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ABSTRACT: The chemical exfoliation of non-van der Waals
(vdW) materials to ultrathin nanosheets remains a formidable
challenge. This difficulty arises from the strong preference of these
materials to engage in three-dimensional chemical bonding,
resulting in uncontrolled atomic migration into the vdW gaps
during cation deintercalation from the bulk structure, ultimately
leading to unpredictable structural disorder. Computational models
capable of comprehending the widespread nonstoichiometric local
environments resulting from disordered atomic migrations during
the exfoliation of non-vdW materials are crucial for understanding
the underlying mechanisms. Here, we propose a generic framework
using neural network potentials (NNPs) to accurately model
nonstoichiometric systems over a broad range of vacancy
concentrations. We apply our framework to investigate the crystal structures and phase transformations occurring during the
exfoliation of non-vdW nonstoichiometric Cr(1−x)S systems, a compelling material category with substantial potential for two-
dimensional (2D) magnetic applications. The efficacy of the NNP outperforms conventional cluster expansion, exhibiting superior
accuracy and transferability to unexplored crystal structures and compositions. By employing the NNP in simulated annealing
optimizations, we predict low-energy Cr(1−x)S structures anticipated to result from experimental synthesis. A notable structural
transition is discerned at the Cr0.5S composition, with half of the Cr atoms preferentially migrating to vdW gaps. This aligns with
experimental observations in the chemical exfoliation of 2D CrS2 and emphasizes the vital role of excess Cr atoms beyond the Cr/S
= 1/2 composition ratio in stabilizing vdW gaps. Additionally, we utilize the NNP in a large-scale vacancy diffusion Monte Carlo
simulation to illustrate the impact of lateral compressive strains in catalyzing the formation of vdW gaps within non-vdW CrS2 slabs
through Poisson’s axial expansion. This provides a direct pathway for more facile exfoliation of ultrathin nanosheets from non-vdW
materials through strain engineering. The implemented methodology, leveraging machine learning potentials, is imperative to bridge
the quantum-level accuracy to large scales necessary for modeling the intricate mechanisms underlying the chemical exfoliation of
non-vdW materials.

1. INTRODUCTION
Recent years have witnessed significant progress in the
synthesis of two-dimensional (2D) nanosheets derived from
materials that lack a layered van der Waals (vdW) parent
structure, broadening the scope of exfoliation research to
encompass a wide variety of previously unexplored 2D non-
vdW materials.1,2 Among the family of non-vdW materials, Cr-
based compounds, particularly magnetic non-vdW Cr−S
materials, have garnered substantial attention within the field
of 2D magnetic materials with a myriad of potential
applications in electronic and spintronic devices,1,3,4 especially
following the discovery of 2D magnets like CrI3 and
CrGeTe3.

5,6 The Cr−S system comprises a minimum of six

distinct known phases, namely, CrS, Cr7S8, Cr5S6, Cr3S4, Cr2S3,
and Cr5S8,

7 all exhibiting a hexagonal NiAs-type structure, with
vacancies in the Cr sublattice responsible for the formation of
nonstoichiometric phases. Cr2S3 is the most stable phase,
attributed to Cr’s preference for the 3+ oxidation state.
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Recently, nanothick 2D Cr−S slabs have been successfully
fabricated. For example, Cr2S3 flakes with the thickness ranging
from tens of nanometers down to a single unit cell (∼1.8 nm)
were synthesized using chemical vapor deposition (CVD).8,9

The resulting 2D Cr2S3 material is a semiconductor with
ferrimagnetic ordering and a Neél temperature of around 120
K. Additionally, few-nanometer-thick 2D flakes of 1T-CrS2
were synthesized using CVD, exhibiting metallic behavior and
room-temperature ferromagnetism.10 Moreover, a semicon-
ducting HxCrS2 crystalline/amorphous layered material,
exhibiting antiferromagnetic ordering and a Neél temperature
of 5 K, was synthesized with a thickness of 2−3 nm using
chemical exfoliation.7

The strong interlayer binding inherent in bulk non-vdW-
layered materials constitutes a formidable barrier to conven-
tional mechanical exfoliation methods. Consequently, alter-
native approaches such as chemical exfoliation or direct liquid-
phase exfoliation (LPE) are commonly employed for the top-
down synthesis of non-vdW materials. Chemical exfoliation is
especially pertinent for crystal structures that do not naturally
exist in pristine bulk form, whether as vdW or non-vdW
structures.11 This is particularly evident in the case of Cr
dichalcogenides, i.e., CrX2 (where X = S, Se, and Te), which do
not naturally exist in a bulk transition-metal dichalcogenide
(TMD)-layered or pyrite form.7 Nevertheless, these structures
can be identified in other ternary compounds, such as ACrX2
(where A = Li, Na, and K).7,12,13 These ternary compounds
can serve as base structures for synthesizing Cr 2D TMDs
through chemical exfoliation. The initial step in chemical
exfoliation involves the removal of extraneous cations present
in the base bulk structure through either cation exchange or
oxidative removal. For instance, proton exchange with Na in
NaCrS2 using HCl/ethanol solution

7 and K deintercalation
from both KCrSe2

13,14 and KCrTe2
15 through I2 oxidation

have been employed during the chemical exfoliation of CrS2,
CrSe2, and CrTe2 structures, respectively. The second step of
chemical exfoliation involves LPE to induce fragmentation and
delamination of the atomic layers from the formed bulk
structures. However, owing to the strong tendency of non-vdW
materials to form three-dimensional (3D) chemical bonds,
they undergo uncontrolled cation migration from the layers
(Cr atoms within CrS2 layers in this context) to the vdW gaps
during the initial deintercalation process, thereby retaining
their non-vdW characteristics.7,11,13,16 As a consequence, the
exfoliated 2D sheets typically exhibit thicknesses on the order
of several nanometers, thereby impeding the realization of the
distinct properties observable in monolayer-thin sheets,
characterized by enhanced quantum confinement and reduced
interlayer interactions. As a result, there is growing interest in
developing computational methods to achieve a deeper
understanding and, consequently, greater control over the
chemical exfoliation of ultrathin nanosheets from these non-
vdW crystals.
Nonstoichiometric local atomic environments, characterized

by varying elevated vacancy concentrations, are commonly
observed in chemical exfoliation processes.7,11 The ubiquity of
these nonstoichiometric environments can be attributed to the
disordered atomic migration that occurs following the
deintercalation process associated with the chemical exfoliation
of non-vdW materials.7 This phenomenon leads to distinct
compositional variations that are evident both temporally and
spatially. Consequently, to gain insights into the intricate
mechanisms underlying the chemical exfoliation of non-vdW

materials, it is imperative to develop accurate computational
models capable of comprehending nonstoichiometric environ-
ments across a wide range of vacancy concentrations. Modeling
nonstoichiometric systems exclusively through density func-
tional theory (DFT) proves infeasible due to the extensive
spectrum of conceivable compositions and atomic config-
urations, which escalates exponentially with the number of
atoms in the unit cell.17 To mitigate this challenge, researchers
commonly employ special quasi-random structure (SQS)
cells18,19 as representative unit cells that effectively capture
the statistical features of atomic disorder, enabling DFT
predictions for compositions attainable within compact unit
cells. To extrapolate to other compositions or facilitate large-
scale simulations, the common practice is to employ a
surrogate model like cluster expansion (CE).20−22 While the
on-lattice CE is well-suited for fixed-lattice alloy systems,
nonstoichiometric systems frequently manifest significant
deviations from the parent lattice and exhibit notable
sensitivity of atomic arrangements to mechanical strains.23−25

Therefore, a more dependable approach entails adopting an
off-lattice model that incorporates both configurational and
geometrical features of nonstoichiometric systems. Addition-
ally, CE’s transferability to unobserved on-lattice configura-
tions and compositions remains a subject warranting further
investigation.26

