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A B S T R A C T   

Graph neural networks have been successfully applied to machine learning models related to molecules and 
crystals, due to the similarity between a molecule/crystal and a graph. In this paper, we present three models that 
are trained with high-quality experimental data to predict three molecular properties (Kováts retention index, 
normal boiling point, and mass spectrum), using the same GNN architecture. We show that graph representations 
of molecules, combined with deep learning methodologies and high-quality data sets, lead to accurate machine 
learning models to predict molecular properties.   

1. Introduction 

In recent years, the adoption and efficacy of machine learning (ML) 
and artificial intelligence (AI) have advanced rapidly due to more 
powerful compute hardware and software as well as the availability of 
large data sets. Breakthrough applications include AlphaGo [1], large 
language models (such as the Generative Pre-training Transformer, 
GPT), and self-driving cars. ML methodologies have been applied to 
molecular sciences and chemistry, such as material design and drug 
discovery [2–9], synthesis planning and reaction optimization [10–13], 
protein structure prediction [14,15], and to a wide range of theoret-
ical/computational chemistry targets [16–20]. Among these applica-
tions, predicting molecular properties stands out as a key component in 
drug and materials design, and this is the subject of this paper. 

Data play a central role in ML. Unfortunately, experimental data in 
the physical sciences are often scarce and costly to assemble. (Data sets 
presented in this article are products of decades of curation and even 
longer to measure.) There are several strategies to address data scarcity. 
The first is to use theory and computation to generate data. For example, 
density functional theory can produce large sets of data rapidly (in some 
cases) to augment or supplement measurement data. However, accurate 
and reliable computations are still costly; the cost of “gold-standard” 
coupled-cluster theory scales as N7, where N is the size of the electronic 
space. This scaling makes the coupled cluster method prohibitively 
expensive for molecules with more than tens of atoms. An alternate 
strategy accepts the scarcity of relevant data and trains a model with 

small data sets. For example, active learning [21–23] can guide exper-
iments (or expensive computations) in selecting the most informative 
data points, thereby reducing the size of the data set needed for a suc-
cessful model. Transfer learning [24–26] uses a pre-trained model that is 
based on abundant data for a related problem, and then tunes the model 
with a small amount of data for the target problem. The quantity of 
experimental data is not the only concern; the quality of experimental 
data usually varies due to dependence on experimental conditions, in-
strument precision, sample purity, and even the instrument operator. 

Once a suitable problem has been identified and a dataset has been 
selected for training the ML model, it is necessary to select the features 
(i.e., input data) that will be used in the training process. Well-chosen 
features may lead to a robust model, whereas other features may have 
little effect on the performance of a model. For molecular property 
prediction, a key question can be the representation of the structure of 
the molecule or crystal [27]. When the 3D coordinates of the atoms in 
the molecules are available (e.g., for applications in theoretical and 
computational chemistry), some widely used molecular representations 
include Coulomb matrix [28], bag-of-bonds [29], atom-centered sym-
metry functions [30], and smooth overlap of atomic positions [31]. 
When 3D coordinates are not available, which is often true for experi-
mental data, the simplified molecular input line entry system (SMILES) 
representation [32] or molecular fingerprints [33] can be used as the 
input to various machine learning models. 

We employed a 2D topological molecular graph as the representation 
for molecular systems and a graph neural network (GNN) as these are 
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more closely aligned with the internal structure of chemical compounds 
where chemical bonds play a prominent role in the properties of these 
compounds. Intuitively, it is easier for a GNN to learn from a chemical 
compound that is itself represented as a graph. One advantage of a graph 
representation is that it is a natural and expressive representation of a 
molecule: nodes in the graph correspond to atomic centers and edges of 
the graph correspond to chemical bonds. For each node and edge, a 
feature vector containing attributes of the corresponding atom or bond, 
such as the atom type, hybridization, or bond order provides the input 
data for the model. In the model described in this article, these feature 
vectors are updated during training using information from neighboring 
atoms and bonds exchanged via message passing [34,35] between the 
nodes and edges of the molecular graph, giving the model additional 
flexibility to predict the molecular property of interest. Additional de-
tails of the GNN model are given in Section 3. 

Here we present applications of the GNN model trained on high- 
quality experimental data sets curated by NIST [36–38]. In particular, 
we predict Kováts retention indices [39], normal boiling points, and 
mass spectra. Before presenting the details of our GNN models and the 
data libraries used to train these models, we first give some background 
information on Kováts retention indices, normal boiling points, and 
mass spectra. 

Gas chromatography (GC) is an important analytical technique for 
the separation and identification of chemical compounds. In a GC 
experiment, a mixture of target substances, often unknowns, in a 
gaseous state and a carrier gas is passed through a chromatography 
column. The time elapsed before the unknown compound passes 
through the column is indexed against the elution times of known 
compounds; this index is called the retention index. It has been 
demonstrated [39] that the retention index can be made independent of 
many experimental factors such as column length, column diameter, and 
film thickness. This results in a dimensionless quantity known as the 
Kováts retention index. 

