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ABSTRACT The massive digital information generated in conjunction with the ever-increasing phasor
measurement data in the power grid has led to a tremendous constraint on the analysis and timely processing
of real-time data. Under these conditions, leveraging Artificial Intelligence (AI) can play a crucial role
in assisting more efficient data processing and analysis. In this paper an AI-assisted power grid event
classification method is proposed, which aims at improving the overall power grid system performance.
Furthermore, an edge cloud sharing scheme is introduced for a large-scale power grid system. To balance
the load and reduce the maximum processing time, a multiple edge cloud node-based scheme is developed.
The simulation results verify that the proposed AI-assisted event classification method, together with the
edge cloud sharing scheme, can significantly improve the overall performance of the system.

INDEX TERMS AlexNet, classification and identification, CNN, edge cloud, GRU, LeNet, LSTM, machine
learning, smart grid, SVM.

I. INTRODUCTION

WITH the increasing deployment of phasor measure-
ment units (PMUs), smart meters, and Internet of

Things (IoT) devices, together with the ever-increasing
deployment of renewable and sustainable energy technolo-
gies, managing a huge amount of generated data is becoming
a major challenge. Generally, the collected data is mostly
unstructured and can be in various formats. This con-
sequently complicates data processing and analysis. For
instance, traditional power system analysis and manage-
ment is primarily based on physical modeling and numerical
calculations, which cannot meet the requirements of smart
girds due to the increasing complexity, high uncertainty, and
huge volume of digital information. On the other hand, the
advancement of computer power and the recent development
of complex AI algorithms as an enabling technology can be
utilized to effectively assist the processing of such massive
data.
In the past decade, a great deal of work has been done on

the topic of applying AI techniques to the smart grid. Deep
Learning (DL), Reinforcement Learning (RL), and Deep
Reinforcement Learning (DRL) are three widely used AI
techniques. These algorithms can be used to ensure secure
and stable operation in uncertain and complex environments.

Data driven DL and RL algorithms can play a crucial role
in processing massive digital information for power grid
event detection, identification, and prediction [1]. DL algo-
rithms can be deployed to extract valuable features from
collected data that can be used to obtain insights about the
power system’s state and dynamic behavior. For instance,
ambient signals collected from the large number of PMUs
installed throughout the power grid system can be exploited
to detect disturbances as early as possible. In [2], Multilayer
Perceptions (MPs), Deep Belief Networks (DBNs), and
Convolutional Neural Networks (CNNs) are used to classify
disturbances by processing PMU measurements data col-
lected from the power grid system. A DBN based transient
stability assessment method was proposed in [3] to separate
stable cases from unstable cases. In [4], CNN was used to
extract features during the transient process. CNN is shown
to be an effective approach in classifying faults, such as line
faults [5], [6]. For instance, a deep CNN architecture [7] is
used to classify power line insulators based on aerial images.
The authors in [8] demonstrate the effectiveness of a CNN-
based approach in forecasting probabilistic wind power.
For fault classification these methods also achieve good
performance [4], [9]. For fault detection, [10] offers three
CNN-based models, which are capable of handling big data
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generated from multiple PMUs and include measurements
such as voltage, current, frequency, etc.
To ensure reliable and stable operation of a power grid, it

is essential to detect and predict faults/defects in the early
stages. To achieve this, DL algorithms can be utilized to
analyze gradual changes caused by faults/defects. In [7],
a high-level discriminative Convolutional Neural Network
(CNNs) is proposed to extract features of the insulators expe-
riencing gradual changes. For fault detection and prediction,
Artificial Neural Networks (ANNs) based methods have
been proposed in [11], [12], [13]. Nonetheless, ANN based
methods may not be able to extract temporal information
during disturbances, which is an essential requirement for
fault prediction. Conversely, Recurrent Neural Networks
(RNNs), which have a proven record of extracting hidden
features in big data for image captioning, voice conver-
sion, and language processing [14], [15], [16], [17], [18],
[19] have been shown to achieve a good performance in
detecting faults [20], [21]. However, conventional RNN nor-
mally suffers from vanishing gradient, which degrades the
performance of capturing temporal features in a long-time
span. Long short-term memory (LSTM) networks proposed
in [22] can effectively overcome this problem. An LSTM
based approach is presented in [23] to diagnose and predict
faults in complicated scenarios. In [24], an LSTM network
is utilized to timely detect and identify faults based on mea-
surement data. The authors in [25] use LSTM networks
to capture the temporal features caused by line trip faults,
which is a gradual process. As an improved RNN, the LSTM
network can achieve a better performance with longer time
series. The recently introduced Gated Recurrent Unit (GRU)
is another RNN algorithm, which can also perform well [26].
As opposed to LSTM, where 3 distinct gates are used, GRU
reduces the gating signals to two, namely an update gate and
a reset gate.
Support vector machine (SVM) based schemes [27] are