Machine learning potentials (MLPs) have recently emerged
as highly promising tools in computational materials science
due to their near-DFT accuracy, nearly linear scaling with
system size, and exceptional transferability to diverse chemical
environments. Prominent examples of MLPs include neural
network potentials (NNPs),27−30 Gaussian approximation
potentials,31,32 moment tensor potentials,33 spectral neighbor
analysis potentials,34 atomic CE potentials,35,36 and graph
NNPs.37−39 The high flexibility of MLPs allows for broad
applicability across different types of matter, encompassing
bulk40−42 and 2D crystals,43 amorphous materials,44,45

liquids,46−48 interfaces,49,50 and clusters.51,52 In the domain
of disordered systems, MLPs were employed to investigate
binary alloys spanning a wide range of compositions,53−57

high-entropy alloys,58−60 and grain boundaries.61−64 However,
a conspicuous gap exists in the literature concerning the
application of MLPs to nonstoichiometric systems charac-
terized by varying elevated vacancy concentrations. Herein, we
address this gap by examining the efficacy of NNPs for
modeling nonstoichiometric chromium sulfides, a material that
has not been explored in the existing literature using either
machine learning or conventional potentials.
In this study, we present a general workflow for modeling

nonstoichiometric systems using NNPs (Methods). The
NNP’s performance is demonstrated to surpass that of CE,
showcasing near-DFT accuracy and remarkable transferability
to unobserved structures exhibiting diverse compositions
(Results, 3.1). By incorporating the NNP into simulated
annealing (SA) optimizations (Results, 3.2), we gain insights
into the low-energy ground-state and metastable Cr−S
structures that are anticipated to result from experimental
synthesis. The outcomes highlight the crucial role played by
the surplus Cr atoms beyond the Cr/S = 1/2 ratio in stabilizing
the vdW gaps. Moreover, a notable structural transition is
observed for the CrS2 phase, characterized by a preferential
migration of half of the Cr atoms to the vdW gaps. This finding
aligns with experimental observations, illuminating the non-
vdW nature of 2D CrS2. Moreover, we leverage the NNP in a
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large-scale vacancy diffusion Monte Carlo (MC) simulation to
emphasize the impact of lateral compressive strains in
catalyzing the formation of vdW gaps within non-vdW CrS2
slabs, paving a straightforward route for more facile exfoliation
of ultrathin CrS2 nanosheets through strain engineering
(Results, Section 3.3). The NNP’s capacity to handle lattice
strains, optimize atomic positions, and accurately consider
spatially and temporally diverse nonstoichiometric composi-
tions in large-scale simulations highlights the necessity of
employing MLPs for modeling nonstoichiometric systems
prevalent during chemical exfoliation of non-vdW materials.
This task is unachievable solely with DFT and prone to
considerable inaccuracies when attempted with conventional
CE methods.

2. METHODS
2.1. NNP Model Workflow. Figure 1 depicts the workflow

employed for the construction of the NNP model, with
comprehensive methodological details provided in the
following subsections. The data set generated through this
workflow is summarized in Table S1. The NNP fitting
procedure consists of two principal steps. First, a CE
Hamiltonian is iteratively fitted to SQS cells (referred to as
NSQS cells in Table S1) generated for distinct vacancy
concentrations within the Cr sublattice of the stoichiometric
Cr2S2 hexagonal NiAs-type structure (space group P63/mmc).
Thus, these structures can be represented by the formula
Cr(1−x)S, where x denotes the Cr vacancy concentration. In this
context, the Cr/vacancy sites are regarded as the active sites
capable of accommodating two different species, while the S
sites exclusively act as “spectators” within our model. The CE
method, known for its simplicity and efficiency in sampling
low-energy SQS cells that converge toward ground states, acts
as an auxiliary model for exploring the structural space across
various compositions before implementing the NNP. During
CE fitting, DFT relaxations are conducted, and structural

snapshots (denoted as NSQS strucs in Table S1) are sampled
using a farthest point sampling (FPS) algorithm to ensure
more uniform sampling along the relaxation path.65,66 These
snapshots are then used to train a primary NNP model. This
approach ensures that the NNP is trained on the equilibrium
properties of the diverse atomic arrangements observed from
the CE-sampled SQS cells regardless of their relative energies,
with respect to the ground state.
Second, for an approximately uniform sample of these

compositions, the identified ground-state SQS cells are
isotropically strained around the equilibrium volume. Sub-
sequently, the NNP is utilized to perform volume-constrained
energy minimization or conduct constant-temperature, con-
stant-volume (NVT) molecular dynamics (MD) simulations.
The NNP model is updated iteratively by selecting structural
snapshots (referred to as NGS bulk in Table S1) from these
calculations, using a committee of two NNP models.67,68 The
configuration of the second NNP is changed over iterations to
introduce dynamic variability in its predictions, thereby
enhancing the identification of extrapolative structures. This
process helps improve the predictability of the elastic and
vibrational properties for ground-state structures across
different compositions. Additionally, for a few compositions
near the ground-state composition (Cr0.667S), 2D slabs
(denoted as NGS slab in Table S1) with a thickness of 2 unit
cells and varying surface terminations are generated from the
ground-state bulk SQS cells and added to the data set. This
augmentation enables the model to gain exposure to the
atomic environments of surface atoms across different surface
compositions. Further details on the fitting of the CE and NNP
models are presented in Tables S2 and S3, respectively. To
evaluate the predictive capability of the NNP, the root-mean-
square error (RMSE) is reported for both energies and forces,
using an 80/20 train/test data set split. For CE, we provide
both the energy RMSE obtained through training on the entire
SQS data set, as well as the N-fold cross-validation score,

Figure 1. NNP generation workflow. The first part (loop on the left) involves the utilization of the CE Hamiltonian to iteratively sample small SQS
cells (<20 atoms) toward ground states at 22 distinct compositions. The NNP is first trained on snapshots, sampled using a FPS algorithm, from
the DFT relaxations performed for CE-sampled SQS cells. In the second part (loop on the right), bulk structures and slab cuts for a subset of the
identified ground states are subjected to strain around equilibrium volumes, and the NNP (dark green rectangle) is used to either run NVT-MD or
fixed-volume relaxations. A comparison of energy and force predictions is made with another variable-configuration NNP (light green rectangle) of
slightly different hyperparameters (committee of two NNP models) to sample extrapolative structures and iteratively update the data set until
convergence is achieved.
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where N denotes the number of distinct SQS cells in the data
set. After validation, both the final NNP and CE models are
trained on their respective complete data sets to include all
available data points.
2.2. DFT Calculations. We use DFT for both the training

and validation of the CE and NNP models.69 DFT calculations
are performed within the generalized gradient approximation
by Perdew, Burke, and Ernzerhof (PBE), using the projector
augmented-wave pseudopotentials implemented in the plane-
wave Vienna ab initio simulation package.70−72 Collinear spin-
polarized calculations are adopted with a plane-wave basis
cutoff at 350 eV, and the integration on the first Brillouin zone
is carried out on uniform Monkhorst−Pack meshes with a
meshing density of 4000 k-points per reciprocal atom.73 The
electronic self-consistent loop is terminated if the energy
change is less than 1 × 10−5 eV.
2.3. NNP Model Fitting. We employ the n2p2 NNP

package74,75 for training our NNP model. The large-scale
atomic/molecular massively parallel simulator (LAMMPS) is
used to perform local structural relaxations and MD
simulations, using the fitted NNP as an input potential
through the n2p2-LAMMPS interface.75,76 The alloy theoretic
automated toolkit (ATAT) tools are utilized for fitting the CE
model and enumeration of the SQS cells.77−79

We adopt the Behler−Parrinello high-dimensional NNP
approach.27 This approach assumes that the total energy, E, of
a structure can be represented as the sum of individual atomic
energy contributions from constituent atoms. For our binary
Cr−S system, this can be expressed as the sum of atomic
energy contributions for the elements Cr and S.

= +
= =

E E EG G( ) ( )i i
i

N

i
i

N

i
1 1

Cr S

(1)

The atomic energies, Ei, are generated by a set of feed-
forward atomic neural networks (NNs). Ei is a function of the
local environment descriptor vector Gi, which featurizes the
atomic neighborhood within a given cutoff radius around atom
i and constitutes the input layer of the atomic NN. Specifically,
our model comprises two distinct atomic NNs: one designed
for Cr atoms and another for S atoms. The Gi vectors are
constructed using the Behler−Parrinello symmetry functions
(SFs) as descriptors.80 The SFs consist of a radial function
comprising sums of two-body Gaussians and an angular
function incorporating additional sums of three-body terms.
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Both SFs are many-body functions; they depend on the
positions of all atoms within a cutoff radius, rc. We used a cubic
hyperbolic tangent cutoff function, fc. The cutoff radii for radial
and angular SFs, as well as the atomic NN architecture in our
NNP model, are summarized in Table S3. Hyperbolic tangent
is used as the activation function for hidden nodes, while the
identity function serves as the activation function for the
output layer.