GC is frequently used in combination with mass spectrometry (GC/ 
MS) as a means of enhancing the accuracy of identifying chemical 
compounds. In this context, matching the retention index can signifi-
cantly improve the confidence in results generated by library searching 
versus use of the mass spectrum alone [40]. Therefore, accurate pre-
diction of Kováts retention indices has considerable value and many 
techniques have been employed to predict retention indices [41–45]. 

In addition to combining library searching with the retention index, 
augmenting existing mass spectral libraries is another strategy to better 
identify unknown compounds [46,47]. In 2019, the Google Brain team 
reported results from their attempt to predict mass spectra using ma-
chine learning. Their machine learning methodology, a multi-layer 
perceptron (MLP) model trained with the NIST mass spectral library 
(2017 version) achieved reasonably good results [48]. However, as 
noted by the authors, further improvements were possible. Recently, 
GNNs have also been used to accurately predict the mass spectra [49, 
50]. Zhang et al. employed a similar GNN approach, which inputs a 
whole molecular graph and outputs a vector representing the intensity at 
each integer mass-to-charge ratio (m∕z), and this model achieved an 
accuracy comparable to our model [49]. The other model developed by 
Zhu and Jonas uses a different approach: it first enumerates possible 
fragment formulae or possible subsets of atoms, and uses a GNN to 
predict the probability that fragment formula or subset occurs in the 
experiment. The latter is the best model available at present, not only 
due to its accuracy, but also because of two additional advantages over 
our model: first, the peaks (positions and intensities) due to isotope 
substitution can be naturally obtained by using the fragment formulae or 
subsets and their corresponding probability; second, this methodology 
can be generalized easily for high-resolution mass spectra, while our 
GNN model only applies to integer m∕z, and needs to be retrained for a 
different resolution. 

Normal boiling point, albeit a relatively simple property, is still 
routinely used as a measure of the purity of chemical substances. As 

such, predicting normal boiling points using a variety of methods con-
tinues to be of significant interest. Determination of the normal boiling 
point dates back hundreds of years [51]. Quantitative 
Structure-Property Relationship (QSPR) models have been used exten-
sively to predict the normal boiling points [52,53], and recently, ma-
chine learning methodologies have been applied [54–58]. 

Having set the stage for the importance of predicting these three 
properties, we now describe our data set, model, and results with an 
emphasis on the importance of the graph representation and the quality 
of the data sets. 

2. Data sets 

NIST has been collecting data from various sources such as literature 
and research labs across the world, and more importantly, has critically 
evaluated the data for their reliability, resulting in high-quality libraries 
that are suitable for ML applications. The two data libraries described 
below are used in our work. 

2.1. NIST 20 mass spectral library 

The 2020 release of the NIST/EPA/NIH Mass Spectral Library [59] is 
a critically evaluated [60] collection containing 306,869 molecules with 
their corresponding mass spectra. Specifically, the library contains a 2D 
representation of each molecule (in Molfile format), its mass spectrum, a 
measured (i.e., experimental) value of the Kováts retention index 
(available for about 112,000 molecules), a predicted value of the Kováts 
retention index based on the model of Stein et al. [41], an estimated 
uncertainty on the predicted retention index value, as well as other data 
and metadata on the chemical compound. 

The mass spectrum of a compound in this library consists of a set of 
m∕z, rounded to integer values, and the corresponding intensities 
(which are proportional to the abundance of ions with those m∕z ratios). 
The intensity of the highest peak is set to 999 for each compound. This is 
because the absolute intensities depend on many experimental factors, 
and relative intensities are what we use in spectral-matching algorithms. 

The primary purpose of the library is for use in matching unknown 
chemical compounds to aid in mass spectral identification via direct 
matching of the measured mass spectrum to a library spectrum. By 
matching the retention indices first, the number of searches for a 
matching mass spectrum can be greatly reduced [41]. This makes col-
lecting Kováts retention indices useful in some mass spectral matching 
schemes. 

2.2. TRC 

The NIST Thermodynamics Research Center (TRC) SOURCE Data 
Archival System has captured 22,935 determinations of normal boiling 
points of different molecules from numerous literature sources. In many 
cases, there are multiple measurements of the normal boiling point for a 
single molecule, permitting the selection of a consensus value. In total, 
the data set consists of about 4000 molecules and corresponding normal 
boiling points. 

2.3. Preprocessing of the data sets 

The sets of molecules in both libraries were processed prior to 
training the ML model to ensure that the data set has sufficient infor-
mation to adequately represent chemical functionalities and corre-
sponding properties. Each of the filters described below was used to 
ensure that the data set contains a sufficient number of molecules so that 
the training procedure is able to learn from a larger number of molecules 
as opposed to fitting many disparate cases. 