another effective classifier used in power grid systems and
are considered one of the most robust classification models.
In [28], [29] SVM-based schemes have been used for online
transient stability assessment. In addition, [30] proposes an
SVM-based algorithm to lower misclassification rates for
voltage stability assessment. In [31], SVM has also been
considered for fault detection and islanding. However, we
should point out that the SVM’s computational complexity
is decided by the number of support vectors, instead of the
dimension of the sample space. This consequently results in
low computational complexity and good robustness. More
importantly, SVM can achieve global optimal solution [27].
In this paper, a power grid events classification method

is proposed to process various power events by integrating
multiple machine learning schemes. Specifically, we first
use SVM to quickly identify the event type. For exam-
ple, those that are categorized as disturbances and expected
to occur gradually, are sent to LSTM/GRU algorithm for
identification, while faults are processed by using CNN algo-
rithms. In addition, processing the massive data generated in

a large-scale power grid network at the remote-control center
can impact the latency, as well as impose a heavy load on the
communication network. Multiple small-base-stations can be
used as edge cloud nodes to overcome these drawbacks [32].
However, a single edge cloud node can only serve an area
with limited range. Local traffic activities, which depend on
the occurrence of power grid events in the domain of each
edge cloud, may be different and unbalanced in terms of not
only the computation, but also the amount of data needs to
be reported to the remote cloud [33]. Furthermore, the com-
plexity of the employed machine learning algorithms varies
widely, leading to an imbalance and shortage of comput-
ing and networking resources in edge cloud nodes. To share
computing resources and reduce processing delays, in this
paper an edge cloud sharing mechanism, which includes an
efficient bandwidth allocation strategy is proposed. Under the
proposed scheme edge nodes that are experiencing the large
number of events will be able to intelligently cooperate with
the remote cloud for processing and real-time transmission of
synchrophasor data generated by many PMUs that are placed
at sensitive locations throughout the grid network. Their main
function is to measure phase and voltage variations. GPS is
mostly used to synchronize PMUs using a sampling clock,
which is phase locked to one pulse per second (PPS). The
basic idea of sampling electric waveforms using GPS is
to examine phase and amplitude uncertainties, which can
affect the fundamental frequency. For example, monitoring
transmission lines using PMUs can give insights into power
system phenomena like loss of stability, faults, and load
encroachments. PMU data streaming is built on top of the
user datagram protocol over Internet protocol (UDP/IP) for
transmission to the Phasor Data Collector (PDC) [34].
In this paper our main objective is to investigate the impact

of machine learning on identifying various types of faults
based on massive amounts of real-time data generated by
PMUs, which are dispersed throughout grid networks. The
contributions of this paper are summarized as follows:
1) Different machine learning algorithms are integrated

to classify and identify power events based on their
characteristics and features. Compared with traditional
schemes where only one machine learning algorithm is
used to process all power events, our method indicates
a significant improvement in system performance.

2) A collaborative cloud and edge computing scheme is
proposed to balance load and reduce overall processing
delay, by using an efficient and adaptive bandwidth
allocation strategy. To the best of our knowledge, the
proposed scheme is the first to use multiple machine
learning algorithms and take into consideration their
complexities for resource allocation. The simulation
results demonstrate that our scheme can effectively
reduce the processing delay of the system, which is a
crucial factor in preventing a possible blackout.

