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Abstract—We introduce an RF fingerprint for non-destructive
cellular device identification. The new proposed fingerprinting
algorithm is a data-driven technique based on a singular value
decomposition of a user equipment’s symbol-constellation points.
We explore the effectiveness of the fingerprint technique with a
test set of real devices and show experimentally that this fin-
gerprint is robust to device positioning errors and measurement
noise.

Index Terms—RF Fingerprinting, Over the Air Measurements,
Supply Chain Security

I. INTRODUCTION

Radio frequency (RF) fingerprints are features that consis-
tently and uniquely serve to identify a wireless device such as a
cellular user equipment (UE). They hold promise for a number
of applications in hardware security and quality assurance.
Reviews by authors in [1]–[4] show recent advancements
made in this area and survey various approaches and open
challenges for practical implementation of RF fingerprints. In
this work, we provide a non-destructive fingerprinting method
based on over-the-air RF measurements. Traditional device
authentication is done with cryptographic methods which can
be manipulated and copied [1]; RF fingerprints go beyond
these methods with techniques that depend directly on hard-
ware characteristics of devices, such as unique manufacturing
imperfections and tolerances. Our work’s focus is on an
acceptance test scenario whose goal is to detect compromised
or counterfeit cellular devices.

An extensive literature exists describing RF fingerprinting
techniques for devices with different radio networks e.g.,
IEEE 802.11, IEEE 802.15, RFID, and cellular radio access
networks. In this work, we focus primarily on data-driven
fingerprinting algorithms, meaning that fingerprints are deter-
mined purely from mathematical transformations of measured
data, rather than being based on hypotheses about the physical
nature of hardware components in the devices. Data-driven
techniques use large datasets of measurements to identify
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subtle differences between devices that would not be seen with
traditional metrics.

In [5], we used a measurement setup identical to the one
used below to differentiate between devices with a fingerprint
related to the observed error-vector-magnitude (EVM) of each
device. The EVM is a standard metric to assess a device’s
performance. We demonstrated in [5] that there is a consistent
difference between symbol streams of different UEs and
describe this difference in a metric called deviation EVM. In
this work, we use tools from statistical learning theory to show
that these differences can reliably classify different phones.

Most data-driven fingerprinting algorithms involve a dimen-
sionality reduction step, which transforms measured data from
millions of points to a fingerprint of much lower dimension
(often 10 or fewer). The fingerprinting algorithm we propose
in Section III uses a singular value decomposition (SVD) to
perform this step. The SVD is a commonly used technique in
the implementation of dimension reduction schemes, and other
works use SVD for this purpose when building fingerprints;
see [6] in the context of RFID fingerprinting and [7] in deter-
mining if a cellular device’s camera is on, for two examples.
Unlike those works, the novelty of our approach involves in
applying the SVD directly to normalized symbol-constellation
measurements of commercial 4G cellular devices.

In addition to the effectiveness of the proposed technique,
we also explore its robustness to experimental variability.
Some work has been done on fingerprinting technique sen-
sitivity, such as evaluating the difference between high-end
receivers and low-cost receivers when developing fingerprints
[8]. A number of researchers have studied the performance
of fingerprints with different wireless channels ( [9]–[13]) or
different distances between device and receiver for training
and testing [14]. We designed the testbed used in this paper
to specifically explore algorithm robustness to experimental
variability to ultimately ensure reproducible fingerprint mea-
surements from one lab to another.

After introducing our test setup in Section II and proposing
a new fingerprinting algorithm in Section III, we evaluated our
new RF fingerprint on an example test case. We first built a
database of RF fingerprints from measurements of three UEs,
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each from a different manufacturer. We then compared this
database to the RF fingerprints of the same UEs measured
with different setup conditions from what was used to build
the database. For the test UEs considered in this work, the
fingerprints identified each device over 90% of the time, as
long as the orientation of the UE was held within roll angles
of ±15°. The fingerprints were also shown to be robust to
modest levels of added measurement noise.

Fig. 1: Test device setup in an anechoic chamber on positioner

II. EXPERIMENT DESIGN

The measurement setup consists of three pieces of hardware:
a base station emulator (BSE), a vector signal analyzer (VSA),
and an anechoic chamber. The BSE establishes a link with
the UE inside the anechoic chamber and controls the UE’s
power and transmitted data. The VSA is based on a real-
time oscilloscope. It samples time-domain data at a high rate
and uses internal procedures to align and demodulate the
measured signal. The VSA only monitors the uplink signal
transmitted from the UE which is at a different frequency
than the downlink signal received by the UE. The measured
data presented in the next section were taken at LTE band 1
with an uplink center frequency of 1950 MHz and a downlink
frequency of 2140 MHz. The BSE and VSA are connected
to their respective antennas inside the chamber seen in Fig.
1. The VSA and BSE each are attached to antennas having
a similar radiation pattern and gain performance. Table I lists
further details of the setup.