First, the number of occurrences of a given atom type in the mole-
cules in the data set was counted. If a particular atom occurred only in a 
small fraction ( <1 %) of molecules, molecules containing that atom 
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were excluded from the set. For example, among the 306,869 molecules 
in the NIST 20 Mass Spectral Library, 3160 of them contain one or more I 
atoms. The next frequent atom, B, only appears in 1456 molecules. We 
decided to exclude molecules containing B atoms because the library 
does not have sufficient samples for a good representation of B-con-
taining molecules. For both datasets, we ended up with molecules con-
taining only the following atoms: C, H, O, N, Cl, F, Br, S, Si, P, and I. 

Next, we examined histograms of molecular mass and molecular 
properties (i.e., Kováts retention indices and normal boiling points), and 
removed molecules with extreme values, because the data at the 
extreme values are too scarce to produce a meaningful predictive model. 
As an example, Fig. 1 shows the distribution of molecular mass for 
molecules in the NIST 20 library. In the histogram plot, it can be seen 
that there are few entries with molecular mass smaller than 50 amu or 
larger than 850 amu, so the mass range was set to these bounds when 
training the model to predict the mass spectra of molecules. Based on 
this filter, only 307 molecules were eliminated. 

In the case of normal boiling points, where multiple determinations 
of the boiling point for the same molecule are available, a single 
consensus boiling point is determined as the mean of the set of values. 
For sets with three or more measurements, the Grubbs 2-tail outlier test 
[61] was applied to filter out the data points that significantly deviate 
from the remaining data in this set. 

3. Method 

Our machine learning model is based on the materials graph network 
(MEGNet) approach developed by Chen et al. [36,62]. The MEGNet 
methodology incorporates a graph network architecture that captures 
molecular structure in a very natural way, providing a powerful 
framework for machine learning of chemical properties. 

It is worth mentioning that MEGNet has been extended to M3GNet, 
which incorporates 3-body interactions (i.e., angular information) in 
addition to the distance information [63]. It is shown that models using 
angular information [64–67] or incorporating equivariant message 
passing[68–70] can outperform distance only models. Nevertheless, we 
still employed the MEGNet model because we only used 2D connectivity 
information of the molecule. 

3.1. General architecture of the MEGNet model 

In the present graph neural network (GNN) model, atomic centers 
correspond to nodes in the graph and chemical bonds correspond to 
graph edges. The input data to the model is obtained from a 2D Molfile 
representation of the molecule. This format contains information about 
the atoms and their chemical bonding, but does not provide any 3D 

structural information. 
The MEGNet methodology captures molecular information at the 

level of atoms, chemical bonds, and the whole molecule, with the 
chemical structure contained in the structure of the graph representa-
tion. This model has been tested for a variety of chemical properties on 
both molecular and crystalline systems and found to perform well [36]. 

The GNN model used in this study typically incorporates 5 atomic 
features, 3 bond features (more strictly, pair features, see below), and 3 
global features. These features are summarized in Table 1; they were 
selected via a trial and error process, considering a large number of 
features and testing the sensitivity of the model to including/removing 
various features. Among these features, ring sizes and atomic mass are 
only used for the mass spectrum, while the remaining features are used 
in all three problems. Note that for bond (pair) features, we actually 
considered atom pairs, not just those that are formally chemically 
bonded, so “no bond” is also a possible value in bond type. The graph 
distance is defined as the smallest number of chemical bonds between the 
atoms in the pair. The model does not encode the complete graph of the 
molecule as pairs of atoms with a graph distance greater than 5 are 
excluded, leading to a considerable reduction in the memory required to 
train the model. All these features were computed using RDKit [71]. 

We only used 2D information of the molecule—only connectivity, 
without 3D structural information such as bond length and angles. The 
main reason for not using 3D information is that 3D structures are not 
available in these library. We attempted to use 3D structure information 
from conversion of 2D structures and force field (molecular mechanics) 
minimization, but abandoned this approach because we did not see 
significant improvement. In addition, our goal is to facilitate rapid 
prediction of certain molecular properties; using Molfile input which is 
easily created with chemical structure drawing software or obtained via 
name to structure conversion allows us to develop an efficient workflow 
for property prediction. 

The feature vectors are inputs to “MEGNet blocks,” which are 
composed of two layers of densely-connected multi-layer perceptrons. 
We used (128, 64) units in these two layers for retention index, (64, 32) 
units for boiling point, and (256, 128) units for mass spectrum. These 
layers are input to a “message-passing” block where the atomic, bond, 
and global attributes are successively updated. The MEGNet blocks (we 
used 3 blocks for retention index and boiling point, and 6 blocks for mass 
spectrum) are followed by a “Set2Set” readout function in which the 
output of the atomic and bonding attributes are mapped to the appro-
priate vector quantities. This is followed by a concatenation step and a 
few densely-connected layers before the final output. We used (64, 32) 
units in these densely-connected layers for retention index, (32, 16) for 
boiling point, and (2000, 2000, 2000) for mass spectrum. These 
hyperparameters mentioned above were tuned for each system. The 
rectified linear unit (“ReLU”) activation function is used in all layers 

Fig. 1. Distribution of molecular mass for molecules in the NIST 20 library.  

