc

∂v
||= (R

∂c
∂u

×R
∂c
∂v

)/

√
||R ∂c

∂u
×R

∂c
∂v

||

= R(
∂c
∂u

× ∂c
∂v

)/

√
||R(∂c

∂u
× ∂c

∂v
)||= R(

∂c
∂u

× ∂c
∂v

)/

√
||∂c

∂u
× ∂c

∂v
||

= Rq.

From Theorem 4 and what we just proved, it follows that the shape function of Rc(h) is
then (Rq,h). On the other hand, again by Theorem 4, the shape function of c(h) is (q,h)
so that again by what we just proved the shape function of R(c(h)) must be R(q,h). Since
Rc(h) and R(c(h)) are the same function, then it must be that their shape functions are the
same, i.e., (Rq,h) = R(q,h).

Based in part on the observations above about rotation matrices and homeomorphisms, in
a manner similar to what is done in [6, 10], given S1, S2, c1, c2, q1, q2 as above, with inf
short for infimum, it can be demonstrated that the number

infR∈SO(3),h∈Σ0||q1 −R(q2,h)||2,D =

infR∈SO(3),h∈Σ0

(∫ ∫
D
||q1 −R(q2,h)||2dr dt

)1/2
=
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infR∈SO(3),h∈Σ0

(∫ ∫
D
||q1 −R(q2 ◦h)

√
∂ (u,v)
∂ (r, t)

||2dr dt
)1/2

can be used as a well-defined distance between the surfaces S1 and S2, where again ∂ (u,v)
∂ (r,t)

is the determinant of the Jacobian of h, and c1 and c2 are both normalized to parametrize
surfaces of area equal to 1. Thus, denoting infR∈SO(3),h∈Σ0||q1−R(q2,h)||2,D by dist(S1,S2),
and restricting ourselves to the simpler region D = [0,1]× [0,1], then by Fubini’s theorem,
we note,

dist(S1,S2) = infR∈SO(3),h∈Σ0

(∫ ∫
D
||q1 −R(q2,h)||2dr dt

)1/2

= infR∈SO(3),h∈Σ0

(∫ 1

0

∫ 1

0
||q1 −R(q2,h)||2dr dt

)1/2

which we use in the next section.

5. Computation of Homeomorphism for Partial Registration of Surfaces using Dy-
namic Programming

In this section, ignoring rotations, we describe the computation, based on Dynamic Pro-
gramming, of a homeomorphism for the partial elastic shape registration of two simple
surfaces of unit area in 3−dimensional space. Given that S1 and S2 are the two surfaces,
with D = [0,1]× [0,1], we assume accordingly that one-to-one functions c1 and c2 exist of
class C1, c1 : D → R3, c2 : D → R3, such that S1 = c1(D) and S2 = c2(D). That is, c1 and
c2 parametrize or are parametrizations of S1 and S2, respectively. Given that q1 and q2 are,
respectively, the shape functions of c1 and c2, then we hope to minimize

∫ ∫
D
||q1 − (q2,h)||2dr dt =

∫ ∫
D
||q1 − (q2 ◦h)

√
∂ (u,v)
∂ (r, t)

||2dr dt

=
∫ 1

0

∫ 1

0
||q1 − (q2 ◦h)

√
∂ (u,v)
∂ (r, t)

||2dr dt

with respect to h in Σ0, where Σ0 is the set of all C1 homeomorphisms h from D onto
itself, with ∂ (u,v)

∂ (r,t) > 0 on D, ∂ (u,v)
∂ (r,t) the determinant of the Jacobian of h. We note, this

minimization is usually carried out with an algorithm that uses a gradient approach for the
optimization over reparametrizations, i.e., over homeomorphisms h in Σ0, that may pro-
duce a local solution [6, 10]. In this paper we have opted to carry out the minimization
with respect to h in a special subset of Σ0 that allows for the use of Dynamic Programming.
We denote this subset of Σ0 by Σ1, h in Σ1 satisfying that h ∈ Σ0 and for (r, t) in D, if
h(r, t) = (r̂, t̂) then it must be that t̂ = t. In addition, if h ∈ Σ1, we assume for any t in [0,1]
that h(0, t) = (0, t) and h(1, t) = (1, t). That a minimization over Σ1 allows for the use of
Dynamic Programming will become evident below. Note, from Theorem 2, with ∂D the
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boundary of D, for any homeomorphism h from D onto itself, not necessarily in Σ0 or Σ1,
it must be that h(∂D) = ∂D.

Since in practice we can only work with a discretized version of the problem, for our pur-
poses we assume the situation is as follows: for positive integers M, N, not necessarily
equal, and partitions of [0,1], {ri}M

i=1, r1 = 0 < r2 < .. . < rM = 1, {t j}N
j=1, t1 = 0 < t2 <

.. . < tN = 1, not necessarily uniform, c1 and c2 are given as lists of M×N points in the sur-
faces S1 and S2, respectively, the lists for c1 and c2 corresponding to c1(ri, t j) and c2(ri, t j),
i = 1, . . . ,M, j = 1, . . . ,N, respectively; for k = 1,2, the list for ck given in the following
order: ck(r1, t1), ck(r2, t1), . . ., ck(rM, t1), . . ., ck(r1, tN), ck(r2, tN), . . ., ck(rM, tN).

Computing ∂c1
∂ r (ri, t j), ∂c1

∂ t (ri, t j), ∂c2
∂ r (ri, t j), ∂c2

∂ t (ri, t j) with centered finite differences from
c1(ri, t j) and c2(ri, t j), for i = 1, . . . ,M, j = 1, . . . ,N, we can then approximately compute
for i = 1, . . . ,M, j = 1, . . . ,N, k = 1,2,

qk(ri, t j) =
(
(
∂ck

∂ r
× ∂ck

∂ t
)/

√
||∂ck

∂ r
× ∂ck

∂ t
||
)
(ri, t j),

(3−dimensional zero if (∂ck
∂ r × ∂ck

∂ t )(ri, t j) equals 3−dimensional zero).