TABLE I: A listing of conditions held constant throughout all
experiments.

Uplink center frequency 1950 MHz
Downlink center frequency 2140 MHz
Radio frame duration 10 ms
Uplink bandwidth 10 MHz
Modulation depth 16 QAM

The BSE was set to configure the UE to repeatedly transmit
a given sequence of symbols with 16QAM modulation depth.
For the experiments shown in this paper, the symbol stream
from each UE was the same length, but one manufacturer’s
device transmitted a different sequence of symbols than the

other two. The sequence of these symbols was not used
in the proposed algorithm to generate fingerprints as the
transmissions from each UE’s observations were uniformly
sampled for each constellation point associated to a symbol.

After measuring the resulting signal and converting to fre-
quency domain, the VSA software demodulates the signal into
symbol-constellation (IQ-domain) points. Further information
of this process can be found in [18]. In a post-processing step,
we removed the points due to the demodulation reference
signal (DMRS), leaving only the sequence of symbols each
device was instructed to transmit.

In this paper we test the robustness of the proposed al-
gorithm against two parameters: the geometry of the the
measurement setup and the addition of simulated system
noise. Inside the anechoic chamber is a custom UE positioner
capable of movement multiple axes. We refer to the axis we
study in this work as the roll angle, which is indicated in
Fig. 2. We focus exclusively on this angle because auxiliary
measurements have shown that changes in roll angle cause the
largest variations in measured waveforms. A photograph of
the inside of the chamber is additionally shown in Fig. 2. The
positioner is constructed primarily of acrylic and is covered
with RF absorber to reduce reflections.

Fig. 2: Four images showing, (Top left) the top
view of the UE in the positioner, (Top Right) the
front view at roll angle 0°, (Bottom Left) -20° roll
angle, and (Bottom Right) +20° roll angle.

Once a connection to a UE is established with the BSE, we
ensured that the uplink symbol stream waveform remained
constant over time and the link had a 0% block error rate
(BLER), as defined in [19]. We then used the VSA to collect
waveforms from three UEs, each from a different manufac-
turer. We took the data as a function of roll angle from 0°
to ± 20° in 5° increments. At each angular position, 30
measurements were made of the symbol stream with 5 seconds
between each measurement. We performed 30 measurements
as a trade-off between measurement time and training set size.
Furthermore, the whole experiment was repeated three times
to estimate experimental uncertainty and provide training and
testing datasets. Table II shows a summary of each of three
datasets and how each was used to develop and evaluate RF
fingerprints with the proposed algorithm.
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TABLE II: Measurement data set used for testing and training
the proposed algorithm.

Measurement
set Use Roll angles

Number of
observations

Set 1 Training 0° 30
Set 2 Testing -20° to 20° in steps of 5° 30 per step
Set 3 Testing -20° to 20° in steps of 5° 30 per step

III. DESCRIPTION OF PROPOSED ALGORITHM

We hypothesize that hardware differences in different UEs
result in radiated IQ values that differ from their ideal.
These differences can be summarized with a small number
of principle components. If these differences can be shown to
be characteristic of the UE model then they might be used as
a fingerprint for supply chain security purposes. We measure
a UE’s emissions for one radio frame, resulting in 64,000
relevant IQ values per observation. Our proposed algorithm
creates a fingerprint for each UE from unique characteristics
of those IQ values.

The proposed algorithm recasts data into a few basis vectors
on which the measured IQ value data is best approximated
with the fewest coordinates. We perform dimension reduction
with an SVD applied to the difference between observations of
a device’s symbol-constellation points and an estimate of each
ideal symbol-constellation point. This difference is related to
EVM, which we found was a characteristic unique to different
UEs in [5]. In the experiments described in Section IV, we
find that only two dimensions are needed when fingerprinting
our dataset. In the statistical literature, similar dimension-
reduction procedures are sometimes referred to as principal
component analysis. We were inspired to use these lower-
dimensional representations as UE fingerprints by a similar
approach introduced in the context of image classification [15].

Our proposed algorithm is a three-step process: 1. data
normalization, 2. dimension reduction, and 3. distance-based
classification. A top level process diagram of the algorithm is
shown in Fig. 3, which shows both measured IQ values and
low-dimensional fingerprints. After an initial standardization
step, the proposed algorithm uses the SVD described above to
project each observation to a low-dimensional space on which
classification is done with the k-nearest neighbors algorithm.
The colored circles in Fig. 3 show that each UE clusters to a
unique location in this low-dimensional space.