Table 1 
Features used in the GNN model for mass spectrum.  

Feature Feature 
Type 

Length Meaning 

Atom type atomic  11 one-hot encoding for 11 possible 
atoms 

Atomic mass atomic  1 scalar 
Hybridization atomic  6 one-hot encoding for [s, sp, sp2, sp3, 

sp3d, sp3d2] 
Formal charge atomic  1 scalar 
Bond type bonding  5 one-hot [no bond, single, double, 

triple, aromatic] 
Same ring bonding  1 0/1 whether two atoms are in the 

same ring 
Graph distance bonding  1 scalar 
Number of bonds global  1 scalar 
Molecular mass M global  1 scalar 
Number of non-H 

atoms 
global  1 scalar  
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except the final output layer, where different activation functions are 
used for different problems, as described in detail below. 

3.2. Adaptation for different problems 

3.2.1. Mass spectra 
Prediction of the mass spectrum is a more challenging problem than 

its Kováts retention index or normal boiling point counterparts, because 
both retention indices and boiling points are scalar quantities, requiring 
the prediction of a single quantity by the model. In the case of mass 
spectra, a spectrum, which consists of the positions (m∕z) of spectral 
signals and their corresponding amplitudes, must be predicted. The first 
step is to find an appropriate numerical representation of the mass 
spectrum. The experimental mass spectrum of a molecule, as obtained 
from the NIST library, is given as a set of m∕z ratios (corresponding to 
molecular fragments) with the corresponding relative abundance (i.e., 
intensity) of the fragment. Both quantities are given as integers. 
Therefore, we convert a mass spectrum to a vector of length 1000, with 
each entry of the vector representing an integer value of m∕z up to 1000, 
with the k-th entry in this vector representing the intensity at m∕z = k. 
The spectra are then normalized such that its L1-norm of the relative 
abundance is 1.0. In addition, a baseline intensity of 10− 7 is added, so 
that the minimum intensity is 10− 7. This was done due to the particular 
form of the error measure that was used in the model as we describe 
below. The spectra represented in this manner were used as the desired 
output of the GNN model. Because the length of the output vector is 
1000, this model can only predict the portion of the mass spectrum with 
m∕z < 1000. For molecules whose masses are greater than 1000, the 
model cannot predict the complete spectra, and therefore not recom-
mended. Furthermore, all molecules whose masses are greater than 
850 amu and smaller than 50 amu were excluded when training this 
model, so it is also not recommended to use this model to predict for 
molecules with a mass significantly beyond this range. 

The model output is a vector of size 1000, making the task of training 
the NN model much more challenging, with much of the challenge 
associated with the choice of an appropriate error function for use in 
training. As a result, the present model differs considerably from those in 
previous work by the authors [37,38]. 

There is an intrinsic symmetry in the mass spectrum, that is, if a 
fragment with mass x exists, a fragment with mass M–x is likely to be 
present in the spectrum, where M is the molecular mass. This intrinsic 
symmetry can be exploited in the ML model by using the bidirectional 
prediction approach by Wei et al. [48]. Specifically, the prediction is 

v = σ(g) ⊙ vf + [1 − σ(g)] ⊙ vr, (1)  

where vf and vr are forward and reverse predictions, respectively, g is an 
affine transformation of the last hidden layer X (i.e., g = W ⋅ X + b), σ is 
the sigmoid function, and ⊙ denotes component-wise multiplication. 
(See Wei et al. [48] for full details.). 

Predictions from the model are scaled such that the intensity of the 
highest peak is equal to 999 and values are rounded to the nearest 
integer. This is done to mimic the format of the NIST20 reference library. 

3.3. Loss function 

We used mean-absolute-error as the loss function for normal boiling 
points and Kováts retention indices. In these two models, this loss 
function is better than the mean-squared error typically used for re-
gressions [37,38]. 

For mass spectra, as stated above, a large part of the difficulty in 
training a robust and reliable model to predict mass spectra relies on the 
error function used in training the model. A function is needed to 
compute the “distance” between two spectra, giving a small distance 
(low error) when two spectra are similar and a large distance (high 
error) when two spectra have very little in common. Evaluating this 

similarity involves two dimensions, the m∕z value and the relative 
abundance (or intensity). Since the distance function returns a single 
scalar representing the similarity of two spectra, it is easy for many 
details to be obscured in the sum over hundreds of m∕z values and thus 
not accessible to optimization. We considered two different loss func-
tions, the earth-mover’s distance (EMD, Eq. (2)), a widely used simi-
larity measure for histograms [72] and therefore also applicable to mass 
spectra [73], and the symmetrized version of the Kullback-Leibler 
divergence (KL, Eq. (3)), inspired by a message-passing NN model that 
predicts infrared spectra [74]. We trained two GNN models using either 
one of these two as the loss function, and the predictive error of the two 
models are assessed using two additional error metrics (mass-weighted 
mean-square error, Eq. (4), and mass-weighted cosine similarity, Eq. 
(5)). The model trained with KL divergence produces slightly lower 
mass-weighted mean-square error, and higher mass-weighted cosine 
similarity. In addition, the predicted spectra from the model trained 
with EMD have more spurious lines. Therefore, we chose symmetrized 
version of KL divergence as the loss function. The definition of these 
similarity measures or error metrics are given below: 