Finally we note that if h ∈ Σ1, then h(r, t) = (u(r, t),v(r, t)) = (u(r, t), t) for (r, t) in D, so
that ∂v

∂ r (r, t) = 0 and ∂v
∂ t (r, t) = 1, and therefore ∂ (u,v)

∂ (r,t) (r, t) =
∂u
∂ r (r, t) for (r, t) in D.

Given h in Σ1 and an integer j, 1 ≤ j ≤ N, next we discretize the integral

∫ 1

0
||q1(r, t j)−

(
(q2 ◦h)

√
∂ (u,v)
∂ (r, t)

)
(r, t j)||2dr.

For this purpose, we define q1 j(ri), q2 j(ri) in R3 for i = 1, . . . ,M, by

q1 j(ri) = q1(ri, t j), q2 j(ri) = q2(ri, t j),

and define as well a diffeomorphism h j from [0,1] onto [0,1] by

h j(r) = u(r, t j), r ∈ [0,1].

Note, h j is indeed a diffeomorphism as clearly h j(0) = 0, h j(1) = 1, and for r ∈ [0,1],
h′j(r) =

dh j
dr (r) =

∂u
∂ r (r, t j) =

∂ (u,v)
∂ (r,t) (r, t j)> 0.

For i = 1, . . . ,M, we can then compute h j(ri) = u(ri, t j) so that h j(r1) = h j(0) = 0 and
h j(rM) = h j(1) = 1. In addition, for i = 1, . . . ,M−1, we compute ∆ri = ri+1 − ri, approx-
imately compute h′j(ri) = (h j(ri+1)− h j(ri))/∆ri, set h′j(rM) = h′j(r1), and by interpolat-
ing q2 j(ri), i = 1, . . . ,M, by a cubic spline, for i = 1, . . . ,M, we can approximately com-
pute q2 j(h j(ri)), which in turn is an approximation of (q2 ◦ h)(ri, t j) as (q2 ◦ h)(ri, t j) =
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q2(h(ri, t j)) = q2(u(ri, t j), t j) = q2(h j(ri), t j) = q2 j(h j(ri)) if q2 j(r) is interpreted to be
q2(r, t j) for every r ∈ [0,1]. Thus, with the trapezoidal rule the integral is discretized by

E(h j) =
1
2

M−1

∑
i=1

∆ri(E
j
i+1 +E j

i )

where for i = 1, . . . ,M,

E j
i = ||q1 j(ri)−q2 j(h j(ri))

√
h′j(ri)||2.

From this, again using the trapezoidal rule, we can then discretize the double integral

∫ 1

0

∫ 1

0
||q1(r, t)−

(
(q2 ◦h)

√
∂ (u,v)
∂ (r, t)

)
(r, t)||2dr dt

by

E =
1
2

N−1

∑
j=1

∆t j(E(h j+1)+E(h j)),

where for j = 1, . . . ,N −1, ∆t j = t j+1 − t j.

Given j, 1 ≤ j ≤ N, treating now h j(ri), i = 1, . . . ,M, in the definition of E(h j) as the dis-
cretization of any diffeomorphism h j from [0,1] onto [0,1], if for each j, j = 1, . . . ,N, we
can find h j whose discretization minimizes E(h j), then the collection of diffeomorphisms
h j, j = 1, . . . ,N, minimizes E, and a homeomorphism h in Σ1 can be identified such that
h(ri, t j) = (h j(ri), t j), i = 1, . . . ,M, j = 1, . . . ,N. Thus, the double integral above is approx-
imately minimized by h among all homeomorphisms in Σ1, with the value of the double
integral approximately equal to E.

In [4], algorithm adapt-DP, an algorithm based on Dynamic Programming, was presented
for approximately computing, ignoring rotations, the elastic shape registration of two curves
in d−dimensional space. The algorithm was originally presented in [1] for d = 2. Given
that q̂1 and q̂2 are discretizations of the shape functions of the two curves, q̂1 and q̂2 are
used as input for algorithm adapt-DP to compute a discretization of a diffeomorphism
for reparametrizing the second curve, the reparametrization then resulting in an approxi-
mate elastic shape registration of the two curves. Even though for j = 1, . . . ,N, q1 j and
q2 j as defined above are not exactly computed as discretizations of the shape functions of
curves in 3−dimensional space, with algorithm adapt-DP for d = 3 with q1 j, q2 j taking
the place of q̂1, q̂2, respectively, we can still compute the discretization of some diffeomor-
phism h j, i.e., h j(ri), i = 1, . . . ,M, that approximately minimizes E(h j). Having done this
for each j, j = 1, . . . ,N, h in Σ1 can then be identified such that h(ri, t j) = (h j(ri), t j),
i = 1, . . . ,M, j = 1, . . . ,N, and, ignoring rotations, c1, c2(h) are interpreted to achieve
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approximately the partial elastic shape registration of the two surfaces. Computing E =
1
2 ∑

N−1
j=1 ∆t j(E(h j+1)+E(h j)), again ignoring rotations, then

√
E is interpreted to be ap-

proximately the elastic shape distance between the two surfaces corresponding to the partial
elastic shape registration of the two surfaces.

6. Computation of Rotation Matrix for Rigid Alignment of Surfaces

In this section, we describe the computation of an approximately optimal rotation matrix
for the rigid alignment of two simple surfaces of unit area in 3−dimensional space. Given
that S1 and S2 are the two surfaces, with D, c1, c2, q1, q2 as in the previous section, we hope
to minimize∫ ∫

D
||q1(r, t)−Rq2(r, t)||2dr dt =

∫ 1

0

∫ 1

0
||q1(r, t)−Rq2(r, t)||2dr dt

with respect to rotation matrices R in 3−dimensional space, i.e., with respect to 3 × 3
matrices R that are orthogonal and have determinant equal to 1, i.e., with respect to matrices
R in SO(3).