Fig. 3: Algorithm process diagram for UE identification. The left
figure shows measured IQ values that are normalized and dimension
reduced to the points shown on the right figure.

To describe the algorithm mathematically, we denote the
J observations of symbol-constellation points by qj , j =
1, . . . , J . We use bold lower-case letters to indicate column
vectors and bold upper-case letters to indicate matrices. For
measurement set 1 described in Table II, we take J =
90 observations ((30 observations per UE) × 3 UEs), and
similarly for the other measurement sets. Each observation
qj ∈ CSN is a vector with 64, 000 entries, consisting of
N = 4000 points per symbol and S = 16 symbols due to
the 16-QAM modulation scheme. The normalization step will
result in a matrix on which we perform dimension reduction,
Z ∈ R2SN×J , whose columns are the real and imaginary parts
of the normalized qj vectors.

For each observed vector of IQ values, qj , we perform the
normalization separately on the S subsets of qj corresponding
to which symbol which was transmitted. Denote these N -
dimensional vectors of transmissions of symbol s by q

(s)
j . The

data normalization step consists of transforming each q
(s)
j into

a new vector z(s)j which has mean zero and unit variance1. We
collect normalized data from each observation into the matrix
Z whose jth column is

Z:,j = [Re(z(1)j ), . . . ,Re(z(16)j ), Im(z
(1)
j ), . . . , Im(z

(16)
j )]T ,

where Re(·) and Im(·) indicate the real and imaginary part of a
vector, respectively. For measurement set 1, this is a 128, 000×
90 dimensional matrix, and similarly for other measurement
sets.

The algorithm next projects the normalized data to a lower-
dimensional subspace with the SVD, as described above. The
dimension of this subspace, denoted kSVD, is chosen by the
user; we have found that kSVD = 2 to be effective in the
experiments in Section IV. We calculate the SVD USVT =
(Z−Z), where the first kSVD columns of matrices on the left
are the new basis set and Z is an average of the columns of Z.
We remove Z to further normalize the information on which
we apply the SVD. The normalized data are then projected
onto the new coordinates with [U:,1:kSVD ]

T (Z−Z), where the
subscript on U indicates that only the first kSVD columns of
U are used. The projected matrix does not necessarily have
a physical meaning; it is the nearest matrix to Z − Z in a
kSVD-dimensional subspace. The cluster of these coordinates
for each UE defines locations in the new coordinate space that
are assigned to that device. Details of the algorithm which
results in fingerprints are provided in Algorithm 1.

Finally, with the training data clustered as described above,
we use the k-nearest neighbor (k-NN) algorithm [16] to
determine the probability that data from an unknown device
is assigned to each UE manufacturer. In particular, let z(new)

be a new measurement of an unknown device that has been
normalized and reordered in the same way as Z. Then,

1In practice, normalize variance by treating each q
(s)
j as an N × 2 matrix

whose first column consists of the real part of q
(s)
j and second column the

imaginary part. We multiply these reshaped IQ values by a matrix L chosen
so that the sample covariance matrix of the resulting matrix is the identity.
We reshape the result into an N × 1 vector of complex values, z(s)j .
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Algorithm 1 Training Algorithm for UE Identification
Input:

• Symbol-constellation vectors for each symbol s and ob-
servation j: q(s)

j , j = 1, . . . , J , s = 1, . . . , S
• UE labels: uj , j = 1, . . . , J
• SVD-reduced dimension: kSVD
• k-Nearest Neighbor parameter: kNN

1: for j = 1 . . . J do
2: Z:,j ← standardization and reordering of qj

3: end for
4: (U,S,V)← SVD(Z− Z)
5: D← [U:,1:kSVD ]

T (Z− Z)

Output: Predicted probability of any vector ∈ RkSVD having
each class label ← k-NN(D, uj)

[U:,1:kSVD ]
T (z(new) − Z) represents the fingerprint of the new

measurement. The k-NN classifier determines the device to
which this measurement corresponds by finding the distance
between the new measurement and each measurement in the
training dataset, each projected into the SVD-informed low-
dimensional space. The new measurement is classified as
whichever device from the training dataset makes up the
plurality of the new measurement’s kNN nearest neighbors. In
other words, the classification is deployed onto an unknown
UE by applying steps 1. and 2. to a measurement and using the
k-NN classifier to determine which UE in the training dataset
is closest to the new measured data.

IV. RESULTS AND ANALYSIS

We are interested in how well the above algorithm classifies
a new observation of a UE. To this end, we take a number
of repeat observations of each UE and determine how often
each of these observations is correctly identified. We report
true-positive rates (TPRs) and accuracy rates to summarize
the algorithm’s effectiveness. The TPR of each UE is the
percentage of times that the proposed algorithm identifies a
measurement as that UE, compared to the total number of
measurements of that UE. The accuracy rate is the percentage
of total classifications that were correct across all UEs.