EMD(u, v) =
∑

k

⃒
⃒
⃒C (u, v)
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⃒
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where u and v are the reference and predicted spectra, respectively; 
C (u, v) is the cumulative sum of the difference of spectra u and v eval-
uated over all values of m∕z; index k runs from 1 to the maximum 
allowed value of m∕z (N, 1000 in the present case); uk is the relative 
abundance (intensity) of the kth m∕z peak for the known (library) 
spectrum, and vk is the corresponding quantity for the predicted 
spectrum. 

3.4. Activation function of the last layer 

Scalar quantities were normalized via computing the z-score y′ =
y− μy

σy
, where y′ is the value of the normalized quantity, y is the corre-

sponding unnormalized quantity, μy is the mean of y, and σy is the 
standard deviation of y. Therefore, the distribution of y′ is centered at 0, 
with both positive and negative values, and a linear activation is 
appropriate. For mass spectra, on the other hand, since all intensities are 
non-negative values, and they span three orders of magnitude, an 
exponential activation function is used. 

3.5. Training and validation 

To facilitate the eventual model validation, the data set was divided 
into 10 equally sized “folds” of randomly selected data. During model 
training, 80 % of the data was used as the training set with an additional 
10 % of the data used as a validation set. The remaining 10 % of the data 
is used as a testing set. 

The training was conducted using the “Adam” optimizer with mini 
batches, and using hyperparameters tuned for each problem. The batch 
size is 32 for retention index and boiling point, and 64 for mass spec-
trum. The learning rate is 2 × 10− 4. Early stopping is used for the 
training to mitigate overfitting. Briefly, we monitor the loss function of 
the validation set and if it does not improve for a certain number of 
epochs (150 steps for retention index, 300 for boiling point, and 100 
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steps for mass spectrum), the training is terminated. 

4. Results and discussion 

4.1. Mass spectrum 

There are a number of approaches that can be taken in evaluating the 
performance of a model used to predict mass spectra. Among these, two 
strategies emerge. The first is to use a measure that describes the error in 
peak location and height on a peak-by-peak or aggregate basis. The 
second is to evaluate the performance of the model in its ultimate 
application, in this case matching library spectra. Both approaches are 
utilized in this article. However, as assessing the performance of the 
model based on the Kullback-Leibler measure produces values that are 
not intuitive, additional attention is given to measures of the first type. 

The first of these additional measures is the root sum of squared 
errors (RSSE), defined as 

RSSE(u, v) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

k
(uk − vk)

2
√

(6)  

where u and v are the reference and predicted spectra, respectively. This 
function, like the Kullback-Leibler measure, but unlike the MSE, has the 
advantage that the units may be directly compared to those of the mass 
spectrum (i.e., intensity). Since the spectra are normalized prior to 
training, the values of this metric may be compared to unity; an error 
metric of one means that the differences in the peak heights of the 
reference and predicted spectra differ by as much as the sum of the peak 
heights in either spectrum. Note that differences in peak heights are 
important, but differences in the location of these peaks (corresponding 
to the value of m∕z) are much more important from a physical point of 
view, in particular because many library matching functions rely on 
accurately matching the m∕z values. 

The second additional measure is the sum of absolute errors (SAE), 
defined as 

SAE(u, v) =
∑

k

⃒
⃒
⃒uk − vk

⃒
⃒
⃒ (7)  

This error measure is expected to give similar information to the RSSE. 
Values for the Kullback-Leibler, RSSE, and SAE measures are given in  

Table 2 for the model presented in this article. The results are presented 
for the training, validation, and testing data sets given by a 10-fold cross- 
validation testing protocol. Briefly, we divided the data set into 10 sets 
(or “folds”) and then trained the model 10 times, each time using 8 folds 
as the training set, 1 fold as the validation set, and the remaining 1 fold 
as the testing set. The minimum, maximum, median, mean, and standard 
deviation of the mean errors are presented. It is immediately apparent 
that the model used in this study is subject to strong overfitting as evi-
denced by the larger error measures in the testing versus training data. 

The performance of the present model may be compared to that of 
the model of Wei et al. [48]. From the values in Table 3, it can be seen 
that their model experiences much less overfitting. However, the values 

of the Kullback-Leibler and SAE measures are considerably larger for 
that model compared to the results of the present study. The results for 
the Kullback-Leibler measure can be rationalized by considering that 
this was the error function used in training the present model. In 
contrast, the differences in the values of RSSE and SAE are not explained 
by the choice of the training function. The present model gives RSSE and 
SAE values that are 4–6 times smaller than the model of Wei et al. with a 
smaller standard deviation. Finally, note that the analysis of the data set 
of Wei et al. [48] has been limited to the testing set used in that paper, 
meaning that the model is tested on approximately 11,500 spectra 
instead of the full set. 