As in the previous section, we must work with a discretized version of the problem. Thus
we assume again that for positive integers M, N, not necessarily equal, and partitions of
[0,1], {ri}M

i=1, r1 = 0< r2 < .. . < rM = 1, {t j}N
j=1, t1 = 0< t2 < .. . < tN = 1, not necessarily

uniform, c1 and c2 are given as lists of M×N points in the surfaces S1 and S2, respectively,
the lists for c1 and c2 corresponding to c1(ri, t j) and c2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N,
respectively, and that q1(ri, t j) and q2(ri, t j) are approximately computed from c1(ri, t j)
and c2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, as in the previous section. With ∆ri = ri+1 − ri,
i = 1, . . . ,M−1, for R in SO(3), and an integer j, 1 ≤ j ≤ N, next with the trapezoidal rule
we discretize the integral ∫ 1

0
||q1(r, t j)−Rq2(r, t j)||2dr

by

Fj =
1
2

M−1

∑
i=1

∆ri(∥q1(ri, t j)−Rq2(ri, t j)∥2 +∥q1(ri+1, t j)−Rq2(ri+1, t j)∥2)

=
M

∑
i=1

∆r̃i ∥q1(ri, t j)−Rq2(ri, t j)∥2,

where ∆r̃1 = (r2 − r1)/2, ∆r̃M = (rM − rM−1)/2, and for i = 2, . . . ,M−1, ∆r̃i = (ri+1 −
ri−1)/2. Note, ∆r̃i > 0 for i = 1, . . . ,M, and ∑

M
i=1 ∆r̃i = 1.

From this, with ∆t j = t j+1− t j, j = 1, . . . ,N−1, again using the trapezoidal rule and noting
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that ∥Rq2(ri, t j)∥= ∥q2(ri, t j)∥, i= 1, . . . ,M, j = 1, . . . ,N, we can then discretize the double
integral ∫ 1

0

∫ 1

0
||q1(r, t)−Rq2(r, t)||2dr dt

by

F =
1
2

N−1

∑
j=1

∆t j(Fj+1 +Fj) =
N

∑
j=1

∆t̃ jFj

=
N

∑
j=1

∆t̃ j(
M

∑
i=1

∆r̃i ∥q1(ri, t j)−Rq2(ri, t j)∥2)

=
N

∑
j=1

∆t̃ j(
M

∑
i=1

∆r̃i(∥q1(ri, t j)∥2 +∥q2(ri, t j)∥2))

−2
N

∑
j=1

∆t̃ j(
M

∑
i=1

∆r̃i((q1(ri, t j))
T Rq2(ri, t j))),

where ∆t̃1 = (t2 − t1)/2, ∆t̃N = (tN − tN−1)/2, and for j = 2, . . . ,N −1, ∆t̃ j = (t j+1 −
t j−1)/2. Note, ∆t̃ j > 0 for j = 1, . . . ,N, and ∑

N
j=1 ∆t̃ j = 1.

Thus, minimizing F over all rotations R in SO(3) is equivalent to maximing over the same
set of rotations

N

∑
j=1

∆t̃ j(
M

∑
i=1

∆r̃i((q1(ri, t j))
T Rq2(ri, t j))) = tr(RAT ),

where A is the 3×3 matrix with entries

Akl =
N

∑
j=1

∆t̃ j(
M

∑
i=1

∆r̃i(q1(ri, t j)kq2(ri, t j)l)),

for each pair k, l = 1,2,3, q1(ri, t j)k the kth coordinate of q1(ri, t j), and q2(ri, t j)l the lth co-
ordinate of q2(ri, t j), i = 1, . . . ,N, j = 1, . . . ,M, and tr(RAT ) is the trace of the matrix RAT .

Accordingly, an optimal rotation matrix R for maximizing tr(RAT ) can be computed from
the singular value decomposition of A or, more precisely, with the Kabsch-Umeyama algo-
rithm [3, 8, 9, 11, 16] (see Algorithm Kabsch-Umeyama below for 3−dimensional sur-
faces, where diag{s1,s2,s3} is the 3 × 3 diagonal matrix with numbers s1,s2,s3 as the
elements of the diagonal, in that order running from the upper left to the lower right
of the matrix). A singular value decomposition (SVD) [12] of A is a representation of
the form A = USV T , where U and V are 3 × 3 orthogonal matrices and S is a 3 × 3
diagonal matrix with the singular values of A, which are nonnegative real numbers, ap-
pearing in the diagonal of S in descending order, from the upper left to the lower right
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of S. Finally, note that the SVD concept can be generalized so that any matrix of any
dimension, not necessarily square, has a singular value decomposition, not necessarily
unique [12].

Algorithm Kabsch-Umeyama for surfaces (KU3 algorithm)

Set ∆r̃1 = (r2 − r1)/2, ∆r̃M = (rM − rM−1)/2, and for i = 2, . . . ,M−1, ∆r̃i = (ri+1 −
ri−1)/2.
Set ∆t̃1 =(t2−t1)/2, ∆t̃N =(tN −tN−1)/2, and for j = 2, . . . ,N −1, ∆t̃ j =(t j+1−t j−1)/2.

Set q1(ri, t j)k equal to the kth coordinate of q1(ri, t j) for i = 1, . . . ,M, j = 1, . . . ,N, k =
1,2,3.
Set q2(ri, t j)l equal to the lth coordinate of q2(ri, t j) for i = 1, . . . ,M, j = 1, . . . ,N, l =
1,2,3.
Compute Akl = ∑

N
j=1 ∆t̃ j(∑

M
i=1 ∆r̃i(q1(ri, t j)kq2(ri, t j)l))

for each pair k, l = 1,2,3.
Identify 3×3 matrix A with entries Akl for each pair k, l = 1,2,3.
Compute SVD of A, i.e., identify 3×3 matrices U , S, V , so that
A =USV T in the SVD sense.
Set s1 = s2 = 1.
if det(UV )> 0 then set s3 = 1.
else set s3 =−1. end if
Set S̃ = diag{s1,s2,s3}.
Compute and return R =US̃V T and maxtrace = tr(RAT ).