The paper is organized as follows. After a brief overview
of multiple machine learning algorithms, we propose a
power grid event classification and identification method in
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Section II. In Section III, an AI-assisted edge cloud shar-
ing mechanism is then introduced for a large-scale power
grid system with multiple edge cloud nodes. To assess the
performance of the proposed scheme, we present the simula-
tion results in terms of latency and reliability in Section IV.
This is followed by the conclusion in Section V.

II. INTEGRATED MACHINE LEARNING FOR POWER
EVENTS CLASSIFICATION
How to effectively extract valuable information from the big
data generated in the smart grid has attracted considerable
attention in past decades. To improve system performance,
machine learning techniques are considered to support clas-
sification and identification of power grid events. We present
an AI-assisted event detection and classification scheme
for a power grid system where different machine learning
algorithms are used to improve the performance.
In smart grid, power quality events include transient distur-

bances, such as Generation Trip (GT), Load Shedding (LS),
Oscillation (OS), Line Trip (LT), and various power system
faults including Generator Fault (GF), Line Fault (LF), Bus
Fault (BF), and Transformer Fault (TF). Disturbances are
mainly due to a gradual process in a long-time span, which
may be caused by aging, damaged distribution equipment,
bad insulation, weather changes, etc. For example, a line
trip fault is caused by a gradual process of distribution
line resistance, which can lead to massive blackouts. The
corresponding change of measurements can be captured by
LSTM/GRU. LSTM/GRU based algorithms are well known
for processing time series-based problems. On the other
hand, faults like line faults can occur suddenly and don’t
have a gradual process. Under such conditions, LSTM is not
suitable. Instead, CNN (LeNet/AlexNet) can be used, after
re-shaping the input data to produce a matrix structure that
resembles the frame of an image. CNN (LeNet/AlexNet)
is well known for handling problems with some spatial
correlation like images data.
Therefore, in the proposed method shown in Fig. 1, SVM

is first used to categorize the event type. The SVM not only
has the advantage of low computational complexity and good
robustness, it is also able to achieve a global optimal solution.
For instance, after fast identification of the event type, those
that are categorized as disturbances are sent to LSTM/GRU
algorithm for identification, while events that are cate-
gorized as faults are processed using the LeNet/AlexNet
algorithm. The simulation results in Section IV show that
the proposed events classification method can improve the
overall performance by using difference machine learning
algorithms.
Most machine learning algorithms are good at solving one

kind of problem or processing one type of dataset. However,
for a large amount of data with different characteristics and
features, these algorithms are not able to realize the full
potential of AI by working alone. That’s why we propose
the integrated machine learning scheme for power event clas-
sification. The proposed integrated machine learning could

FIGURE 1. The flowchart of the proposed power grid events classification method.

take advantages of every algorithm and makes them to work
together to complement each other. This can effectively avoid
their weaknesses when solving problems that alone they were
not designed to solve.

III. EDGE CLOUD COMPUTING AND SHARING
With large scale deployment of terminals (such as PMUs,
smart meters and IoT devices) in smart grid, processing a
large amount of data can be achieved by handling data pro-
cessing tasks at the edge of the network [35]. In the case of
detecting and predicting power gird events, edge cloud nodes
can use machine learning to locally categorize and identify
the events. Under these conditions, only a small portion of
data, such as inter-area fault locating and inter-area oscilla-
tion detection, will be sent to the remote cloud for further
processing. This method of parallel processing and analy-
sis [36] of data from massive terminals through machine
learning based edge computing not only provides rapid
responses, but also significantly reduces network overhead.
Specifically, under the proposed method power grid events

can be largely detected and predicted promptly by edge cloud
nodes. They can implement data storage locally and respond
in real-time without uploading data. As shown in Fig. 2,
power grid events will firstly be categorized into four differ-
ent types of events: local disturbances, global disturbances,
local faults, and global faults. In our approach the local
disturbances and local faults will be processed locally by
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FIGURE 2. The flowchart of the proposed Edge Computing based power grid events
classification method.

edge computing, where the local disturbances are sent to
the LSTM/GRU algorithm for identification, while the local
faults are processed by using the LeNet/AlexNet algorithm.
Global disturbances and faults will be uploaded to the remote
cloud for classification.