Next, we compare the results of our model to those of the models 
developed by Zhu and Jonas. Fig. 2 compares the mass-weighted cosine 
similarity and the Stein dot product [75] among indicated models. As we 
can see, the models by Zhu and Jonas, the best model at present, are 
indeed more precise than ours and the model by Wei et al., especially the 
accuracy on the 10th percentile (bottom of the bars). 

The issue of overfitting is difficult to overcome in the present model. 
The primary method of reducing or controlling overfitting in the present 
model is the use of dropout layers. However, this strategy was less 
effective than desired as were other strategies such as using more data in 
the validation set during training. The model of Wei et al. [48] employs a 
specialized approach (deep residual learning [76]) to improve model 
training and avoid overfitting and the results suggest that this is quite 
successful. The deep residual learning approach is not part of the 

Table 2 
Performance of the present model based on 10-fold cross validation.  

Set n min ϵ max ϵ median ϵ mean ϵ σ (ϵ) 

Kullback-Leibler 
training  2,303,208  0.0000  6.5821  0.3064  0.3411  0.1961 
validation  287,901  0.0172  14.8265  0.9039  1.1534  0.9694 
testing  287,901  0.0159  20.5033  0.9041  1.1549  0.9727 
RSSE 
training  2,303,208  0.0012  0.8768  0.0806  0.0944  0.0518 
validation  287,901  0.0129  1.0279  0.1693  0.1882  0.1069 
testing  287,901  0.0110  1.0807  0.1695  0.1885  0.1071 
SAE 
training  2,303,208  0.0023  1.7404  0.3694  0.3775  0.1269 
validation  287,901  0.0458  1.9940  0.6948  0.7130  0.3275 
testing  287,901  0.0529  1.9869  0.6952  0.7134  0.3279  

Table 3 
Performance of the model of Wei et al. [48].  

Set n min ϵ max ϵ median ϵ mean ϵ σ (ϵ) 

Kullback-Leibler 
training  236,355  0.0000  31.2071  5.2212  5.6492  2.9698 
validation  11,505  0.2563  33.2832  5.5240  6.2335  3.3530 
testing  11,494  0.4299  31.7778  5.5184  6.2369  3.4011 
RSSE 
training  236,355  0.0150  1.3602  0.5666  0.5735  0.1017 
validation  11,505  0.2468  1.3497  0.6514  0.6718  0.1603 
testing  11,494  0.2263  1.3878  0.6533  0.6747  0.1635 
SAE 
training  236,355  0.0151  15.9228  4.2806  4.4963  1.5801 
validation  11,505  0.7554  18.7222  4.1441  4.4892  1.7326 
testing  11,494  0.7415  15.6727  4.1561  4.4978  1.7301  

Fig. 2. Mass spectra prediction performance of four models on the NIST library: 
our model, the model by Wei et al., two models by Zhu and Jonas (SubsetNet, 
SN, and FormulaNet, FN). The bottom and top of the bars represent the 10th 
and the 90th percentiles, respectively, with the middle bold tick representing 
the median. 
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MEGNet model used in this work, but it will be incorporated into the 
model in future applications. It is expected that this will lead to a sig-
nificant improvement in model performance. 

Three additional error measures were computed to more fully 
characterize model performance: mass-weighted mean-square error (as 
employed by Wei et al. [48]), cosine similarity, and earth mover’s dis-
tance. All spectra are normalized such that their L1 norm is 1.0 before 
computing the similarity measures. 

Results for the Kullback-Leibler measure and the three additional 
similarity measures defined above are given as histogram plots in Fig. 3, 
where the results of the present model and the model of Wei et al. [48] 
are both shown. In general, the present model has higher frequency of 
small errors, but has a longer tail (i.e., more errors with larger values) as 
compared to the results of Wei et al. [48]. One unexpected result seen in 
these plots is that the model of Wei et al. peaks at larger error values 
compared to the present model, whereas it might be expected that the 
histogram would peak at the smallest error values. This appears to be an 

artifact of the tuning of that model to maximize the performance on the 
recall@ 10 metric (a measure of the number of times the correct spec-
trum was ranked among the 10 best matching scores). When that model 
is trained in a similar manner to the present work, the errors are larger. 
This result might have been anticipated by the authors of that article in 
which they suggested that a GNN approach could outperform their 
MLP-based model. 

Finally, the performance of the model is assessed by comparing the 
results of the model developed in this work against the reference data, 
plotted as a mass spectrum (Fig. 4) with the logarithm of the intensity on 
the y axis to better show intensities that differ by orders of magnitude. 
Each panel in the figure indicates the relative quality of the result by 
giving the percentile ranking (kth percentile ranking means this pre-
diction is better than k% of all predictions) based on the value of the KL 
measure. In the figure, it is clear that spectra that are poorly predicted 
have significant spurious and missing peaks and that the intensities can 
be quite different. In contrast, spectra that are well predicted have few 

Fig. 3. Distributions of similarity measure values for the predicted spectra.  
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missing or spurious peaks and the intensities are more consistent. 
Scaling and rounding of the model output (as described above) 

eliminates a number of spurious peaks with very small intensity. This 
procedure is sufficient to remove peaks above the molecular mass 
without the need for an additional filtering step. This is a strong indi-
cation that the training error function in the present model is working 
well for this problem. 