7. Procedure for Optimizing over both Rotations and Reparametrizations using Dy-
namic Programming

With D = [0,1]× [0,1], c1, c2, q1, q2, S1, S2 as above, R in SO(3), h in Σ0, so that ∂ (u,v)
∂ (r,t) ,

the determinant of the Jacobian of h, is positive on D, we hope to minimize

∫ 1

0

∫ 1

0
||q1(r, t)−

(
R(q2 ◦h)

√
∂ (u,v)
∂ (r, t)

)
(r, t)||2dr dt

with respect to R and h.
We note, using arguments as those in [5], the above minimization problem can be reformu-
lated as that of minimizing

∫ 1

0

∫ 1

0
||Rq1(r, t)−

(
(q2 ◦h)

√
∂ (u,v)
∂ (r, t)

)
(r, t)||2dr dt
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with respect to R and h.
This allows for the second surface to be reparametrized while the first one is rotated. Of
course, as already noted above, we work with Σ1, as defined above, instead of Σ0 of which
it is a subset, as this allows for the use of Dynamic Programming when optimizing over
reparametrizations of the second surface. Assuming M, N, ri, i = 1, . . . ,M, t j, j = 1, . . . ,N,
c1(ri, t j), c2(ri, t j), q1(ri, t j), q2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, are as in the previous sec-
tions, for the purpose of approximately minimizing the second double integral above with
respect to R in SO(3), h in Σ1, we use the procedure below that alternates computations of
discretizations of approximately optimal homeomorphisms in Σ1 using Dynamic Program-
ming (one per iteration for reparametrizing the second surface) and approximately optimal
rotation matrices (one per iteration for rotating the first surface), these computations as
described in the previous two sections. The procedure, Procedure DP-surface-min, with
c1(ri, t j), c2(ri, t j), q1(ri, t j), q2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, as input, is summarized
below. In it, given discretizations q(ri), q̂(ri), i = 1, . . . ,M, of functions q, q̂, treated as
discretizations of shape functions of curves in 3−dimensional space, to say “Execute DP
algorithm for q(ri), q̂(ri), i = 1, . . . ,M” will mean the DP algorithm (adapt-DP for d = 3)
should be executed with q(ri), q̂(ri), i = 1, . . . ,M, as input, as described in Section 5 above.
Also, given q̃1(ri, t j), q̃2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, discretizations of shape func-
tions q̃1, q̃2 of the two surfaces, to say “Execute KU3 algorithm for q̃1(ri, t j), q̃2(ri, t j),
i = 1, . . . ,M, j = 1, . . . ,N” will mean the Kabsch-Umeyama algorithm for surfaces, out-
lined in the previous section, should be executed with q̃1, q̃2 taking the place of q1, q2,
respectively, in the algorithm.

Procedure DP-surface-min

Set ∆ri = ri+1 − ri, i = 1, . . . ,M−1.
Set ∆r̃1 = (r2 − r1)/2, ∆r̃M = (rM − rM−1)/2, and for i = 2, . . . ,M−1, ∆r̃i = (ri+1 −
ri−1)/2.
Set ∆t̃1 =(t2−t1)/2, ∆t̃N =(tN −tN−1)/2, and for j = 2, . . . ,N −1, ∆t̃ j =(t j+1−t j−1)/2.

Set q̂2(ri, t j) = q2(ri, t j) for i = 1, . . . ,M, j = 1, . . . ,N.
Set iter = 0, Ecurr = 10 6, iten = 10, tol = 10−6.
repeat

Set iter = iter+1, E prev = Ecurr.
Execute KU3 algorithm for q̂2(ri, t j), q1(ri, t j), i = 1, . . . ,M,
j = 1, . . . ,N, to get rotation matrix R.
Set q̂1(ri, t j) = Rq1(ri, t j) for i = 1, . . . ,M, j = 1, . . . ,N.
for j = 1, . . . ,N do

Set q1 j(ri) = q̂1(ri, t j), q2 j(ri) = q2(ri, t j), i = 1, . . . ,M.
Execute DP algorithm for q1 j(ri), q2 j(ri), i = 1, . . . ,M, to get
discretization of diffeomorphism h j: h j(ri), i = 1, . . . ,M.
Set h′j(ri) = (h j(ri+1)−h j(ri))/∆ri for i = 1, . . . ,M−1,
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h′j(rM) = h′j(r1).
From interpolation of q2 j(ri), i = 1, . . . ,M, with a cubic spline

set q̂2 j(ri) =
√

h′j(ri)q2 j(h j(ri)) for i = 1, . . . ,M.

Compute E(h j) = ∑
M
i=1 ∆r̃i∥q1 j(ri)−

√
h′j(ri)q2 j(h j(ri))∥2

= ∑
M
i=1 ∆r̃i∥q1 j(ri)− q̂2 j(ri)∥2.

Set q̂2(ri, t j) = q̂2 j(ri) for i = 1, . . . ,M.
end for
Ecurr = ∑

N
j=1 ∆t̃ jE(h j).

until |Ecurr −E prev|< tol or iter > iten.
E = Ecurr.
for j = 1, . . . ,N do

Set h(ri, t j) = (h j(ri), t j) for i = 1, . . . ,M.
Set c2 j(ri) = c2(ri, t j) for i = 1, . . . ,M.
From interpolation of c2 j(ri), i = 1, . . . ,M, with a cubic spline
set ĉ2(ri, t j) = c2 j(h j(ri)) for i = 1, . . . ,M.

end for
Set ĉ1(ri, t j) = Rc1(ri, t j) for i = 1, . . . ,M, j = 1, . . . ,N.
Return E, R, h(ri, t j), ĉ1(ri, t j), q̂1(ri, t j), ĉ2(ri, t j), q̂2(ri, t j),
i = 1, . . . ,M, j = 1, . . . ,N.

On output, restricting ourselves to homeomorphisms in Σ1, E is interpreted to be the square
of the elastic shape distance between c1 and c2; ĉ1(ri, t j) and ĉ2(ri, t j), i = 1, . . . ,M, j =
1, . . . ,N, are interpreted to achieve the elastic shape registration of c1 and c2; q̂1 and q̂2 are
the shape functions of ĉ1 and ĉ2, respectively; R is the optimal rotation matrix and h is the
optimal homeomorphism in Σ1 with which everything is computed. Everything including
R and h approximately computed.