The hyperparameter λ is set to {1, −1}, which shifts the
maxima of the cosine function between θijk = 0° and θijk =
180°.80 The ζ values are set to {1, 4, 24} to cover multiple
angular resolutions. Our SFs are centered at the central atom
(i.e., rs = 0). The radial space around the central atom is
smeared by six different values of the hyperparameter η, which
controls the radial resolution (Gaussian width). The η values

are determined using the Imbalzano method: = ( )m
n

r

2m n/

c
,

where n = 5 and m = 0, 1, ..., n.81

The NNP weight optimization employs an adaptive Kalman
filter, updating weight parameters with each energy or force
component independently as individual pieces of informa-
tion.74 Forces are obtained as the analytical negative gradient
of the energy function. Due to the abundance of force
components compared to total energy entries, training is
performed in each epoch on a pattern containing total energies
of all structures and only a randomly selected fraction of forces.
The optimal composition corresponded to force updates of
approximately 2.6 times the number of energy updates in each
epoch. The NNP training procedure selects structures
randomly but prioritizes more informative ones for weight
updates. A structure is considered informative if its prediction
error exceeds the current training RMSE by 2%. As the RMSE
decreases during training, the threshold for accepting
structures becomes lower, and the NNP starts accepting less
important structures from the data set.
2.4. Training Data Generation. The structure generation

for our workflow follows these steps:

1 SQS cell relaxation

We sample a representative subset of structures from the
DFT relaxation trajectories generated for the 243 SQS cells
sampled by CE. The FPS algorithm based on DFT energies of
ionic steps is utilized to remove highly similar structures,
retaining approximately 70% of the original trajectory. The
counts of relaxation snapshots for each of the training
compositions are listed in Table S1 under NSQS strucs.

2 Bulk ground states

For half of the training compositions, isotropic strain is
applied to the bulk ground-state unit-cell structures, varying
their lattice parameters by ±10%. Subsequently, the NNP is
used to relax the atomic positions of the strained structures
while keeping the cell volume fixed. Specific structural
snapshots are then chosen for self-consistent DFT calculations,
employing a committee of two NNPs. These two NNPs differ
slightly in configuration and the random seed used during the
stochastic training process, as well as in the train/test data set
splitting.74 Whenever large discrepancies between the NNPs’
energy and force predictions are observed, the corresponding
structures are selected for DFT calculations, leading to data set
updates.
Moreover, the NNP is utilized to perform NVT-ensemble

MD simulations for 2 × 2 × 2 supercells of the ground-state
structures at three compositions close to the ground-state
composition (Cr0.667S), specifically, Cr0.7S, Cr0.625S, and Cr0.5S.
The MD trajectories encompass various temperatures (300,
600, and 900 K) at isotropically strained volumes (±5 and
±10% strain in lattice constant), in addition to the equilibrium
volume. Similarly, snapshots are selected from the MD
trajectories employing a two-NNP committee, ensuring that
each pair of successively selected snapshots is separated by at
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least 100 fs to minimize statistical correlations. The number of
bulk ground-state snapshots generated using both the strain/
relax and strain/MD approaches is recorded for the respective
compositions in column NGS bulk of Table S1.

3 Slab cuts of ground states

We generate two-unit-cell-thick slab structures for the
ground states at the three lowest-energy training compositions:
Cr0.7S, Cr0.667S, and Cr0.625S. First, the bulk unit cell is shifted
incrementally along a randomly chosen cell vector; then, a
vacuum layer larger than 15 Å is added in the direction of that
cell vector to create 2D slabs with diverse surface terminations
across the crystal. These slabs are subjected to ±5% strain
around equilibrium and then fully relaxed using the NNP
model. Structural snapshots are sampled from the relaxation
trajectories using the NNP committee method, followed by
self-consistent DFT calculations and data set updates. The
number of slab structures generated for each composition is
recorded in column NGS slab of Table S1.
Figure S4 presents a reduced-dimensionality representation

of the feature space spanned by the atomic environments in
the above data set, providing a means to evaluate structural
similarities between the different structures comprising the
data set. The above DFT data set comprised a total of 10,593
structures. In addition, for Sections 3.2 and 3.3 in the Results
section, we augmented our training set with 380 structures
sampled by FPS from the fixed-cell-volume relaxation
trajectories of the vdW CrS2 bulk unit cell. These structures
were rendered at various isotropic compressive strains ranging
from 0 to 10% along each lattice vector, with increments of 2%.
This augmentation was done to particularly enhance the
accuracy of NNP predictions at high compressive strains of
CrS2.
2.5. Simulated Annealing. The SA procedure employed

for crystal structure optimization, as detailed in Results, 3.2,
commences with the system’s initial equilibration at a high
enough temperature (T = 21,000 K), which enables a relatively
unrestrained exploration of the configurational space. Sub-
sequently, the system undergoes a gradual cooling process
(following a geometric sequence) consisting of 50,000 steps
(which is found sufficient for our supercells to achieve energy
convergence), culminating in the convergence toward a local
minimum at a relatively low temperature (T = 0.01 K). This
cooling strategy facilitates occasional uphill moves in the early
stages, prompting an exhaustive search for low-energy basins
on the potential energy surface (PES). To enhance the
exploration of the low-energy crystal structures, we introduce a
cyclic restart strategy, consisting of 12 cycles, into our SA
workflow. At the conclusion of each cycle, the temperature is
reset to a value of 1000 K lower than the initial temperature,
thereby inducing diverse cooling rates and promoting a more
thorough exploration of the low-energy crystal structures. Each
iteration during SA involves either the exchange of two random
groups of vacancies and Cr atoms (88% of total steps) or the
perturbation of lattice parameters of the simulation cell (12%
of total steps) to maintain a zero-mean pressure. In the case of
cell perturbations, the atomic positions are scaled with the
stretched lattice to preserve fixed fractional coordinates, and
the energies are computed using the NNP statically (without
further relaxation of positions). The acceptance or rejection of
these moves adheres to the Metropolis criteria for the
isobaric−isothermal (NPT) ensemble. Following this, the
NNP model is employed to conduct full structural relaxations

toward the neighboring local minima for the set of distinct
configurations derived from the SA cycles. This endeavor aims
to accurately discern the ground-state configuration amidst
various alternative metastable structures.
2.6. Vacancy Diffusion Monte Carlo. The MC

simulations utilized for modeling Cr vacancy diffusion during
non-vdW to vdW phase transformation in CrS2 slabs, as
discussed in Section 3.3, are conducted in the NPT ensemble,
maintaining a temperature of 300 K and zero absolute pressure
in the z-direction. Starting with a randomized Cr/vacancy
distribution in the Cr sublattice, each MC step involves either a
perturbation in the slab thickness (12% of total steps) or a
proposal for a group of randomly chosen vacancies to move to
any of their nearest neighbor (nn) sites in the Cr sublattice
(88% of total steps). The nn list includes the surrounding six
Cr sites in a hexagonal arrangement within the same plane, as
well as the analogous seven sites in each of the upper and lower
Cr layers, as illustrated in Figure 6a. Each step of vacancy
diffusion can be conceptualized as either remaining within the
same layer or executing a vertical jump to an adjacent Cr layer,
subsequently choosing to either stay at the new site or execute
a horizontal movement to a nn in the new layer. This results in
equal probabilities for movements in the x−y plane and along
the z-direction, ensuring unbiased vacancy transitions within
the slab. During the MC simulation, we utilized an exponential
growth function to adjust the number of permissible
minimization steps, wherein the rate decreases in proportion
to the MC steps. After conducting multiple tests with different
rates and maximum values, we settled on the function

×80 e( step/10 )5
to achieve a nearly zero mean pressure with

minimal fluctuations in the z-direction. Thus, this choice
minimizes the forces on atoms while ensuring a steady−state
equilibrium of the slab with the surrounding environment in
the z-direction, along which the slab is exposed to a vacuum.
The MC simulation is terminated when a reduction of less
than 1 meV/atom in the cohesive energy of the slab is
observed over a period of 10,000 steps, resulting in a total of
210,000 steps (see Figure 6c).