It is interesting that the present model is trained in a few hundred 
epochs and gives the results shown herein. In contrast, the work of Wei 
et al. [48] used 100,000 epochs for model training. This suggests 
another potential avenue for improving the present model that is being 
pursued. 

In analyzing the predictions made by the present model, it was noted 
that molecules with large numbers of rings or those with multiple, fused 
ring systems tended to be less well predicted, whereas molecules with a 
significant alkane character tended to be better predicted. This suggests 
that additional features describing ring systems in more detail may lead 
to model improvement, and this is currently being investigated. 

4.2. Kováts retention indices and boiling points 

The overall statistics of the 10-fold cross-validation for the two 
models are shown in Table 4. One can immediately notice that the errors 
of the validation and testing sets are much larger than those of the 
training sets, which means that overfitting is present in both models. The 
early-stopping strategy used during the training cannot completely 
prevent overfitting. We tested other strategies such as dropout and 
adding regularization terms to the loss function. These strategies indeed 
decrease the gap between training error and validation/testing error, 
indicating that they are effective in mitigating overfitting. However, 

these strategies led to larger overall validation errors than those shown 
in Table 4. As a result, we did not incorporate dropout and regulariza-
tion in our final models. 

Next, we compare the performance of our GNN models with other 
models on Kováts retention indices and normal boiling points. Table 5 
shows the comparison between our GNN model on Kováts retention 
indices and the other two models on the same property. One is a group 
increment model by Stein et al. [41], whose predictions are part of the 
NIST reference library of mass spectrum. The other model is a con-
volutional neural network (CNN) by Matyushin et al. [45], which used 
SMILES representation of the molecule. The original CNN model was 
trained with the NIST 08 library, which contains fewer (experimental) 
determinations of the retention index than are available in the NIST 20, 
so we retrained the CNN model with NIST 20. 

It is clear from Table 5 that both ML models perform significantly 
better than the group increment model by Stein et al., likely due in part 
to the limitations in the group increment methodology and in part due to 
the use of the less powerful linear least squares for model optimization, 
while the machine-learned GNN model can more systematically explore 
datasets and discover patterns and relationships embedded in data. Our 
model also achieved smaller prediction errors than those of the CNN 
model. We suggest that the superior results are likely due to the better 
molecular representation used in GNN and to the larger parameter space 
of our model. 

For the normal boiling point model, we characterized its perfor-
mance by comparing it to the method of Stein and Brown as imple-
mented in the EPI Suite package [77]. The MAE of the Stein and Brown 
method over all compounds in our data set is 11.84 K with a median 
error of 7.99 K and a standard deviation of 12.84 K. Our model is per-
forming about a factor of two more accurate. 

The results above demonstrate the importance of using a robust, 
expressive molecular representation and model. Next, we discuss the 
importance of high-quality data sets. 

4.3. Importance of high-quality data 

We applied the same GNN methodology to predict the retention 
indices, trained with two NIST mass spectrum data sets: the NIST 20 
library described above and the 2017 version of the library. With the 
same hyperparameters, we found that the predictive error of the model 
trained on the 2017 version of the library is about twice as large as the 
error of the model trained on the newer 2020 version. To investigate 
what causes the larger error when trained with the NIST 17 library, we 
computed the molecular fingerprints of all the compounds in the NIST 
17 library, and found all pairs of molecules whose similarity score is 
high while the difference in the retention index is large. By excluding 
those pairs (only about 1000 compounds) from the NIST 17 data set, the 
MAE of the validation error decreases significantly to about 32, which is 
close to what we report in Table 4. This suggests that those pairs in the 
NIST 17 library may be problematic. Indeed we found that most of those 
pairs were removed in the newer NIST 20 library, and we achieved a 
better performance with the new library. 

During the training of the normal boiling point model, we noticed 
that predictions for certain molecules consistently exhibited large errors, 
even when they were in the training set. We took note of these and 

Fig. 4. Selected predictions of the model used in this work for four randomly- 
chosen chemical compounds representing different levels of prediction accu-
racy. A higher percentile rank indicates better agreement between the experi-
mental spectrum (above, blue) and the prediction (below, orange). 

Table 4 
Summary statistics of the 10-fold cross validation procedure. The mean value 
and standard deviation of the mean absolute error (MAE) and the root mean 
square error (RMSE) over 10 runs is given for each of the 3 sets used.   

