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Abstract—In this work, we extend our historical study on the most significant
software security weaknesses, re-evaluate our findings, and look closely at the
Injection and Memory Corruption/Disclosure weaknesses through the NIST Bugs
Framework (BF) lenses. Our goal is to continue raising awareness about the
patterns of reoccurring software security vulnerabilities that enable malicious
activity.
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R aising awareness about the most critical soft-
ware security weaknesses would urge pro-
grammers, software developers, and security

experts concentrate their efforts on preventing them.
Ultimately, this would reduce the number and severity
of new vulnerabilities discovered over time.

A software security vulnerability , as defined by the
National Institute of Standards and Technology (NIST)
Bugs Framework (BF) [1], is "a chain of weaknesses
linked by causality[; it] starts with a bug and ends with a
final error, which, if exploited leads to a security failure"
[2].

In the year 2022, there were a staggering 25,000+
software vulnerabilities documented in the Common
Vulnerabilities and Exposures (CVE) [3] repository.
Although a huge number of these vulnerabilities has
been detected, they can be traced back to a consider-
ably small set of underlying weaknesses.

A significant weakness, as we define it in [4], is
one that is both commonly found among publicly doc-
umented vulnerabilities and leads to severe security
issues (such are those that are easily exploitable and
have a high impact).

In this article, we take a fresh look at the most
significant software security weaknesses. We apply
our Most Significant Security Weaknesses (MSSW)
equation [4], which is designed to as evenly as possible
factor together frequency and severity. We complement
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our historical study with new data from the last three
years, 2021-2023. Then we re-evaluate our previous
research [5] and confirm that injection and memory
corruption/disclosure continue to reappear as the most
dangerous software security weaknesses. We also
look closely at injection and memory corruption/disclo-
sure through the lens of the NIST Bugs Framework
(BF) [6] [7] to continue raising awareness about the
patterns of reoccurring software security vulnerabilities
that enable malicious activity.

Identifying Critical Weaknesses
We identify significant weaknesses by applying our
previously developed Most Significant Security Weak-
nesses (MSSW) equation [4] to the Common Weak-
nesses Enumeration (CWE) [8] View-1003 [9] entries
considering the CWE model levels of abstraction.

The CWE is an enumeration of 933 types of soft-
ware weaknesses with descriptions and references.
Each CWE entry is assigned a CWE-X ID, where X
is an integer [8]. CWE View-1003 [9] is a subset of
130 CWEs selected specifically for the NIST National
Vulnerabilities Database (NVD) [10] effort of labeling

Disclaimer: Certain equipment, instruments, software, or mate-
rials, commercial or non-commercial, are identified in this pa-
per in order to specify the experimental procedure adequately.
Such identification is not intended to imply recommendation
or endorsement of any product or service by NIST, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.
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FIGURE 1: The MSSW Top 10 Base/Variant/Compound (BVC) CWEs for the last 12.5 years. Injection CWE
IDs are in red, memory corruption/disclosure CWE IDs are in green, all other CWE IDs are in yellow. The most
frequent CWEs are in the darkest ovals.

CVEs with CWEs. The CWE model comprises four
layers of abstraction: Pillar, Class, Base, and Variant;
and can use a Compound to associate two or more
interacting or co-occurring CWEs. The abstractions
reflect five dimensions: behavior, property, technology,
language, and resource. Variant CWEs are the most
specific; they describe at least three dimensions. Base
CWEs are more abstract than variants and more spe-
cific than classes; they describe two to three dimen-
sions. Class CWEs are very abstract; they describe
one to two dimensions, typically not specific about any
language or technology. Pillar CWEs are the highest
level of abstraction. [11]

We assess the CWE frequency and severity using
the MSSW equation [4] on NVD as a data source. The
NVD assigns for each CVE a Common Vulnerability
Scoring System (CVSS) score [12] and a relevant
CWE from View-1003 [9] as the weakness allowing the
vulnerability. The CVSS score provides a numerical as-
sessment of the severity of a vulnerability by capturing
its primary characteristics.

For each year, we identify the 10 CWEs with the
highest MSSW value and rank them in descending
order. Then, we plot the top 10 CWEs for each year

to visualize and analyze how the most dangerous
software security weaknesses have evolved through a
period of years.

Historical Analysis
We complement our previous historical analysis over
the CWEs from View-1003 for the 2010-2020 period
[5] with new data for the last three years, 2021-2023.