3. RESULTS
3.1. Generalization of NNP for Nonstoichiometric

Crystal Structure Optimization. Crystal structure optimi-
zation in the context of nonstoichiometric solids typically
involves two primary aspects: (i) configurational optimization,
which involves determining the equilibrium arrangement of
vacancies on the lattice sites and (ii) local geometric
optimization, which pertains to the local adjustment of
structural parameters such as atomic positions and cell
dimensions. Different vacancy configurations can be visualized
as distinct basins on the PES, while the geometrically relaxed
structures represent the local minima within these basins.
While addressing both configurational and geometrical
optimizations is crucial in global optimization problems, it is
often reasonable to restrict this coupling to the low-energy
basins within the PES.17,82 This approach is warranted by the
constrained influence of local geometrical optimization on the
energy of unfavorable configurations, attributed to the
presence of barriers between the distinct basins. Thus, a
configuration that hinders the formation of stable bonds is
highly likely to persist as a high-energy structure, even after
undergoing geometrical optimization.
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To evaluate the crystal structure prediction capability of our
NNP model at different compositions, we initially assess its
ability to rank on-lattice configurations with different vacancy
arrangements across various unseen compositions. By decou-
pling the off-lattice local geometrical optimization from the on-
lattice configurational optimization (which is the strength of
the CE method), we enable more meaningful comparisons
between the NNP and CE models. Subsequently, we examine
the NNP model’s ability to accurately reproduce energies and
forces for the lowest-energy configurations subjected to elastic
strains and atomic perturbations from lattice sites. By
successfully reproducing these energy and force profiles, we
can validate the NNP model’s effectiveness in fitting the PES
around the local minima of low-energy basins, thus showcasing
its competence in performing local geometric optimization.
3.1.1. Configurational Optimization. To minimize the cost

associated with the data set generation during the training of
the NNP model, we limited our consideration to small SQS
cells with fewer than 20 atoms during CE sampling. As a result,
the composition space in the DFT data set used for training/
validating the NNP model was restricted to the 22
compositions outlined in Table S1. In order to broaden the
range of compositions accessible for assessing the NNP
generalization, we increased the maximum number of
allowable atoms per SQS cell from 20 (as used in CE
sampling) to 48. This enables us to accommodate a wider
spectrum of elemental proportions of Cr and S atoms.
Subsequently, we select a new set of 18 unseen vacancy
compositions to validate the generalization of our model. To
ensure a comprehensive assessment of the NNP model’s ability
to explore the entire configurational space for these unseen
compositions, we opt for an exhaustive approach instead of
employing any form of configuration sampling. This involves
enumerating all possible SQS cells for the chosen composi-
tions. The pool of enumerated SQS cells for the new 18
compositions encompassed approximately 130,000 symmetri-
cally distinct configurations. Next, we employed the NNP
model to rank the enumerated SQS cells at each composition

based on their cohesive energies. Initially, the energies of all
SQS cells were statically computed without relaxation. Then,
for the 300 SQS cells with the lowest energies at each
composition, a full relaxation procedure was implemented.
This correction step aimed to rectify any potential inaccuracies
in the ranking of the low-energy configurations caused by the
initial constraint on the geometrical degrees of freedom.
Among the numerous SQS cells available for each

composition, we purposefully selected a subset of around 40
configurations. These configurations are chosen to span the
entire energy range with approximately equal intervals. In
order to ensure a fair comparison between the NNP and CE
models, we use here a second CE model fitted to the DFT
energies of the SQS cells in the data set, computed statically
on-lattice without relaxation. This approach helps to eliminate
any potential bias that may arise from the first CE model which
was trained on DFT energies of fully relaxed SQS cells and
then utilizing it for predicting the energies of on-lattice
configurations. The comparison of the NNP and CE models
against DFT is illustrated in Figure 2, focusing on six
representative unseen compositions. The accuracy of each
model is assessed using two key metrics: Spearman’s rank-
order correlation coefficient,83 denoted as ρ, which measures
the degree of similarity in the energy-based ranking order of
SQS cells, and RMSE, which quantifies the discrepancy
between the predicted and actual energies.
As illustrated in Figure 2, the NNP demonstrates superior

performance compared to CE, yielding RMSE values akin to
those obtained during training/test evaluation (refer to Table
S3), with all ρ values exceeding 0.96. Nevertheless, a slight
reduction in performance is noted for Cr(1−x)S configurations
with a vacancy concentration, x, above ∼0.55 (as can be
noticed from Figure 2f). However, this can be deemed
acceptable for such elevated vacancy concentrations which
typically correspond to experimentally infeasible structures.
Even if these structures are encountered in theoretical
simulations, they are likely to be rejected due to their inherent
instability. Conversely, CE exhibits a performance comparable

Figure 2. Evaluation of the NNP for configurational optimization at unseen compositions. The ranking of around 40 SQS cells, at six different
unseen compositions, is demonstrated using CE, NNP, and DFT. The depicted ordering is based on the DFT energies, as observed from the
monotonically rising DFT energy with the cell index. The SQS cells span the entire energy range of the enumerated SQS cells (<48 atoms per cell).
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to that of NNP, albeit to a lesser degree, for compositions that
span relatively low energies; however, the performance
deteriorates significantly for high-energy compositions, where
the model entirely loses its ability to rank the different
configurations for vacancy concentrations beyond x ∼0.55.
The notable advantage of the NNP over CE, despite both
models being trained on the same configurational arrange-
ments (i.e., the same SQS cells), highlights the greater

flexibility of the NNP in effectively generalizing to diverse
crystal structures with varying chemical occupations and
compositions.
Nonstoichiometric systems are typically treated by using

sublattice models. Accordingly, we partitioned the parent
stoichiometric Cr2S2 lattice into two sublattices: a sublattice of
active sites (Cr, vacancy) and another sublattice of inactive S
sites, in accordance with experimental observations. All of the

Figure 3. Generalization of the NNP for extrapolative sublattice configurations. (a) Chemical order of the ground-state configuration is initially
randomized for two unseen compositions (Cr0.8S and Cr0.6875S), allowing any species (Cr, S, or vacancy) to occupy any site (not constrained to the
training Cr/vacancy and S sublattice partitioning). (b) NNP is utilized to perform short MC simulations involving atomic swaps until the ground
state is retrieved. (c) Different configurations are sampled from the MC trajectory at nearly uniform energy intervals and subsequently validated
against CE and DFT.

Figure 4. Generalization of the NNP for elastic and vibrational perturbations of ground-state structures at unseen compositions. (a,b) Cohesive
energy vs volumetric strain curves as predicted by NNP (solid lines) compared to DFT reference values (discrete markers). The structures are
divided between panels (a) and (b) for clarity. Numerical error estimations of NNP predictions are provided by the listed Δ values (in meV/atom)
for each structure. The dashed yellow boxes in (a,b) indicate the volumetric strain range that NNP witnessed for some training structures. (c,d) Box
plots for NNP energy and force error distributions based on 30 snapshots sampled from 500 K MD simulations at 3 ps intervals. The rectangular
box indicates the interquartile range (IQR), while the line within the box represents the median. The dashed yellow boxes in parts (c,d) specify the
composition range over which NNP was trained on high-temperature configurations of ground-state structures (specifically at Cr0.7S, Cr0.625S, and
Cr0.5S).
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SQS cells employed in training and validation were constrained
within this partitioning. Despite the rationality of this
sublattice approach, it is of interest to investigate the ability
of the NNP to generalize to arbitrary chemical occupations,
where each species (Cr, vacancy, and S) can occupy any site in
the cell. In this context, we select the ground-state SQS cells
identified for two unseen compositions, Cr0.8S and Cr0.6875S,
and then randomize the chemical occupation in each cell to
generate initial disordered configurations, as depicted in Figure
3a. Subsequently, we conduct simple MC simulations using the
NNP. In each step, an MC swap of two sites of different
species is randomly suggested, and a greedy algorithm is
employed to accept or reject the move. The NNP model
successfully restores the ground-state configurations, as shown
in Figure 3b, demonstrating its accurate ranking capability by
rejecting highly energetic configurations until reaching the true
ground state. Furthermore, we sampled a number of
configurations from the MC trajectories at nearly equal energy
intervals and calculated their DFT energies. From Figure 3c, it
is evident that the performance of the NNP retains its high
quality even for highly randomized configurations with
cohesive energies above ∼−4 eV/atom, which is roughly the
highest energy observed for the SQS cells of the two
considered compositions (Cr0.8S and Cr0.6875S) when S
atoms were considered inactive (see Figure 2). Only in the
vicinity of the highest energy configurations does the deviation
of NNP-predicted energies start to increase; however, the
ranking predictions remain in very good agreement with DFT
throughout the entire energy range. On the other hand, CE
successfully identifies the random configurations as unfavor-
able with high-energy predictions, albeit with considerably
higher error values compared to the NNP. The overall
remarkable capability of the NNP to accurately rank unseen
configurations across a broad spectrum of energies and diverse
compositions underscores its robustness as a promising tool to
drive MC simulations and generate more reliable trajectories
for atomic diffusion processes.
3.1.2. Local Geometrical Optimization. The preceding part