8. Results from Implementation of Methods

A software package that incorporates the methods presented in this paper for computing,
using Dynamic Programming, a partial elastic shape registration of two simple surfaces
in 3−dimensional space, and therefore the elastic shape distance between them associated
with this partial registration, has been implemented. The implementation is in Matlab1

with the exception of the Dynamic Programming routine which is written in Fortran but
is executed as a Matlab mex file. In this section, we present results obtained from execu-
tions of the software package. We note, the software package as well as input data files, a
README file, etc. can be obtained at the following link

https://doi.org/10.18434/mds2-3056

1The identification of any commercial product or trade name does not imply endorsement or recommendation
by the National Institute of Standards and Technology.
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We note, Matlab file ESD driv surf 3d.m is the driver routine of the package, and Fortran
routine DP MEX WNDSTRP ALLDIM.F is the Dynamic Programming routine which
has already been processed (with parameter dimx = 3) to be executed as a Matlab mex file.
In case the Fortran routine must be processed to obtain a new mex file, this can be done by
typing in the Matlab window:
mex - compatibleArrayDims DP MEX WNDSTRP ALLDIM.F

At the start of the execution of the software, we assume S1, S2 are the two simple surfaces in
3−dimensional space under consideration, with functions c1, c2 : D≡ [0,T1]× [0,T2]→R3,
T1, T2 > 0, as their parametrizations, respectively, so that S1 = c1(D), S2 = c2(D). We also
assume that as input to the software, for positive integers M, N, not necessarily equal,
and partitions of [0,T1], [0,T2], respectively, {ri}M

i=1, r1 = 0 < r2 < .. . < rM = T1, {t j}N
j=1,

t1 = 0 < t2 < .. . < tN = T2, not necessarily uniform, discretizations of c1, c2 are given, each
discretization in the form of a list of M ×N points in the corresponding surface, namely
c1(ri, t j) and c2(ri, t j), i = 1, . . . ,M, j = 1, . . . ,N, respectively, and for k = 1,2, as specified
in the Introduction section, in the order ck(r1, t1), ck(r2, t1), . . ., ck(rM, t1), . . ., ck(r1, tN),
ck(r2, tN), . . ., ck(rM, tN). Based on this input, for the purpose of computing, using Dy-
namic Programming, a partial elastic shape registration of S1 and S2, together with the
elastic shape distance between them associated with the partial registration, the program al-
ways proceeds first to scale the partitions {ri}M

i=1, {t j}N
j=1, so that they become partitions of

[0,1], and to compute an approximation of the area of each surface. During the execution of
the software package, the former is accomplished by Matlab routine ESD driv surf 3d.m,
while the latter by Matlab routine ESD comp surf 3d.m through the computation for
each k, k = 1,2 of the sum of the areas of triangles with vertices ck(ri, t j), ck(ri+1, t j+1,
ck(ri, t j+1), and ck(ri, t j), ck(ri+1, t j), ck(ri+1, t j+1), for i = 1, . . . ,M − 1, j = 1, . . . ,N − 1.
The program then proceeds to scale the discretizations of the parametrizations of the two
surfaces so that each surface has approximate area equal to 1 (given a surface and its ap-
proximate area, each point in the discretization of the parametrization of the surface is
divided by the square root of half the approximate area of the surface). Once routine
ESD comp surf 3d.m is done, the actual computations of the partial registration and as-
sociated elastic shape distance are carried out by Matlab routine ESD core surf 3d.m in
which the methods for this purpose presented in this paper, mainly Procedure DP-surface-
min in Section 7, have been implemented.

The results that follow were obtained from applications of our software package on dis-
cretizations of three kinds of surfaces in 3−dimensional space that we call surfaces of the
sine, helicoid and cosine-sine kind. On input all surfaces were given as discretizations on
the unit square ([0,1]× [0,1]), each interval [0,1] uniformly partitioned into 100 intervals so
that the unit square was thus partitioned into 10000 squares, each square of size 0.01×0.01,
their corners making up a set of 10201 points. Using the notation used at the beginning of
this section, the uniform partitions of the two [0,1] intervals that define the unit square were
then {ri}M

i=1, {t j}N
j=1, with M = N = 101, r101 = t101 = 1.0, thus already scaled from the
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start as required, and by evaluating the surfaces at the 10201 points identified above in the
order as specified above and in the Introduction section, a discretization of each surface
was obtained consisting of 10201 points. Given a pair of surfaces of one of the three kinds
mentioned above, and given that a partial elastic shape registration of the two surfaces and
the elastic shape distance between them associated with the partial registration were to be
computed, one surface was identified as the first surface, the other one as the second sur-
face (in the procedure for optimizing over rotations and reparametrizations using Dynamic
Programing as described in Section 7, Procedure DP-surface-min, the second surface is
reparametrized while the first one is rotated). For the purpose of testing the capability of
the software for optimizing over reparametrizations based on Dynamic Programming, again
using the notation used at the beginning of this section, for γ , a bijective function on the unit
square to be defined below, with (r̂i, t̂ j) = γ(ri, t j), i = 1, . . . ,101, j = 1, . . . ,101, the second
surface was reparametrized through its discretization, namely by setting ĉ2 = c2 and com-
puting c2(ri, t j) = ĉ2(r̂i, t̂ j), i = 1, . . . ,101, j = 1, . . . ,101, while the first surface was kept
as originally defined and discretized by computing c1(ri, t j), i = 1, . . . ,101, j = 1, . . . ,101.
Given the pair of surfaces, the program then, using the discretizations of the surfaces as just
described in terms of c1, c2, etc., after computing an approximation of the area of each sur-
face and scaling each surface to have approximate area equal to 1, proceeded to compute a
partial elastic shape registration of the two surfaces and the elastic shape distance between
them associated with the partial registration. We note that because N equaled 101, during
the execution the software package, the Dynamic Programming software was executed 101
times each time the repeat loop in Procedure DP-surface-min was executed. Finally, we
note again that in what follows we refer to homeomorphisms on [0,1] as diffeomorphisms
in order to distinguish them from homeomorphisms on the unit square in the plane.