Kovats (unitless) Boiling Point (K) 

Set MAE RMSE MAE RMSE 

Training  9.38 ± 0.86 18.27 ± 1.87 2.30 ± 0.44 2.80 ± 0.51 
Validation  27.84 ± 0.67 57.77 ± 1.97 5.56 ± 0.52 7.78 ± 1.66 
Testing  28.09 ± 0.72 58.43 ± 1.93 5.77 ± 0.40 7.81 ± 0.94  
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checked the source literature, and identified a number of literature and 
data abstraction errors (on the order of 100 data points) in the input data 
set. Once the errors were either corrected or removed from the data set, 
we achieved a significant improvement in the model accuracy, as 
expected. 

In both cases, the (potentially) problematic data are only a few 
percent of the total data, yet they produce a large impact on the per-
formance of our model. Since errors in the data set are essentially un-
avoidable, strategies are needed to reduce the impact of “bad” data. As 
suggested in our boiling point model, machine learning could be an 
effective approach to detect errors in the data set. Developing models 
that are less likely to be influenced by occasional errors in the training 
data could be another solution. 

5. Conclusion 

In summary, we present the application of GNN to three high-quality 
experimental data sets curated by NIST, namely the Kováts retention 
indices, the mass spectrum library, and the normal boiling point data 
from the NIST Thermodynamics Research Center (TRC) SOURCE Data 
Archival System. For retention indices, we have shown that the GNN 
methodology significantly outperforms the classical group increment 
model in terms of predictive accuracy. It also outperforms the CNN 
model, another popular deep learning methodology, due to the more 
expressive representation used in GNN for molecules. We have demon-
strated that the quality of data is a key to an accurate predictive ML 
model, as shown in the retention index and boiling point models. For 
mass spectrum, by using symmetrized version of the Kullback-Leibler 
function, we presented a GNN model that achieves a modest improve-
ment over a previous model developed by the Wei et al.[48] The per-
formance of the model developed in this work appears to be limited by 
the nature of the distance metric employed in training. Nevertheless, the 
results produced by the present model are of value as demonstrated by 
their performance in various measures including the recall@10 metric. 

The success of these GNN models demonstrates the capability of ML 
methodologies to predict molecular properties, when an appropriate 
molecular representation (molecular graph in this work) is chosen, and 
when a sufficiently large, high-quality data set is available. However, 
high-quality data are usually scarce in physical sciences, so developing 
ML techniques that perform well on limited data would clearly be an 
important subject in the near future. Another direction for future 
exploration is to use 3D structural information (distances, angles, 

dihedral angles) and equivariant GNNs. 
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O. Stroe, G. Wood, A. Laydon, A. Žídek, T. Green, K. Tunyasuvunakool, S. Petersen, 
J. Jumper, E. Clancy, R. Green, A. Vora, M. Lutfi, M. Figurnov, A. Cowie, N. Hobbs, 
P. Kohli, G. Kleywegt, E. Birney, D. Hassabis, S. Velankar, AlphaFold protein 
structure database: massively expanding the structural coverage of protein- 
sequence space with high-accuracy models, Nucleic Acids Res. 50 (D1) (2021) 
D439–D444, https://doi.org/10.1093/nar/gkab1061. 

[16] J.A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R. Müller, 
A. Tkatchenko, Combining machine learning and computational chemistry for 
predictive insights into chemical systems, Chem. Rev. 121 (16) (2021) 9816–9872, 
https://doi.org/10.1021/acs.chemrev.1c00107. 

[17] O.T. Unke, S. Chmiela, H.E. Sauceda, M. Gastegger, I. Poltavsky, K.T. Schütt, 
A. Tkatchenko, K.-R. Müller, Machine learning force fields, Chem. Rev. 121 (16) 
(2021) 10142–10186, https://doi.org/10.1021/acs.chemrev.0c01111. 

[18] J. Behler, Four generations of high-dimensional neural network potentials, Chem. 
Rev. 121 (16) (2021) 10037–10072, https://doi.org/10.1021/acs. 
chemrev.0c00868. 

[19] H.J. Kulik, T. Hammerschmidt, J. Schmidt, S. Botti, M.A.L. Marques, M. Boley, 
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indices using group contributions, J. Chem. Inf. Model. 47 (2007) 975–980, 
https://doi.org/10.1021/ci600548y. 

[42] A.R. Katritzky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, D.A. Dobchev, 
Quantitative correlation of physical and chemical properties with chemical 
structure: utility for prediction, Chem. Rev. 110 (10) (2010) 5714–5789, https:// 
doi.org/10.1021/cr900238d. 

[43] J. Yan, J.-H. Huang, M. He, H.-B. Lu, R. Yang, B. Kong, Q.-S. Xu, Y.-Z. Liang, 
Prediction of retention indices for frequently reported compounds of plant essential 
oils using multiple linear regression, partial least squares, and support vector 
machine, J. Sep. Sci. 36 (15) (2013) 2464–2471, https://doi.org/10.1002/ 
jssc.201300254. 

[44] A.K. Zhokhov, A.Y. Loskutov, I.V. Rybalćhenko, Methodological approaches to the 
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