elucidated the ability of the NNP to exhibit generalization
across various atomic configurations, covering the space of
SQS cells across a wide range of compositions. Here, we
analyze the efficacy of NNP to approximate the PES in the
vicinity of local minima corresponding to ground-state
structures at different compositions. Specifically, we focus on
the lowest-energy SQS cells at 18 unseen compositions, as
determined by the NNP from the enumerated SQS cells.
To evaluate the performance of NNP at various bond

lengths that significantly deviate from equilibrium, we subject
the relaxed ground-state configurations to isotropic strain
ranging from −10 to +20% along each lattice vector, with an
increment of 2%. Panels a and b in Figure 4 illustrate the NNP
predictions of cohesive energies at these volumetric strains for
the ground-state structures associated with the 18 unseen
compositions. The NNP predictions are computed over a fine-
grained grid of strains, visually represented by solid lines in the
figure. The discrete markers, on the other hand, represent the
reference values obtained from DFT, revealing a remarkable
concurrence with the NNP predictions across a wide range of
test volumes and varying compositions. It is noteworthy that
the error in the NNP predictions remains relatively uniform
throughout the strain range, albeit with a slight increase
observed at extreme strains. In order to provide a quantitative
assessment of the accuracy achieved by the NNP, we utilize a

measure, Δ, which is commonly employed to compare
equations of state derived from different models.84−86
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where the ENNP(V) and EDFT(V) functions are obtained by
fitting a sixth-order polynomial to the corresponding data, V0
denotes the equilibrium cell volume, and the 0.9 and 1.2 values
correspond to the −10 and +20% applied strain to each lattice
vector. The Δ value for each composition is outlined (in meV/
atom) at the top of Figure 4a,b. It can be observed that two-
thirds of the Δ values are below the estimated RMSE of the
NNP (refer to Table S3), while the largest error of 22.0 meV/
atom is about 2.5 times that value. It should also be noted that
the NNP was trained on strained ground-state structures
associated with training compositions (referred to as NGS bulk in
Table S1), where the volumetric strain during training was
limited to the range from 0.73 to 1.33 times the equilibrium
volumes. Nevertheless, NNP still matches DFT values for
larger strains up to 1.73 of the equilibrium volumes. However,
we observe larger deviations when attempting to extrapolate to
volumetric strains smaller than 0.7. This can be attributed to
the relatively higher forces associated with such large
compression strains, which the NNP model might not have
been sufficiently trained to accurately capture and represent.
Next, we focus on the capacity of the NNP to accurately

replicate the energies and forces obtained from DFT during
MD simulations. This aspect is of considerable importance as it
directly influences the model’s proficiency in accurately
relaxing atomic positions and predicting vibrational properties.
In this retrospect, we run NNP-driven MD simulations for the
relaxed unit cells of the 18 test structures at 500 K with a 0.5 fs
time step. Then, we sample 30 snapshots from the MD
trajectory and perform self-consistent DFT calculations to
verify the energies and forces on the sampled structures. To
mitigate correlations between the sampled structures, we adjust
the time interval between each two successively sampled
snapshots to 3 ps. Panels c and d in Figure 4 demonstrate the
error distribution of energies and forces across ground-state
structures of the 18 compositions. It is worth noting that the
NNP has been trained only on high-temperature MD
configurations for Cr0.7S, Cr0.625S, and Cr0.5S ground states.
Despite this, we observe that the median energy error is below
20 meV/atom for structures ranging from Cr0.8636S to Cr0.5625S.
A similar behavior is observed for force errors, where we can
see that the medians of force errors are below 0.2 eV/Å for all
compositions, and aside from a few outliers, the full
distributions of force errors are smaller than 0.3 eV/Å in the
composition range from Cr0.8636S to Cr0.5625S. This reveals the
interpolation ability of the NNP, allowing it to accurately
approximate the vibrational properties of ground-state
structures at unseen compositions. Although the NNP exhibits
a good extrapolation ability outside the training composition
range, even beyond the compositions used in high-temperature
MD training (Cr0.7S, Cr0.625S, and Cr0.5S), we speculate that
this behavior is primarily captured from training on the
relaxation structures of nearby training compositions. Con-
sequently, we observe a gradual increase in energy and force
errors as we deviate away from the composition range that
comprised the high-temperature MD training (denoted by the
yellow box in Figure 4). This occurs because, for these
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compositions, the energy and force predictions are solely
reliant on similarities to the training relaxation structures
sampled at the proximate compositions. To provide similarity
measures between the unseen structures utilized for assessing
the configurational and geometrical generalization of the NNP
model, we present in Figure S5 a comparison between the
reduced-dimensionality representation of the feature space
spanned by the atomic environments in these structures and
those in the DFT data set.
3.2. Crystal Structure Predictions for Cr(1−x)S. The

characterization of material properties, encompassing the
electronic band structure, density of states, and magnetic
characteristics, exhibits a profound reliance on the fundamental
crystalline framework (comprising atomic occupations and
positions). It is imperative to ensure a precise representation of
the input crystal structures in order to enhance the predictive
capacity of DFT in property prediction, as any deviations from
realistic structures may introduce uncertainty into the property
predictions.
In this subsection, we implement the NNP model to

accurately explore the low-energy Cr(1−x)S crystal structures
across different compositions. To achieve this, we utilize the
SA algorithm, a well-established and robust optimization
technique in the field of crystal structure optimization.17,87,88

To enhance the exploration of the low-energy crystal
structures, we incorporate a cyclic restart strategy (comprising
12 cycles) within our SA workflow, yielding an ensemble of up
to 12 distinct Cr/vacancy configurations and ensuring a trade-
off between diversity and computational efficiency. The SA
procedure is illustrated in Figure 5a, and additional details can
be found in the “Methods” section.
In this study, we limit our SA work to identifying the low-

energy Cr(1−x)S structures in the vacancy concentration range
(0.25 ≤ x ≤ 0.5), aligning with experimental interest. We
choose 8 different compositions to sample this range. To
encompass a diverse set of compositions, we employ

× ×4 2 3 3 supercells, which are derived from the
orthorhombic (Pnnm) Cr2S2 conventional unit cell (see Figure
S1). This supercell size of lattice parameters in the range of
12.0 to 16.0 Å allows us to strike a balance between mitigating

finite-size errors and ensuring appropriately sized unit cells for
future DFT investigations. Figure 5b illustrates the compre-
hensive phase diagram of Cr(1−x)S across the range of
compositions under investigation. The diagram presents
formation energies, computed with reference to the most
thermodynamically stable phases of Cr and S elements as
available in the Materials Project database,89 namely mp-90
(Cr in BCC lattice) and mp-96 (S in P2/c space group),
respectively. The depicted energies encompass the NNP-
predicted values for both the initial random configurations at
0th step of each SA process and the distinct low-energy
structures, including both ground states and metastable
configurations, obtained for the 8 considered compositions.
Additionally, the diagram includes the DFT formation energies
of the SQS cells present in the NNP training set within the
same composition range. The applied workflow effectively
identified the ground-state ordered structures corresponding to
all known phases in the considered composition range, namely
Cr0.75S (Cr3S4) (mp-964), Cr0.667S (Cr2S3) (mp-555569), and
Cr0.375S (Cr5S8) (mp-1181961) (see Figures S2 and S3). This
validation confirms the precision and reliability of both the
NNP model and the SA workflow in predicting ground-state
structures.
Notably, a consistent observation within the investigated

composition range reveals a pronounced preference for
ground-state structures that feature complete CrS2 layers
intercalated by Cr-deficient layers (see the predicted ground
states and the layer occupation distributions in Figure S2).
This intriguing finding indicates a tendency for vacancies to
aggregate, forming alternating (CrS2 and Cr-deficient) layers
rather than being uniformly distributed across all layers. Hence,
the presence of δ excess intercalant Cr atoms above the Cr/S =
1/2 ratio (i.e., Cr(1+δ)S2) occupying the vdW gaps manifests as
a critical factor in stabilizing CrS2 layers, preventing Cr
migration from them into the vdW gaps, even for small δ
values down to approximately 0.03, as observed for the
Cr0.53125S phase. Upon reaching the Cr0.5S composition, the
energy cost associated with forming CrS2 layers and empty
vdW gaps in-between becomes higher, leading to a compelling
phenomenon where half of the Cr atoms preferentially migrate