A. COLLABORATIVE CLOUD AND EDGE COMPUTING
To meet the requirements for smart grid synchropha-
sor networks, 5G Ultra-Reliable and Low-Latency
Communications (URLLC) can be considered as viable
options [37]. Therefore, in this paper URLLC-Based
wireless network architecture that consists of multiple
micro base stations (MIBSs) each acting as an edge cloud
node that can communicate with its associated macro base
station (MABS) is considered. With the ever-increasing
deployment of PMUs for power gird monitoring, each edge
node may have to handle multiple PMUs within its coverage
area. However, some of these nodes may experience many
events such as disturbances and faults and may not have
sufficient processing power to handle events categorization
and detection in a timely manner. Under these conditions,
cooperation and interaction among edge nodes and the
remote cloud can be crucial. With the aid of machine
learning algorithm, edge nodes should be able to collabo-
ratively offload a part of data processing to the centralized

FIGURE 3. Collaborative Cloud and Edge Computing.

cloud via MABSs. This can be achieved by intelligently
exchanging the network status among edge nodes and
the remote cloud. In addition, the end-to-end transmission
delay caused by unstable wireless links between MIBSs
and MABSs, as well as the transmission between MABSs
and cloud platform, can impact the transmission efficiency.
In this paper, a collaborative cloud and edge computing
scheme is proposed to share the load and minimize the
end-to-end latency.
In the case of detecting and predicting power gird events,

edge cloud nodes will first use SVM to quickly categorize
the power grid events to different types, such as distur-
bances, faults, and normal operations. The events categorized
as disturbances are sent to an LSTM-based algorithm for
identification and those categorized as faults are processed
by a CNN algorithm. Note that different algorithms have
different complexities and those with high complexity will
need more computing resources, including extra time to pro-
cess the events. Furthermore, edge cloud nodes experiencing
events categorized as normal operation will become idle until
the occurrence of the next event. Therefore, it is expected
that some edge cloud nodes remain idle without having to
transmit any information [33]. Consequently, this will affect
the load-balancing and severely undermine the reliability
and latency performance of the entire power grid. Under
these conditions, the collaborative cloud and edge comput-
ing scheme can be used to assign more channel capacity to
busy edge cloud nodes and offload the processed data from
busy edge cloud nodes to the remote cloud. The collabo-
rate resource allocation aided multi-edge-cloud architecture
is shown in Fig. 3, where each small base station (MIBS),
acting as the edge cloud node (ECN), accommodates an
uncertain number of PMU terminals. Each ECN can com-
municate, exchange resources and status information with
MABSs and the remote cloud.
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Based on the size of the processed data and complexity
of the selected algorithm, we define the processing resource;
RS, as:

RS = size of the processed data

size of input vectors/matrix
× the total parameter of the algorithm, (1)

where the total parameter of the algorithm denotes the com-
plexity of the used algorithm. Specifically, the complexity of
SVM is O (N3), where N is the data number of vectors [38].
The total number of parameters in an LSTM network can
be expressed as,

P = 4ncnc + 4ncni + ncno + 3nc, (2)

where nc is the number of memory cells (and the number of
memory blocks in this case), ni is the number of input units,
and no is the number of output units. The total number of
parameters in the GRU RNN can be expressed as,

P = 3
(
n2 + nm+ n

)
, (3)

where n and m are the sizes of hidden state and input vector,
respectively. The total parameter of classic LeNet with an
input image of 32 × 32 × 1 is around 60k; The total param-
eter of AlexNet, with an input image of 227 × 227 × 3,
is around 60M. The integrated machine learning presented
in Section II, presents our proposed collaborate approach,
i.e., using multiple machine learning schemes is capa-
ble of processing different types of power events. Their
complexities and sizes of input vector/matrix are taken
into consideration when allocating computing resources and
bandwidth for balance-sharing [32]. This makes our scheme
unique and more efficient compared with traditional collab-
orative schemes, such as the one in [39] where only one
machine learning algorithm is considered.
To balance the loads of multiple ECNs, an edge-cloud

selection algorithm is described as follows: The processing
resource used by every edge cloud in a given time period
can be defined as,