Figure 1 shows the Top 10 list of CWEs for each
year for the Base, Variant, and Compound (BVC) layer.
Figure 2 shows the same for the Pillar and Class (PC)
layer. Each oval with a number represents a CWE with
its ID. The darkness of an oval indicates the number of
times that particular CWE is used in a CVE over the
years. Darker ovals correspond to the most frequent
CWEs and lighter ovals correspond to the less frequent
CWEs in the Top 10 lists.

Compared to the preceding decade, the software
security weaknesses landscape has not evolved in the
last three years. Both Figure 1 and Figure 2 are rather
dark at the 2021-2023 columns, indicating that the Top
10 weaknesses found in the last three years are very
frequent. Moreover, these are the same weaknesses
that are seen in the previous years and that keep
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FIGURE 2: The Top 10 Pillar/Class (PC) CWEs for the last 12.5 years. Injection CWE IDs are in red, memory
corruption/disclosure CWE IDs are in green, all other CWE IDs are in yellow. The most frequent CWEs are in
the darkest ovals.

reoccurring. For the BVC layer, all the CWEs seen in
the Top 10 weaknesses, except for one (CWE-306), in
the last three years were already present in the top 10
CWEs of the preceding decade (see Figure 1). Among
the 88 possible BVC CWEs, only 20 are present in
the last 12.5 years. Similarly, for the PC layer, only
CWE-706 was not present in the Top 10 lists of the
preceding 10 years (Figure 2). Additionally, for the PC
layer, the Top 4 lists have been unchanged in the last
three years; and among the 39 possible PC CWEs,
only 18 appear in the last 12.5 years.

These results show that a minority subset of CWEs
have dominated the Top 10 lists for the last three years
and the decade preceding them; from this vantage
point the software weaknesses landscape is practically
not changing. Instead of seeing a diversity of CWEs
entering the Top 10 lists, the same kinds of weak-
nesses reappear year after year.

The two groups of weaknesses dominating the Top
10 lists are injection and memory corruption/disclo-
sure. This is illustrated by Figure 3, which shows how
the MSSW score in our BVC Top 10 lists evolves
over the years. The blue line presents the sum of the
MSSW score of all CWEs in the BVC Top 10 list of

each year. The red line shows the sum for injection
CWEs, while the green line shows the sum for memory
corruption/disclosure CWEs. The yellow line shows all
’other CWEs’, which are neither injection nor memory
corruption/disclosure; these include CWEs related to
file management, integer arithmetic, authentication,
authorization, cryptographic authentication, and cryp-
tographic verification. The three groups are also shown
in Figure 1 and Figure 2 by the color of the CWE ID
inside each oval.

One can observe in Figure 3 a consistent increase
in the sum of the MSSW scores of all Top 10 BVC
CWEs during the last 12.5 years. This represents
a shift towards a subset of CWEs that increasingly
become both the most frequent and the most impactful.
Note that this is not due simply to an increase in
the number of vulnerabilities discovered, because both
frequency and impact are normalized within MSSW.
One explanation for this trend could be that attackers
are increasingly leveraging CWEs that give them the
greatest influence on the targeted software systems.

Injection and memory corruption/disclosure CWEs
dominate the Top 10 lists and follow this trend of
increasing MSSW scores. Analyzing Figure 1, we can
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FIGURE 3: The sum of the MSSW score of all CWEs in the BVC Top 10 list of each year.

conclude that after 2017, all the five most danger-
ous CWEs are consistently either injection or memory
corruption/disclosure. After 2019, only two CWEs are
outside of those groups in the BVC Top 10 lists. This
explains the increase of the MSSW score sum for
injection and memory corruption/disclosure CWEs and
the decrease of the MSSW score sum for other CWEs.

Injection: The Most Dangerous
Software Security Weakness

The NIST Bugs Framework (BF) defines injection as
"an undefined or exploitable system behavior caused
by ’code separation’ data validation bugs" [1]. Injection
occurs because of violation of the data separation
principle in modern application models. Data and code
have the same internal representation and there is no
formal way to distinguish them at that level. However,
looking through the lens of BF, we can clearly see
that code is an operation that the program executes
– a behavior; and data are the operands used by
the operation to produce an output. This allows us to
distinguish them and reason about them on a higher
level. When code (operations) and data (operands) are
mixed, unexpected behaviors may arise from unpre-
dictable data values. Therefore, programmers must be
aware of the values of the input data to operations to
ensure the application behaves appropriately.