Figure 5. Simulated annealing prediction of Cr(1−x)S stable structures: (a) NNP-driven crystal structure prediction workflow: (1) 12-cycle
simulated annealing (SA) with Cr/vacancy swaps and cell perturbations. The represented structure illustrates the allowed MC transitions (red
arrows) in the adopted supercell during SA; (2) local geometry relaxations of the candidate configurations to identify global minimum from
metastable structures. (b) Schematic of the phase diagram of Cr(1−x)S in the range x = [0.25, 0.5] along with the identified ground states and
metastable structures. (c) Refined cells of the ground state and few metastable structures for the CrS2 phase.
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to the vdW gaps, forming a non-vdW CrS2 structure. This
manifests that CrS2 does not prefer the vdW nature, as already
observed in experiments.7,11,13,16 Figure 5c presents both the
ground-state non-vdW CrS2 and the subsequent stable phase,
the pure vdW CrS2. The non-vdW CrS2 configuration can be
conceptualized as a transformation from vdW CrS2, wherein
50% of the Cr atoms undergo orderly shifts toward the vdW
gap along the [010] direction, resulting in an AB stacking
pattern, distinct from the AA stacking seen in vdW CrS2. The
DFT formation energy of non-vdW CrS2 is lower by 33 meV/
atom, underscoring the non-vdW character of Cr−S systems. A
more precise calculation, incorporating vibrational free-energy
contributions associated with phonons, is illustrated in Figure
S6. The results indicate that the free energy of the non-vdW
CrS2 phase is predicted to be lower for temperatures up to
around 465 K, affirming its higher stability compared to that of
the vdW phase. Moreover, it should be noted that the reported
DFT results are obtained using the standard PBE functional
without a vdW correction term. However, including a vdW
correction is observed to increase the binding of the non-vdW
phase more than the vdW one, thereby predicting a larger
relative stability of the non-vdW phase.
Nevertheless, it is imperative to recognize that solely

prioritizing the acquisition of the ground-state (global
minimum) structure may be insufficient in faithfully represent-
ing the material’s experimental reality. This is due to the
presence of alternative low-energy local minima in the PES,
which correspond to metastable phases capable of being
adopted by the material during the synthesis process or
through thermal excitation. This becomes particularly sig-
nificant in the case of 2D non-vdW materials, such as Cr-based
2D materials, where the interlayer bonding forces between
atoms are typically stronger than vdW interactions. As a
consequence, rapid and uncontrolled interlayer diffusion may
occur from the Cr-rich layers to the Cr-deficient layers,
restricting the scope of lateral rearrangement of Cr atoms
during synthesis. This phenomenon ultimately leads to the
stabilization of metastable structures with smaller ranges of
order, thereby hindering the material from attaining its global
minimum long-range ordered crystal structure. For instance,
during the soft chemical synthesis of CrS2 slabs derived from
bulk NaCrS2 through proton exchange, the deintercalation of
Na induces a notable degree of disorder within the Cr
sublattice.7,11 This is evident, as the Cr atoms undergo rapid
and uncontrolled transitions from the CrS2 (Cr-rich) layers to
the vacant Na (Cr-empty) sites. As a result, a metastable CrS2
structure forms, where both Cr atoms and vacancies are
randomly distributed throughout the Cr-sublattice, forming a
3D chemically bonded arrangement. Figure 5c represents
refined unit cells of two metastable CrS2 structures observed
during our SA. The metastable structures are not perfectly
ordered as the non-vdW or vdW structures; however, the
prominent structural motif in these two ordered structures can
still be observed in the two metastable structures with higher
formation energies. In particular, we can notice that each Cr
atom consistently exhibits a preference for being neighbored
by vacant sites in the adjacent top/bottom Cr layers, while its
lateral surroundings entail a disordered disposition of both Cr
atoms and vacancies. This configuration more accurately
reflects both the non-vdW and disordered characteristics
observed in the experimentally synthesized 2D CrS2 slabs,
where roughly half of the Cr atoms undergo random interlayer
jumps from the CrS2 layers to the vdW gaps, resulting in the

creation of randomly scattered Cr sites neighbored by vacant
sites in the adjacent top/bottom Cr layers. As a consequence,
these metastable structures manifest as better representative
supercells enriched with more realistic motifs for the DFT
property predictions. This behavior is not exclusive to CrS2, as
it is also experimentally observed in other phases. For instance,
the ground-state ordered phase of Cr2S3 displays a structural
configuration akin to CrS2−Cr1/3−CrS2, wherein Cr1/3 forms
Cr lines extended along the armchair direction, separated by
two vacant lines in either ABC or AB stacking.8,9,90 However,
structural characterization of CVD-grown Cr2S3 slabs reveal a
pronounced degree of disorder in the Cr-deficient layers,
leading to the crystal being characterized as a CrS2-disordered
Cr1/3−CrS2.90 The same thing applies for Cr3S4, being
characterized as a CrS2-disordered Cr1/2−CrS2.90
3.3. Strain-Induced vdW Gaps in Non-vdW CrS2 Slabs.

In the preceding sections, we discussed that Cr atoms within
Cr-X structures exhibit a high propensity to migrate from the
CrX2 layers to partially occupy the vdW gaps,7,11,13,16 thereby
establishing strong 3D chemical bonds within the crystal
lattice. The presence of such chemical bonds between adjacent
layers in these CrX2 materials poses challenges in achieving
precise thickness control during the exfoliation process,
limiting the attainment of ultrathin sheets down to a
monolayer thickness. For the case of CrS2 exfoliation, the
deintercalation of Na from NaCrS2, followed by LPE typically
yields sheets with a minimum thickness of approximately 2−3
nm.7,11,13 Furthermore, our findings in Section 3.2 demon-
strate that the ground-state structure of CrS2 favors a uniform
distribution of vacancies throughout the layers of bulk crystal
rather than forming a vdW CrS2 structure. In this section, we
show that lateral compressive strain is a viable method for
inducing the reconstruction of vdW gaps between the CrS2
layers. This effect leads to a reduction in the interlayer
interactions, thereby facilitating the exfoliation process of these
materials. A similar phenomenon has been experimentally
observed in other materials, such as germanium telluride,
where lateral compression was found to induce the opening of
vdW gaps.91

In this retrospect, we consider a symmetric CrS2 slab with a
S termination on both sides. The slab consists of a

× ×16 9 3 8 supercell of the orthorhombic (Pnnm) conven-
tional unit cell (6912 atoms per simulation cell), with periodic
boundary conditions applied in the x−y directions and a 30 Å
vacuum layer in the z-direction. The x−y lattice constants are
constrained to approximately 5.06 nm × 4.93 nm, while the
thickness in the z direction is allowed to freely relax starting
from an initial value of 4.18 nm. These x−y lattice constants
correspond to a lateral strain of around 3.5% compared to the
free-standing CrS2 monolayer with a lattice constant of around
0.329 nm. This strain value is approximately half of the strain
observed in CVD-grown vdW CrS2 slabs on f-mica substrate,

10

where the lattice mismatch is approximately 7%. We consider
the average strain value in the CVD-grown CrS2 slabs,
assuming a linear variation of strain from 7% to zero as we
move away from the substrate.
Starting from a non-vdW CrS2 slab with a randomized Cr/

vacancy distribution in the Cr sublattice, we utilize the NNP to
conduct a vacancy diffusion MC simulation within the NPT
ensemble, at 300 K and zero absolute pressure in the z-
direction. Throughout the MC steps, Cr atoms/vacancies
undergo intralayer and interlayer diffusions to their nearest
neighbors (see Figure 6a), leading to a gradual transformation
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toward a quasi-vdW CrS2 phase. Further details of the MC
simulation procedure are elucidated in the “Methods” section.
Figure 6b illustrates the initial and final structures of the MC

simulation. Initially, the slab contains a nearly isotropic
distribution of Cr atoms among the 15 Cr layers (layer
ordering is depicted in the figure). However, the application of
compressive strain in the x−y plane is shown to induce an
ultimate alternating distribution of Cr atoms along the z-
direction. Cr atoms undergo diffusion in a manner that results
in the formation of almost complete vdW gaps, with
approximately 97.8% of the Cr atoms occupying the sites
characteristic of a pure vdW CrS2 phase. This behavior
originates from the stresses induced by compressive strain in
the x−y plane. As the slab is allowed to relax in the z-direction,
it attempts to relieve the pressure through Poisson’s effect,
leading to expansion in the z-direction, as seen in Figure 6b,
where we can see that the slab experiences an expansion of
0.56 nm in the z-direction.