The first results that follow were obtained from applications of our software package on dis-
cretizations of surfaces in 3−dimensional space that are actually graphs of 3−dimensional
functions based on the sine curve. Given k, a positive integer, one type of surface to which
we refer as a surface of the sine kind (type 1) is defined by

x(r, t) = r, y(r, t) = t, z(r, t) = sinkπr, (r, t) ∈ [0,1]× [0,1],

and another one (type 2) by

x(r, t) = sinkπr, y(r, t) = r, z(r, t) = t, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter, thus

of similar shape.

Three plots depicting surfaces (actually their boundaries) of the sine kind for different val-
ues of k are shown in Figure 2. (Note that in the plots there, the x−, y−, z− axes are
not always to scale relative to one another). In each plot two surfaces of the sine kind ap-
pear. The two surfaces in the leftmost plot being of similar shape, clearly the elastic shape
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Fig. 2. Three plots of boundaries of surfaces of the sine kind. A partial elastic shape registration of
the two surfaces in each plot and the elastic shape distance between them associated with the
registration were computed.

distance between them is exactly zero, and the hope was then that the execution of our
software package applied on these two surfaces would produce an elastic shape distance
between them equal or close to zero. The type 2 surface in each plot (in blue) was consid-
ered to be the first surface in the plot. In each plot this surface was obtained by setting k
equal to 2 in the definition above of a type 2 surface of the sine kind so that it is the same
suface in all three plots. The other surface in each plot (in red) is a type 1 surface of the
sine kind and was considered to be the second surface in each plot. From left to right in the
three plots, the second surface was obtained by setting k equal to 2, 3, 4, respectively, in the
definition above of a type 1 surface of the sine kind. As already mentioned above, in the
procedure for optimizing over rotations and reparametrizations using Dynamic Programing
as described in Section 7, Procedure DP-surface-min, the second surface is reparametrized
while the first one is rotated.

With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], all surfaces in the plots were then discretized
as described above and a partial elastic shape registration of the two surfaces in each plot
and the elastic shape distance between them associated with the partial registration were
then computed through executions of our software package. We note that for this par-
ticular γ , the discretization of the second surface was perturbed only in the r direction
which made the software package more likely to succeed as Procedure DP-surface-min
always reparametrizes the second surface by applying the Dynamic Programming soft-
ware exclusively on curves in 3−dimensional space contained in the surfaces in the r di-
rection. The three elastic shape distances, computed in the order of the plots from left
to right, were as follows with the first distance, as hoped for, essentially equal to zero:
0.0003 0.3479 0.3192. The times of execution in the same order were 27, 28, 39 sec-
onds, with the repeat loop in Procedure DP-surface-min in Section 7 executed 3, 3, 4 times,
respectively. The computed optimal rotation matrix for the pair of surfaces in the leftmost
plot in Figure 2, was

(
0 1 0
0 0 1
1 0 0

)
. For the other two pairs of surfaces the computed optimal

rotation matrices were both almost equal to
(

0 1 0
0 0 1
1 0 0

)
as well, their entries slightly different.

It should be pointed out that because of the simplicity of surfaces of the sine kind and the
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Fig. 3. Graphs of optimal diffeomorphisms from execution of Dynamic Programming software on
the three pairs of surfaces with γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1]. One per pair, as for each pair
the same two curves in 3−d space were used as input to the software each time it was executed.
Thus the same diffeomorphism was computed each time for each pair of surfaces.

fact that for the given γ the discretization of the second surface was perturbed only in the
r direction, whenever the Dynamic Programming software was executed for a given pair
of surfaces, the same two curves in 3−dimensional space contained in the surfaces in the r
direction were always used as input to the software. Therefore for the given pair, the same
solution was obtained each time (101 times) the Dynamic Programming software was ex-
ecuted, in particular the same optimal orientation-preserving diffeomorphism from [0,1]
onto [0,1] was computed each time together with the same elastic shape distance between
the two curves in 3−dimensional space used as input to the software. Graphs of the optimal
diffeomorphisms for each pair of surfaces in the order of the plots from left to right in Fig-
ure 2, are shown in Figure 3. In addition, Figure 4 shows results of the partial elastic shape
registration of the pair of surfaces in the rightmost plot in Figure 2. The pair of surfaces is
shown in the leftmost plot of the figure before any computations took place. In the middle
plot we see the first surface after it was rotated with the corresponding computed optimal
rotation matrix mentioned above. In the rightmost plot we see the second surface after it
was reparametrized with the homeomorphism on the unit square corresponding to the par-
tial elastic shape registration of the pair of surfaces, a homeomorphism computed based
on the optimal diffeomorphism obtained each time (101 times) the Dynamic Programming
software was executed for the pair of surfaces, and that because of the simplicity of the
surfaces involved and the fact that for the given γ the discretization of the second surface
was perturbed only in the r direction, was always the same diffeomorphism, the diffeomor-
phism whose graph appears in the rightmost plot in Figure 3.

Finally, we note that with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], the software package
was applied on the pair of surfaces in the leftmost plot in Figure 2. The computed elastic
shape distance between the two surfaces was 0.0126, the time of execution was 28 sec-
onds, with the repeat loop in Procedure DP-surface-min in Section 7 executed 3 times, and
the computed optimal rotation matrix for the pair of surfaces was

(
0 1 0
0 0 1
1 0 0

)
. These results

were not far from those obtained with the previous γ , however for the current γ the dis-
cretization of the second surface was perturbed in both the r and t directions. As Procedure

22



NIST TN 2274
November 2023

Fig. 4. With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], views of boundaries of pair of surfaces in the
rightmost plot in Figure 2 before computation of partial elastic shape registration (leftmost plot
here), of boundary of optimally rotated first surface (middle plot), and of boundary of optimally
reparametrized second surface (rightmost plot) after computations.

Fig. 5. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], views of graph of optimal diffeomorphism
computed the 51st time the Dynamic Programming software was executed (leftmost plot), of
boundary of optimally rotated first surface (middle plot), and of optimally reparametrized second
surface (rightmost plot) after computation of partial elastic shape registration.