The algorithm has two free parameters which must be
selected before application to measurements: the number of
dimensions onto which the data is projected, kSVD, and kNN,
the number of nearest neighbors to which each datapoint is
compared in the k-NN classification. We choose these by
maximizing true positive and accuracy rates on a randomly
split subset of measurement Set 1. Specifically, we randomly
split measurement Set 1 into a subset of 20 training points
and 10 validation points. We train the proposed algorithm on
the 20 training points and evaluate its performance on the
remaining 10 validation points for different values of kSVD
and kNN. Selecting kSVD = 2 and kNN = 3 gives perfect
true positive and accuracy rates on this subset of data, so we
continue with those parameters throughout.

To further assess the limits of UE identification, the constel-
lation data was digitally altered with additive white Gaussian

noise (AWGN). The distribution of measured constellation
points was expanded with added noise for the testing data
sets. We quantify this added noise through the EVM [17] of
the newly created data as

EVM(Sideal, Smeas) =

(
1
N

∑N
n=1 |Sideal,n − Smeas,n|2

1
N

∑N
n=1 |Sideal,n|2

)1/2

.

(1)
Here, Sideal and Smeas are ideal and measured constellation

points in the complex plane for N measured symbols. The
measured symbol stream is passed through a simulated AWGN
channel with varying signal-to-noise ratios (SNR) from 20 to
40 dB in increments of 10 dB. As EVM is a good measure
of noise in an IQ value measurement, these noise levels are
represented in EVM values in percentages. The constellation
diagrams and calculated EVM values are shown in Fig. 4
where each EVM value corresponds to Smeas with a different
AWGN level in Eq. (1). The EVM values shown in plots of
Fig. 4, are a representation of just one measured observation.

Fig. 5 shows the TPR for two sets of test data for each
device. The algorithm was trained using data set 1 which was
taken at 0° roll angle. After training, it was used to classify UE
measurements from sets 2 and 3 as a function of roll angle.
Here, the TPR for each UE model is plotted against roll angle.
We see that the proposed algorithm predicts with high accuracy
the correct UE models and is robust to UE orientation.

Fig. 4: Constellation with different EVMs. (Top Left) EVM of 1.3% has no
added noise i.e. 0 dB, (Top Right) EVM of 1.6% is 40 dB SNR, (Bottom
Left) EVM of 3.6% is 30 dB SNR and (Bottom Right) EVM of 10.6% is
20 dB SNR.

Fig. 6 shows how adding varying levels of simulated
measurement noise have an effect on the performance of the
proposed algorithm. The data set that was used to generate the
curves is the same that was used for Fig. 5, but with added
noise on the testing data. The same level of noise was added
to all the 30 observations of angular measurements. We obtain
near perfect classification when EVM is less than 1.6%. As
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more noise is added the classification accuracy decreases. As
Fig. 5 shows, accuracy is low (below 40%) for all angles when
EVM is increased to 10.6%. These experiments show that our
proposed algorithm is robust against some signal degradation
with AWGN.

Fig. 5: True positive rates of the three UEs as a function
of different roll angles. These are the result of training the
proposed algorithm on 0° data from measurement set 1 and
applying it on measurement sets 2 and 3. Each measurement
set was comprised of 30 observations.

Fig. 6: Accuracy rates (combining the true positive rates of
all UEs) as a function of each roll angle for varying AWGN
levels as testing data. The training was at the zero degree
angular position and no added noise. An EVM of 1.3%
corresponds to the original data with no added noise.

V. CONCLUSIONS

Communication devices require non-destructive tests to
determine aberrations in their construction. These aberrations
could be due to errors in integration of the whole system, or
due to hardware security issues such as attempting counterfeit
or espionage. RF fingerprinting may be used to address this

need. In this paper, we have shown a method to identify
different UEs with over-the-air RF signatures.

The algorithm differentiates between devices based on the
individual error vectors of the symbols radiated by each UE.
Since OTA measurements can be sensitive to the experimental
setup, we investigated the proposed algorithm as a function of
device orientation and system noise. We have shown this new
algorithm is robust to device orientation as well as additive
noise. This is important for its use in varying test setups across
different labs.

Further verification of our findings will require a larger set
of UEs for classification and therefore acquisition of additional
UEs for further investigation at serial number variation level.
Understanding the fingerprinting variability is key to the real-
world use of RF fingerprinting techniques. To this end, our
future direction involves studying the impact of additional
measurement variability on wireless device fingerprinting,
such as modulation scheme and transmission frequency.
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