RS = {RS1,RS2, . . . ,RSE}, (4)

where E represents the total number of ECNs. This means
that the processing resource by all ECNs is,

RSC =
E∑
i=1

RSi, (5)

while the average processing resource is:

RSaverage = RSC/E. (6)

At the beginning of a time period, each ECN selects suit-
able machine learning algorithms for occurrences of power
events within its domain, by which it calculates the needed
RSi. After exchanging information with MABSs, each ECN
can obtain the RSi of all ECNs and then decide whether to
forward the measurements to the remote cloud. Assuming
λi ∈ [0, 1] is the data splitting ratio, denoting the data

proportion remaining at the ECN i, the new processing
resource can be expressed as, R̃Si = λi · RSi.

The entire processing time for idle and less busy ECN i,
without offload to the remote cloud, is the computation delay
and is denoted by,

tcomp,ei = RSi · τi, (7)

where τi is the time spent on one unit of the processing
resource in the ECN i. For a busy ECN, the whole processing
time includes i) the computation delay of itself

tcomp,ei = λi · RSi · τi, (8)

ii) transmission delay from the ECN to the remote cloud

ttran,ei = (1 − λi) · Li/Ri + (1 − λi) · Li/Wi, (9)

where Li is the size of the processed data, Ri is the wireless
channel capacity assigned to the ECNi andWi is the backhaul
communication capacity used by the ECN i (R−1

i and W−1
i

can be interpreted as the required time for the wireless and
backhaul links to transmit one-bit data separately [39], [40]),
and iii) computation delay of the remote cloud

tcomp,ci = (1 − λi) · RSi · τc,i, (10)

where τc,i is the time spent on one unit of the process-
ing resource of ECNi by the assigned cloud computation
resources.
Problem Formulation: Based on the above delay types,

the overall processing delay of the i-th busy ECN can be
derived as,

Ti = max
{
tcomp,ei , ttran,ei + tcomp,ci

}
, (11)

while the processing delay of the ECN without offloading
can be expressed as,

Ti = tcomp,ei , (12)

Which can be treated as a special ECN with ttran,ei = 0
and tcomp,ci = 0. Assuming that all ECNs have the same
priority, the processing delay of the entire system can be
expressed as,

Twhole = max{Ti}. (13)

It should be noted that the parameters λi, Ri, Wi, and
τc,i need to be carefully selected and adjusted to minimize
the overall system processing delay; Twhole. Therefore, the
optimization problem can be formulated as:

min
λi,Ri,Wi,τc,i

Twhole,

s.t. 0 ≤ λi ≤ 1,

E∑
i

Ri ≤ Rall,
E∑
i

Wi ≤ Wall,

E∑
i

τc,i ≤ τc,all, (14)

where Rall and Wall are the overall wireless and back-
haul communication resource constraints of ECNs, τc,all
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corresponds to the maximum available computing resources
provided by the cloud server. The optimization variables
include the data splitting ratio λi, the communication
resource allocation Ri and Wi, as well as the computation
resource allocation τc,i.
Optimal Data Splitting and Resource Allocation: For busy

ECNs, the splitting ratio λi should be selected to mini-
mize processing delay Ti and the overall processing delay
Twhole. As mentioned in [39], optimization of splitting ratio
λi is complicated and its solution depends on the avail-
able wireless channel capacity, backhaul link capacity, edge
node computation resources, and remote cloud resources.
However, to achieve event detection and classification, there
are finite choices for λi. For example, in the case of a
busy ECN where each period is composed of 5 successive
time slots (one time slot for each event), the splitting ratio;
λi can be selected only as 0%, 20%, 40%, 60%, 80% or
100% (note that the processed data for one event should not
be split). Furthermore, if only 3 events are detected after
SVM prediction (i.e., no event occurs in two of the time
slots), the size of the processed data is reduced to 60% of
the entire data. Under these conditions, choices for λi are
0%, 33.3%, 66.7% and 100%. As discussed in [39], when
ECNs have far less edge computation resources than the
remote cloud, they should offload more processed data to
remote cloud in order to ease data processing load at ECNs.
Similarly, when wireless channel and backhaul link capac-
ities are not sufficient, more data should remain at ECNs.
Furthermore, as far as the wireless channel and backhaul
link capacity assignment are concerned, it is reasonable to
assign more capacity to edge cloud nodes with more offload
to the remote cloud to increase the values of Ri and Wi.
Similarly, in the remote cloud, to reduce the value of τc,i
more computation resources need to be assigned to the edge
cloud node with more offloading. Since, in our approach we
use multiple machine learning algorithms, their complexities
and sizes of input vectors/matrices are significantly different.
Therefore, more computation resources in the remote cloud
should be allocated to the ECN using a high complexity
algorithm.
After exchanging information with MIBSs and the remote