DP-surface-min is not equipped to handle perturbations in the t direction, perhaps this was
the reason why the computed elastic shape distance between the two surfaces was not ex-
actly zero as in particular the optimal orientation-preserving diffeomorphisms from [0,1]
onto [0,1] computed with the Dynamic Programming software differed slightly from one
another, while the computed elastic shape distances between the curves in 3−dimensional
space used as input to the software differed from one another as well and were not exactly
close to zero. The graph of the optimal diffeomorphism computed the 51st time the Dy-
namic Programming software was executed is shown in Figure 5 together with results of
the partial elastic shape registration of the pair of surfaces. It should be noted here that per-
haps as long as the second surfaces we have chosen for testing the software are perturbed
in the same manner in the r direction, it is likely the graphs of the optimal diffeomorphisms
computed with the Dynamic Programming software will tend to resemble one another re-
gardless of the surfaces involved.

The next results that follow were obtained from applications of our software package on
discretizations of surfaces in 3−dimensional space of the helicoid kind. Given k, a positive
integer, one type of surface to which we refer as a surface of the helicoid kind (type 1) is
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Fig. 6. Boundaries of two surfaces of similar shape of the helicoid kind for k = 4, type 1 in red,
type 2 in blue.

defined by

x(r, t) = r coskπt, y(r, t) = r sinkπt, z(r, t) = kπt, (r, t) ∈ [0,1]× [0,1],

and another one (type 2) by

x(r, t) = kπt, y(r, t) = r coskπt, z(r, t) = r sinkπt, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter, thus

of similar shape.

A plot depicting two surfaces (actually their boundaries) of similar shape of the helicoid
kind for k = 4 is shown in Figure 6. (Note that in the plot there, the x−, y−, z− axes are not
always to scale relative to one another). The two surfaces being of similar shape, clearly the
elastic shape distance between them is exactly zero, and the hope was once again that the
execution of our software package applied on these two surfaces would produce an elastic
shape distance between them equal or close to zero. The type 2 surface of the helicoid kind
in the plot (in blue) was considered to be the first surface in the plot. The other surface in
the plot (in red) is a type 1 surface of the helicoid kind and was considered to be the second
surface in the plot.
With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], the two surfaces in the plot were then dis-
cretized as described above and a partial elastic shape registration of the two surfaces and
the elastic shape distance between them associated with the partial registration were then
computed through the execution of our software package. Again we note that for this partic-
ular γ , the discretization of the second surface was perturbed only in the r direction which
as pointed out above made the software package more likely to succeed. The computed
distance was 0.0002, which, as hoped for, was close enough to zero. The time of execution
was 15 seconds with the repeat loop in Procedure DP-surface-min in Section 7 executed 2
times. The computed optimal rotation matrix for the pair of surfaces was

(
0 1 0
0 0 1
1 0 0

)
. As was
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Fig. 7. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], views of graph of optimal diffeomorphism
computed each time the Dynamic Programming software was executed on pair of surfaces
(leftmost plot), of boundary of optimally rotated first surface (middle plot), and of optimally
reparametrized second surface (rightmost plot) after computation of partial elastic shape
registration.

the case for surfaces of the sine kind, once again essentially the same solution was obtained
each time the Dynamic Programming software was executed as essentially the same two
curves in 3−dimensional space contained in the surfaces in the r direction were used each
time as input to the software (the same two curves in the sense that given a pair of curves
used as input, the two curves had the same shape and that shape was the same shape of each
curve in any other pair used as input to the Dynamic Programing software). In particular,
essentially the same optimal orientation-preserving diffeomorphism from [0,1] onto [0,1]
was computed each time together with the same elastic shape distance close to zero be-
tween the two curves in 3−dimensional space used as input to the software. The graph of
this optimal diffeomorphism is shown in Figure 7 together with results of the partial elastic
shape registration of the pair of surfaces.

Finally, we note that with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], the software package
was applied again on the pair of surfaces. The computed elastic shape distance between
the two surfaces was 0.0796, the time of execution was 19 seconds, with the repeat loop
in Procedure DP-surface-min in Section 7 executed 2 times, and the computed optimal ro-

tation matrix for the pair of surfaces was approximately
(

.028 .762 .647
−.029 −.646 .763
.999 −.040 .004

)
. These results

were not as good as those obtained with the previous γ but still acceptable considering
that for the current γ the discretization of the second surface was perturbed in both the r
and t directions. As mentioned above Procedure DP-surface-min is not equipped to handle
perturbations in the t direction, so perhaps this was the reason why the computed elastic
shape distance between the two surfaces was not exactly zero as in particular the optimal
orientation-preserving diffeomorphisms from [0,1] onto [0,1] computed with the Dynamic
Programming software differed slightly from one another, while the computed elastic shape
distances between the curves in 3−dimensional space used as input to the software differed
from one another as well and were not exactly close to zero. This inability to handle per-
turbations in the t direction may have also affected the computation of the optimal rotation
matrix. The graph of the optimal diffeomorphism computed the 51st time the Dynamic Pro-

25



NIST TN 2274
November 2023

Fig. 8. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], views of graph of optimal diffeomorphism
computed the 51st time the Dynamic Programming software was executed (leftmost plot), of
boundary of optimally rotated first surface (middle plot), and of optimally reparametrized second
surface (rightmost plot) after computation of partial elastic shape registration.

gramming software was executed is shown in Figure 8 together with results of the partial
elastic shape registration of the pair of surfaces. Once again we note that perhaps as long
as the second surfaces we have chosen for testing the software are perturbed in the same
manner in the r direction, it is likely the graphs of the optimal diffeomorphisms computed
with the Dynamic Programming software will tend to resemble one another regardless of
the surfaces involved.