We identify the most dangerous injection weak-
nesses (see Figure 1, CWEs with red IDs) applying

the MSSW equation. From 2018 to 2023, injection
is represented by CWE-89 (SQL Injection), CWE-78
(OS Command Injection), CWE-502 (Deserialization of
Untrusted Data), CWE-94 (Code Injection), and CWE-
917 (Expression Language Injection).

The BF taxonomy [6] groups injections into five ex-
ploitable errors: Query Injection (e.g., CWE-89), Com-
mand Injection (e.g., CWE-78), Source Code Injection
(e.g., CWE-94, CWE-502, and CWE-917), Parameter
Injection, and File Injection. They all are caused by
improper input data validation or sanitization and allow
malicious insertions: "Query Injection allows malicious
insertions of condition parts or entire commands into
an input used to construct a database query"; "Com-
mand Injection - of new commands into the input to
a command that is sent to an operating system (OS)
or a server"; "Source Code Injection – of new code
into input used as part of an executing application
code"; "Parameter Injection – of data into input used as
parameter/argument in other parts of code"; and "File
Injection – of data into input used to access/modify files
or as file content". [1]

The full 12.5 years plot shows that ’SQL Injection’
is consistently the number one weakness in every
Top 10 BVC list, followed by ’OS Command Injection’
(see Figure 1). For the last three years, some inter-
esting observations are that ’Code Injection’ first went
down, but then started climbing up again; and ’Source
Code Injection’ (CWE-94 and CWE-502) is consistently
climbing up, although the rare CWE-917 has dropped
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off.
SQL Injection is by far the most dangerous weak-

ness, according to our analysis. OS Command Injec-
tion is the second most dangerous injection weakness.
It is also a contributor to Class CWE-77 (Improper
Neutralization of Special Elements used in a Command
(’Command Injection’)) (see Figure 2). Code Injection,
CWE-94, also plays a significant role in the top 10 lists
and is a contributor to Class CWE-913 (Improper Con-
trol of Dynamically-Managed Code Resources) (see
Figure 2).

Deserialization of untrusted data (CWE-502) is a
considerably new injection weakness. It appears for
the first time in the 2016 BVC Top 10 list. The rea-
son being, the exploitation of deserialization bugs in-
creased after November 2015, when Foxglove Security
published their exploits for the Java deserialization
weakness [13]. From there on, currently CWE-502 is
the second most dangerous injection weakness.

Looking through the lens of BF we can observe that
three of the BF injection errors are solidly covered by
the top 10 lists in this analysis (see Figure 1 and Figure
2): CWE-89 corresponds to Query Injection; CWE-78 –
to Command Injection; CWE-502, CWE-94, and CWE-
917 – to Source Code Injection.

The causes for such exploitable errors identified by
BF can be missing or erroneous code in a validate
or sanitize operation, an under/over-restrictive policy,
corrupted/tampered data, or corrupted/tampered policy
data. If programmers learn to always properly check
any input data, they should be able to avoid injection
errors. The BF Data Validation (DVL) class is a good
start to learn about bugs, faults, operations, errors and
final (exploitable) errors related to injection [1].

Memory Corruption/Disclosure: The
Second Most Dangerous Software
Security Weaknesses

The NIST Bugs Framework (BF) defines memory cor-
ruption/ disclosure as "an undefined or exploitable
system behavior caused by memory addressing, allo-
cation/ deallocation, or use bugs" [1]. Memory corrup-
tion/disclosure happens when data stored in memory
are unintentionally modified or revealed via writing
into or reading from an improper object, respectively.
NULL pointer dereferencing is also related to both of
them. An object is improper if its address (e.g., the
associated pointer is over bounds) or size (e.g., not
enough memory is available to allocate an object of
that size) is improper; or if the data for its address
(e.g., hardcoded address) or the data for its used size
(e.g., not matching the actual size of the object) are im-

proper; or if its type (its pointer/index type) is improper
(e.g., casted pointer). Therefore, programmers must
be aware of the values and the types of the pointers
associated with the used object addresses and the
values of the used sizes, to ensure the application
behaves appropriately.

We identify the most dangerous memory corrup-
tion/disclosure weaknesses (see Figure 1, CWEs with
green IDs) applying the MSSW equation. From 2018
to 2023, memory corruption/disclosure is represented
by: CWE-787 (Out-of-bounds Write), CWE-120 (Clas-
sic Buffer Overflow), CWE-416 (Use After Free), and
CWE-476 (NULL Pointer Dereference).