cloud, MABSs will derive: the optimal offload data size of
ECNs, optimal wireless channel, backhaul link capacity, and
remote computation resources assignment. Specifically, the
collaborative cloud and edge computing aim to minimize
the processing delay Ti of ECNs, as well as the overall
processing delay Twhole of the whole system according to
the following steps:

1: Initial values of Ri, Wi and τc,i will be calculated by
equally assigning wireless channel and backhaul link
capacity and remote cloud computation resources to
none-idle ECNs.

2: Based on these initial values, each none-idle ECN
will derive the splitting ratio λi and the size of the
offload to remote cloud by minimizing the processing
delay Ti.

TABLE 1. Confusion matrix of SVM for events categorization.

3: The values of Ri and Wi will be updated by assigning
wireless channel and backhaul link capacities propor-
tionally to the size of the offload data. The value of τc,i
will be updated by assigning remote cloud computa-
tion resources proportionally to the offload processing
resource, where the complexity and size of the input
vector/matrix are taken into consideration.

4: Based on the updated values of Ri, Wi and τc,i, the
splitting ratio λi and the size of the offload to remote
cloud will be updated by re-minimizing the processing
delay Ti.

5: Steps 3 and 4 will be repeated until achieving stable
λi, minimum Ti and the Twhole.

Note that as there are not many choices for λi, it is not
difficult to derive the optimal λi and minimize the overall
processing delay Twhole.

IV. SIMULATION
In our simulation, the EMTP tool1 is used to simulate power
grid events and generate measurement data. First, we consid-
ered a scenario for a single ECN where 800 power quality
events are used, including 100 GTs, 100 LSs, 100 OSs, 100
LTs, 100 GFs, 100 LFs, 100 BFs and 100 TFs. They are first
categorized by the SVM algorithm. As shown in Table 1, 346
disturbances are correctly categorized, including 89 GTs, 87
LSs, 84 OSs and 86 LTs. 51 faults are wrongly categorized
as disturbances, including 13 GFs, 15 LFs, 12 BFs and 11
TFs. These 397 events are sent to LSTM for processing.
Meanwhile, 349 faults are correctly categorized, including
91 GFs, 87 LFs, 86 BFs and 85 TFs. 54 disturbances are
wrongly categorized as faults, including 12 GTs, 14 LSs, 15
OSs and 13 LTs. These 403 events are sent to LeNet for
identification. As shown in the confusion matrix of Table 2
and 3, LSTM achieves an accuracy of 90.18% for identifying
the 397 events, while LeNet obtains an accuracy of 90.07%
for identifying the 403 events. The overall accuracy of the
proposed event classification method is 90.13%, which is
the best performance as shown in the comparison Table 4,
where 800 events are processed separately and comparatively
using only LSTM, SVM, LeNet, and the proposed event
classification method. Tables 5 and 6 display the relative per-
formances of the LSTM, SVM, and LeNet on disturbances
and faults, respectively. In Table 7, the proposed event clas-
sification method is compared with LSTM, SVM, and LeNet

1. Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified
are necessarily the best available for the purpose.
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TABLE 2. Confusion matrix of LSTM for events categorization.

TABLE 3. Confusion matrix of LeNet for events categorization.

TABLE 4. Comparison results of the proposed method.

TABLE 5. Comparison results of the algorithms on 400 disturbances.

TABLE 6. Comparison results of the algorithms on 400 faults.