The final results that follow were obtained from applications of our software package on
discretizations of surfaces in 3−dimensional space that are actually graphs of 3−dimensional
functions based on the product of the cosine and sine functions. One surface of this kind to
which we refer as a surface of the cosine-sine kind (type 1) is defined by

x(r, t) = r, y(r, t) = t, z(r, t) = (cos0.5πr)(sin0.5πt), (r, t) ∈ [0,1]× [0,1],

and another one (type 2) by

x(r, t) = (cos0.5πr)(sin0.5πt), y(r, t) = r, z(r, t) = t, (r, t) ∈ [0,1]× [0,1],

the former a rotation of the latter by applying the rotation matrix
(

0 1 0
0 0 1
1 0 0

)
on the latter, thus

of similar shape.

A plot depicting two surfaces (actually their boundaries) of similar shape of the cosine-sine
kind is shown in Figure 9. (Note that in the plot there, the x−, y−, z− axes are not always
to scale relative to one another). The two surfaces being of similar shape, clearly the elastic
shape distance between them is exactly zero, and the hope was once again that the execu-
tion of our software package applied on these two surfaces would produce an elastic shape
distance between them equal or close to zero. The type 2 surface of the cosine-sine kind in
the plot (in blue) was considered to be the first surface in the plot. The other surface in the
plot (in red) is a type 1 surface of the cosine-sine kind and was considered to be the second
surface in the plot.
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Fig. 9. Boundaries of two surfaces of similar shape of the cosine-sine kind, type 1 in red, type 2 in
blue.

With γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], the two surfaces in the plot were then dis-
cretized as described above and a partial elastic shape registration of the two surfaces and
the elastic shape distance between them associated with the partial registration were then
computed through the execution of our software package. Again we note that for this par-
ticular γ , the discretization of the second surface was perturbed only in the r direction which
as pointed out above made the software package more likely to succeed. The computed dis-
tance was 0.0002, which, as hoped for, was close enough to zero. The time of execution was
22 seconds with the repeat loop in Procedure DP-surface-min in Section 7 executed 3 times.
The computed optimal rotation matrix for the pair of surfaces was essentially

(
0 1 0
0 0 1
1 0 0

)
. It

should be noted here that the type 1 surface of the cosine-sine kind satisfies that given t1,
t2, 0 ≤ t1 < t2 ≤ 1, then the two 3−dimensional curves in the surface obtained by fixing t
to t1 and t to t2, have different shapes. In spite of this, the optimal orientation-preserving
diffeomorphisms from [0,1] onto [0,1] computed with the Dynamic Programming software
for the given γ , although differing from one another, differed only very slightly, while the
computed elastic shape distances between the curves in 3−dimensional space used as in-
put to the software were all very close to zero. The graph of the optimal diffeomorphism
computed the 51st time the Dynamic Programming software was executed is shown in Fig-
ure 10 together with results of the partial elastic shape registration of the pair of surfaces.

Finally, we note that with γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], the software package
was applied again on the pair of surfaces. The computed elastic shape distance between
the two surfaces was 0.0143, the time of execution was 23 seconds, with the repeat loop
in Procedure DP-surface-min in Section 7 executed 3 times, and the computed optimal ro-

tation matrix for the pair of surfaces was approximately
(−.043 .999 .026
−.035 −.028 .999
.998 .042 .036

)
. These results

although not as good as those obtained with the previous γ were still acceptable consider-
ing once again that for the current γ the discretization of the second surface was perturbed
in both the r and t directions. Again as mentioned above Procedure DP-surface-min is not

27



NIST TN 2274
November 2023

Fig. 10. For γ(r, t) = (r5/4, t), (r, t) ∈ [0,1]× [0,1], views of graph of optimal diffeomorphism
computed the 51st time the Dynamic Programming software was executed on pair of surfaces
(leftmost plot), of boundary of optimally rotated first surface (middle plot), and of optimally
reparametrized second surface (rightmost plot) after computation of partial registration.

Fig. 11. For γ(r, t) = (r5/4, t5/4), (r, t) ∈ [0,1]× [0,1], views of graph of optimal diffeomorphism
computed the 51st time the Dynamic Programming software was executed (leftmost plot), of
boundary of optimally rotated first surface (middle plot), and of optimally reparametrized second
surface (rightmost plot) after computation of partial elastic shape registration.

equipped to handle perturbations in the t direction, so perhaps this was the reason why
the computed elastic shape distance between the two surfaces was not exactly zero as in
particular the optimal orientation-preserving diffeomorphisms from [0,1] onto [0,1] com-
puted with the Dynamic Programming software differed slightly from one another, while
the computed elastic shape distances between the curves in 3−dimensional space used as
input to the software differed from one another as well and were not exactly close to zero.
The graph of the optimal diffeomorphism computed the 51st time the Dynamic Program-
ming software was executed is shown in Figure 11 together with results of the partial elastic
shape registration of the pair of surfaces. Once again we note that perhaps as long as the
second surfaces we have chosen for testing the software are perturbed in the same manner
in the r direction, it is likely the graphs of the optimal diffeomorphisms computed with
the Dynamic Programming software will tend to resemble one another regardless of the
surfaces involved.
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9. Summary

In this paper we have presented an algorithm for computing, using Dynamic Programming,
a partial elastic shape registration of two simple surfaces in 3−dimensional space together
with the elastic shape distance between them associated with the partial registration. The
algorithm we have presented minimizes a distance function of the surfaces in terms of rota-
tions of one of the surfaces and a special subset of the set of reparametrizations of the other
surface, the optimization over reparametrizations based on the computation, using Dynamic
Programming, of the elastic shape registration of pairs of simple curves in 3−dimensional
space contained in the surfaces. This algorithm does not necessarily compute an optimal
elastic shape registration of the surfaces together with the exact elastic shape distance be-
tween them, but perhaps a registration and a distance closer to optimal than those obtained
with an algorithm based on a gradient approach over the entire set of reparametrizations of
one of the surfaces. In fact we propose that when computing the elastic shape registration
of two simple surfaces and the elastic shape distance between them with an algorithm based
on a gradient approach for optimizing over the entire set of reparametrizations of one of
the surfaces, to use as the input initial solution the rotation and the reparametrization com-
puted with our proposed algorithm. Finally, we note, promising results from computations
with the implementation of our methods applied on three simple kinds of 3−dimensional
surfaces, have been presented in this paper. A link to the software package, etc., has been
given as well.
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