Figure 6d depicts the thickness evolution of the 15 layers of
the CrS2 slab during the MC simulation. Initially, there is a
transient period for approximately 10,000 steps during which
all inner layers undergo a reduction in thickness due to the
inner pressure buildup in response to the externally imposed
strain (see Figure 6e), except for the surface layers (layers {1,
15}), which do not experience the same internal stresses owing
to their direct exposure to vacuum. After this transient period,
notable observations can be made from the data presented in
Figure 6d:

(i) All layers attempt to increase their thickness to alleviate
lateral stresses. However, it is important to note that the
level of resistance to this expansion varies among the
layers, resulting in differing degrees of expansion for
each layer. Specifically, the two surface layers (layers {1,
15}) exhibit the smallest degree of expansion. This is
attributed to the net pulling force they experience

Figure 6. Strain-induced vdW gaps in CrS2 slabs. (a) nn vacancy transitions implemented during the MC simulation (a vacancy can jump to any of
the 6 surrounding sites identified by the red circles in the same plane, or to any of the 7 nn sites in the adjacent top or bottom Cr layers). (b) Initial
random configuration along with the final configuration resulting from atomic rearrangements induced by lateral compressive strain. Layer
numbering is indicated in the figure. (c) Reduction in cohesive energy of the slab during the MC simulation. (d) Thickness evolution of the 15
layers over MC steps. (e) Variation in pressure tensor diagonal components besides the norm of z-forces on Cr atoms for each layer in the slab. (f)
Evolution of the number of Cr atoms across the layers over MC steps. (g) Summary of the count and direction of interlayer vacancy migrations
from each layer (shown in the bar plot) along with the frequencies of net interlayer jumps of all vacancies from their initial layers (shown in the
histogram). (h) Cumulative numbers of interlayer and intralayer transitions made by all vacancies from their initial positions in the slab.
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toward the center of the slab due to their exposure to
vacuum, which counteracts the slab’s inherent tendency
to expand for pressure release. As a result, these layers
maintain their attained equilibrium thickness, preserving
their vertical S−Cr−S bond lengths at an equilibrium
state. Thus, layers {1, 15} act as favorable sites for
accommodating additional Cr atoms, resulting in the
migration of vacancies away from them.

(ii) In contrast, the neighboring inner layers {2, 14}
encounter significantly smaller net pulling forces,
resulting in diminished resistance to axial expansion.
Consequently, layers {2, 14} undergo more substantial
increase in thickness, causing the S−Cr−S bond lengths
in these layers to stretch beyond the equilibrium value.
As a result, these layers become higher-energy sites for
Cr atoms. Accordingly, Cr atoms start to migrate from
layers {2, 14} to the neighboring layers. The cumulative
migration of Cr atoms from layers {2, 14} results in the
formation of low-density Cr environments adjacent to
layers {3, 13}, inducing a net inward pulling force on the
Cr atoms in layers {3, 13}, akin to the situation observed
in layers {1, 15}.

(iii) As a consequence, layers {3, 13} exhibit higher
resistance to expansion, thereby facilitating the migration
of vacancies and displaying a stronger preference for
accommodating Cr atoms. This phenomenon progresses
toward the middle layers of the slab, leading to the
formation of an alternating pattern characterized by
lower-energy (Cr-rich) layers and higher-energy (Cr-
deficient) layers. In Figure 6e, we can observe that the
norm of z-forces acting on the even (Cr-deficient) layers
exhibit higher values in comparison to the odd (Cr-rich)
layers, thereby confirming the emergence of the
alternating layered pattern.

(iv) Additionally, Figure 6d reveals how the layers’ expansion
behavior begins to bifurcate after approximately 30,000
steps, leading to the formation of two distinct groups:
one with increased thickness for the Cr-deficient layers
and another with smaller thickness for the Cr-rich layers.
This transition signifies the opening of vdW gaps
transforming the initial strong 3D covalent bonding to
weak interlayer vdW bonding between the covalently
bonded CrS2 layers. In other words, our findings detail
the transformation of a non-vdW CrS2 slab to form vdW
CrS2 layers.

Figure 6f illustrates the distribution of Cr atoms across the
layers during the MC simulation. We can observe that the
number of Cr atoms gradually decreases within the group of
even (Cr-deficient/vdW gap) layers and increases within the
odd (Cr-rich/CrS2) layers, where site energies are compara-
tively lower. More interestingly, the amplitude of diffusion rate
(i.e., slope of the Cr distribution curve) exhibits a gradual
increase as we approach the free surface of the slab at early
stages of MC iterations. This reveals that Cr-rich/Cr-deficient
alternating layer formation initially occurs at the free surfaces
and propagates toward the middle layers of the slab. This point
is further expounded in Figure 6g, wherein the extent of
diffusivity is assessed through quantification of the number of
vertical jumps made by vacancies from their initial positions.
We can notice that the number of net vertical vacancy jumps is
the highest for the surface layers and decreases progressively
toward the central layers of the slab. Notably, the even layers

demonstrate a greater frequency of zero vacancy vertical
displacements, owing to the higher-energy sites in these Cr-
deficient layers that are amenable to the occupation of
vacancies rather than Cr atoms. Furthermore, a symmetrical
distribution of vertical vacancy jumps is observed in both the
+z and −z directions, which indicates an unbiased diffusion
along the z axis, as one would naturally anticipate.
The vertical diffusion of vacancies in this process exhibits a

localized nature, signifying a limited diffusion length. The
histogram in Figure 6g reveals that approximately 34% of
vacancies remain confined within their respective layers, while
about 48% diffuse to the first nn layer, 13% move to the second
nn layer, and only around 5% diffuse beyond the second nn
layer. This observation indicates a reduced likelihood of long-
range interlayer jumps. Moreover, since the vertical displace-
ment of vacancies is restricted to specific atomic neighbor-
hoods, this is expected to lead to a higher occurrence of
intralayer vacancy transitions. These intralayer transitions allow
vacancies to explore various sites within their respective layers,
potentially facilitating rearrangements that promote interlayer
diffusion. Interestingly, the cumulative counts of intralayer and
interlayer transitions, as depicted in Figure 6h, show
comparable probabilities at initial MC steps, eventually
reaching a plateau with an average of only ∼1.21 horizontal
vacancy jumps for each vertical jump, which further proves the
limited diffusion length associated with intralayer transitions as
well. These findings offer evidence that the prevailing diffusion
process is of a short-range nature, characterized by movements
occurring in the immediate proximity of vacancies and their
adjacent layers. As a consequence, this localized diffusion
mechanism is expected to facilitate the transition from a non-
vdW configuration to a vdW layered arrangement, owing to the
reduced number of barriers that need to be traversed. These
findings hold significant implications for the exfoliation of
clean monolayer/few-layer 2D materials from non-vdW
crystals through strain engineering, thereby unlocking new
prospects for device-level applications and large-scale produc-
tion of 2D materials.