The BF taxonomy groups memory corruption/dis-
closure errors into 11 exploitable errors [6]. To discuss
Figure 1, we focus here on the four exploitable errors
associated with the most dangerous CWEs. BF defines
them as follows: "Buffer Overflow is writes above the
upper bound of an object". "Buffer Underflow is writes
below the lower bound of an object". Use After Free is
an attempt to read/write a deallocated object". "NULL
Pointer Dereference is an attempt to access an object
for reading or writing via a NULL pointer." [1]

The full 12.5 yeas plot shows that ’Out-of-bounds
Write’ appears in every Top 10 BVC list, while ’Classic
Buffer Overflow’ appears in 2013 and 2019 and after
(see Figure 1). ’Use After Free’ is present in the 2016
top 10 and after, except for 2020.

Class CWE-119, which encompasses the general
memory corruption/disclosure weakness ’Use After
Free’, is also an area of concern. All memory CWEs
on the Top 10 lists contribute to this class, except
for CWE-476, which contributes to Class CWE-672.
Given the broad scope of Class CWE-672, it is also
the parent class of CWE-613. Addressing these mem-
ory corruption/disclosure weaknesses should be a top
priority to improve memory safety.

Looking through the lens of BF, we can observe
that these four BF memory corruption/disclosure errors
are solidly covered by the top 10 lists in this analysis
(see Figure 1 and Figure 2). CWE-787 and CWE-120
correspond to Buffer Overflow; CWE-787 – to Buffer
Underflow; CWE-416 – to Use After Free; CWE-476 –
to NULL Pointer Dereference.

The causes for such exploitable errors can be
missing or erroneous code in a read, a write, or a
dereference operation; or there is an improper address,
size, address data, size data, or pointer type. Data
are improper if a hardcoded (wrong specific) or for-
bidden (OS protected or non-existing) address or a
wrong (not matching the actual object) size is used.
Type is improper if a casted pointer is used. Address
is improper if the associated pointer is over/under
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bounds (of its object), wild (arbitrary – e.g., uninitial-
ized), untrusted (improperly checked), or dangling (of
a deallocated object). Size is improper if not enough
memory is available. It is improper also to use a NULL
(zero address) pointer when dereferencing an object.
Therefore, programmers must be aware to properly
maintain pointers and types and to check size and
available memory to ensure the application behaves
appropriately. If programmers learn to always properly
define and use pointers and objects they should be
able to minimize memory corruption/disclosure errors.
The BF Memory Use (MUS) and Memory Management
(MMN) classes are a good start to learn about bugs,
faults, operations, errors, and final (exploitable) errors
related to memory corruption/disclosure [1].

It is worth noting that we have no choice but to deal
with memory corruption/disclosure bugs in C legacy
or embedded systems. However, we urge software
developers to use programming languages (e.g., Rust)
that provide memory safe alternatives such as smart
pointers and other language features that prevent com-
mon memory safety issues [14].

CONCLUSION
The NIST National Vulnerabilities Database (NVD) [10]
uses the carefully selected 130 CWEs from VIEW-
1003 [9] to label CVEs with CWEs. From those 130
weakness types, only a limited number of CWEs (20)
appears in our BVC analysis over a time span of
almost 12.5 years. Looking at the 2018-2023 period,
we can see the picture is getting worse, while just a
few CWEs change from year to year (there are only 14
different CWEs for that period). This indicates that year
after year, security researchers keep finding similar
vulnerability patterns in software. In other words, no
new dangerous types of weaknesses are entering the
Top 10 lists, except for the newly appeared in 2015
deserialization of untrusted data.

We are not a lone voice in the wilderness calling
attention to this issue. The danger of software se-
curity weaknesses is widely publicized by successful
projects, such as Open Worldwide Application Security
Project (OWASP) Top 10 [15] and MITRE Top 25 [16].
Still, these weaknesses keep reappearing in software
security vulnerabilities. As Information Technology (IT)
professionals, we should make an extra effort to spread
the word for prioritizing education in secure coding.
Mitigation techniques are important, but programmers,
software developers, and security experts should con-
centrate their efforts on preventing the possible causes
for software security weaknesses. Let’s start with the
most dangerous ones – injection and memory corrup-

tion/disclosure – and ultimately, reduce the number and
severity of new vulnerabilities discovered over time. We
look forward to writing this very same paper, finding
that, as a community, we are making progress in
changing the software security vulnerability landscape
for good.
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