4. DISCUSSION
In this study, we presented a systematic approach for
developing a highly efficient and accurate NNP to model
nonstoichiometric environments prevalent during the chemical
exfoliation of non-vdW systems, using Cr(1−x)S as a case study,
encompassing the entire range of vacancy concentrations in the
Cr sublattice. We extensively evaluated the generalizability of
the NNP model by testing its configurational and local
geometrical optimization capabilities across various unseen
compositions.
In the domain of on-lattice configurational optimization,

where the CE method is traditionally proficient, we have
shown the NNP’s superiority over CE, achieving significantly
lower energy errors with respect to DFT. Notably, as we move
from ground-state compositions of Cr(1−x)S, concentrated
around (Cr0.667S), toward higher-energy nonstoichiometric
phases (especially at high vacancy concentrations), the
accuracy gap between the NNP and CE models becomes
more apparent in on-lattice configurational optimization. This
observation highlights NNP’s enhanced capacity to generalize
to higher-energy basins in the PES, even without explicit
training on similar configurations. In contrast, CE exhibits
weaker generalization in high-energy regions unless specifically
trained with a broader data set encompassing both low-energy
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and high-energy configurations. A recent study supports this
claim and demonstrates how training CE on a larger, diverse
training set of configurations generated by MLPs can improve
its performance and result in more robust thermodynamic
simulations.26

Although the NNP data set contains more data points than
the CE data set, we should note that the configurations
(atomic arrangements of Cr, S, and vacancies) in both data sets
are the same. This is because the excess data points in the
NNP data set consist of merely snapshots from strain/MD or
strain/relaxation trajectories of the same SQS cells that
comprise the CE data set. This argues that it is not the larger
data set that is responsible for the better performance but
rather the higher flexibility of NNP, which provides better
generalization. Indeed, the higher flexibility of the NNP does
come with the trade-off of a more complex model compared to
CE, with a much larger basis set size, as outlined in Tables S2
and S3. This necessitates the NNP to acquire a substantially
larger data set to train this expanded basis set. However, we
note that around 80% of the data set provided for NNP was
sampled from the nondeployed DFT relaxation calculations
performed already to train CE. This suggests that instead of
conventionally having CE as a final model for a non-
stoichiometric system, it can be regarded as a first-step data
set-sampling model for the more accurate NNP model that will
be trained mostly on the idle DFT data set generated originally
to fit CE.
Furthermore, we have also shown that the robust general-

ization of NNP to high-energy configurations at unseen
compositions persists even when extrapolating to sublattice
configurations beyond the scope of the training data. Despite
our data set consisting exclusively of two-sublattice config-
urations (inactive S sublattice and active Cr/vacancy
sublattice), the NNP accurately predicts configurations where
Cr, S, and vacancies are allowed to occupy any lattice site.
Moreover, we meticulously examined the NNP model’s

accuracy in approximating the PES around the local minima
corresponding to ground-state structures at unseen composi-
tions. The results demonstrate the NNP’s ability to accurately
reproduce energies under elastic lattice strains beyond the
training scope as well as make precise predictions of vibrational
energies and forces for snapshots from MD simulations. Our
investigation revealed the NNP’s generalization accuracy
trends when extrapolating to ground-state structures at unseen
compositions. Notably, we observe a gradual degradation in
performance as we move beyond the extensively trained
composition range of the NNP model, especially when
considering strained and vibrationally perturbed structural
snapshots of ground states at far compositions.
Additionally, we demonstrated an illustrative application of

the NNP model for SA optimizations. Utilizing a multiple-
cycle SA algorithm, we identified the low-energy ground-state
and metastable structures that are anticipated to arise from the
experimental synthesis of Cr(1−x)S phases in the composition
range (0.25 ≤ x ≤ 0.5). Within this range, the NNP model
accurately predicted the three known Cr−S ground-state
phases listed in the Materials Project database:89 Cr0.75S (mp-
964), Cr0.667S (mp-555569), and Cr0.375S (mp-1181961).
Moreover, the SA optimizations provided valuable insights
into the preferred structures of Cr−S materials in this
composition range. We observed a preference for structures
that feature alternating CrS2 and Cr-deficient layers, where the
surplus Cr atoms beyond the ratio of Cr/S = 1/2 act as

intercalants within the vdW gaps between CrS2 layers. The
presence of these intercalant Cr atoms in the vdW gaps
significantly contributes to the stabilization of CrS2 layers, even
at relatively low percentages down to around 0.03. This
becomes evident in the case of the CrS2 phase, where 50% of
the Cr atoms display a preferential migration to the vdW gaps
to avoid the higher formation energy associated with the vdW
CrS2 phase.
The NNP was further employed to investigate the influence

of lateral compressive strain on CrS2 slabs, resulting in a
transition from non-vdW to vdW CrS2. The analysis
demonstrated the tendency of the slabs to release the strain-
induced pressure through axial Poisson’s expansion, giving rise
to an alternating stress pattern within the slab layers. This
alternating stress prompts the migration of Cr atoms from
layers of high stress to those of low stress, leading to the
formation of nearly empty vdW gaps between the CrS2 layers.
This behavior bears resemblance to successful endeavors in the
CVD growth of vdW CrS2 slabs, where a lattice mismatch of
approximately 7% arises due to the smaller lattice constant of
the used f-mica substrate.10 We conjecture that the smaller
lattice parameter of the substrate is the reason behind the
epitaxial growth of the vdW CrS2 phase, rather than a non-vdW
counterpart, wherein the anticipated compressive stresses due
to lattice mismatch are released through vertical expansion of
layers until stable vdW gaps are formed between the CrS2
layers.
In light of the remarkable capability of the NNP model to

provide energy and force predictions nearly as accurate as
DFT, even for diverse and unobserved chemical compositions,
atomic configurations, lattice strains, and atomic displace-
ments, it holds great promise for steering off-lattice large-scale
simulations of nonstoichiometric and partial occupancy
systems. As approximately 80% of our data set originates
from previously idle structures in the CE training data set, our
methodology presents a cost-effective approach for modeling
nonstoichiometric and partial occupancy systems using NNPs.
This approach holds practical implications in predicting phase
diagrams, optimizing crystal structures, and simulating vacancy
diffusion dynamics, a critical process in the synthesis of 2D
materials using both top-down and bottom-up methods. The
kinetics of this diffusion process are intricately molded by the
immediate atomic surroundings, which can undergo substantial
stoichiometric variations over both spatial and temporal
dimensions during materials synthesis. As a consequence, we
advocate for the integration of NNPs or analogous MLPs for
future computational studies on chemical exfoliation and
epitaxial CVD growth of 2D materials.
This work delved into the intricate chemical and geometrical

degrees of freedom inherent in nonstoichiometric systems with
consideration only for the ground magnetic state obtained
through spin-polarized DFT calculations. Prior studies have
pioneered the combination of structural and spin degrees of
freedom, enabling a comprehensive modeling that spans
diverse magnetic configurations.92,93 However, these models
are currently limited to individual chemical configurations.
Consequently, an avenue of considerable promise emerges for
forthcoming studies to adeptly integrate magnetic spin degrees
of freedom with the underlying chemical and geometrical
attributes of nonstoichiometric systems. Such a holistic
amalgamation holds the potential to significantly enhance the
precision of modeling the synthesis processes of 2D magnetic
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materials, thereby expediting experimental mass production in
this field.

5. CONCLUSIONS
In conclusion, we have introduced a versatile framework that
employs NNPs for modeling the nonstoichiometric character-
istics inherent in the chemical exfoliation of non-vdW
materials. We have convincingly demonstrated the superior
performance of the NNP compared to the conventional CE
model in terms of the ability to bridge DFT accuracy to unseen
crystal structures and compositions. By integrating the NNP
into SA, we predicted the low-energy ground-state and
metastable structures for diverse Cr(1−x)S compositions. A
key revelation was a structural shift at Cr0.5S, with half the Cr
atoms migrating to vdW gaps, underscoring the non-vdW
nature of CrS2 and highlighting the role of excess Cr beyond
Cr/S = 1/2 in vdW gap stabilization. Furthermore, we
employed the NNP in an extensive vacancy diffusion MC
simulation, illustrating the influential role of lateral compres-
sive strain in promoting vdW gap formation in 2D non-vdW
CrS2 slabs. This finding suggests the potential of controlled
strain engineering to enhance the efficiency of exfoliating
ultrathin nanosheets from non-vdW crystals. In essence, our
work establishes NNPs and analogous MLPs as invaluable
tools for guiding computational simulations of the chemical
exfoliation of 2D non-vdW materials, with a specific emphasis
on the intrinsic disordered nonstoichiometric aspects of these
processes.
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