TABLE 7. Comparative results of the proposed method using the real PMU data (200
oscillations and 200 line faults).

by using a set of real PMU data, which includes 200 oscil-
lations and 200 transmission line faults. The PMU data of
200 oscillations is collected from the Frequency Monitoring
Network System (FNET). FNET is a WAMS operated by the
University of Tennessee Knoxville and Oak Ridge National
Lab (ORNL). The real dataset of 200 transmission line faults
is extracted from a two-year field-recorded PMU data in
the U.S. Western Grid interconnection. Table 7 shows that
the proposed event classification method achieves a similar
performance on real PMU data as that on EMTP data.
In Figs. 4, 5 and 6, we compare performances of cloud and

edge detections, where the scenario of a single edge cloud

FIGURE 4. The packet loss performance comparison of cloud detection and edge
detection.

FIGURE 5. The average latency performance comparison of cloud detection and
edge detection.

FIGURE 6. The traffic comparison of cloud detection and edge detection.

node and a remote cloud server is considered. In our simula-
tions, 50 PMUs are generating synchrophasors real-time data
with sampling rates ranging from 10 to 60 samples per sec-
ond. The generated data will be first processed locally and
categorized into four different types of events: namely local
disturbances, global disturbances, local faults, and global
faults. The local disturbances and faults will be processed
locally using edge detection, where local disturbances are
sent to the LSTM algorithm for identification, while the
faults are processed by using the LeNet algorithm. The
related data will be stored and processed locally. On the other
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FIGURE 7. The performance of the proposed edge cloud sharing scheme.

FIGURE 8. The average convergence rate of the proposed edge cloud sharing
scheme.

hand, the global disturbances and faults will be upload to
the remote cloud for classification. In our simulations, the
percentages of global events range from 10%, 20% and 50%.
Figs. 4 and 5 demonstrate the significant advantage of edge
detection over cloud detection in terms of packet loss and
average latency, which verifies the efficiency of the proposed
edge detection.
Fig. 6 evaluates the amount of traffic produced on the

network. As can be observed the traffic produced by cloud
detection is far more than by edge detection. Though the
traffic of edge detection will increase with the increasing
percentage of global events, it can still achieve a far better
performance than cloud detection.
In Figs. 7 and 8, we evaluate the performance of the

proposed collaborate cloud and edge computing in a three-
edge-cloud-node scenario, where each edge cloud node is
handling 50 PMUs. The wireless channel bandwidth between
MIBSs and the MABS is set to 20 MHz, the backhaul
link capacity is 100Mbps, edge cloud computation capac-
ity is 1 × 1010 CPU cycle/s, and remote cloud computation
capacity is 2 × 1011 CPU cycle/s. Within each time-period,
multiple events, simulated using the EMTP, will be ran-
domly distributed in the system. Each period can be split to

TABLE 8. Comparison results of the algorithms on the same amount of data.

5 successive time slots where each is allocated to one pos-
sible event. Each event consists of 15K bits measurement
data. In this case, only local events are considered. The local
disturbance and local faults are equally likely to occur. At
the beginning of a time period, each ECN uses SVM to
categorize the power events. The average processing time of
SVM is around 2.3s. LSTM is used to process local distur-
bances and LeNet or AlexNet is considered to process local
faults. If the power signal is categorized as normal no action
will be taken. The processing resource used by every edge
cloud will be then derived and its value will be exchanged
with the MABS. The collaborate cloud and edge computing
scheme aim to balance the load and to minimize the whole
processing delay Twhole of the entire system. As can be
seen from Fig. 7, the collaborate cloud and edge computing
scheme can significantly reduce the processing delay Twhole
of the system, especially for the scenarios with more events.
Fig. 8 depicts the average convergence rate of the proposed
edge cloud sharing scheme in a scenario where the average
events number in each time period is 9. As mentioned earlier,
there are not many choices for λi and the average conver-
gence rate of the proposed scheme is around 10 iterative
steps.
In Table 8, the processing time and complexity of the

employed LeNet, AlexNet, LSTM, and GRU are investi-
gated and compared. Events with same amount of data (15K
measurement data) are used for all algorithms. Specifically,
LeNet or AlexNet is used for processing faults, while LSTM
or GRU is used for processing disturbances. Compared with
LeNet, the AlexNet achieves a better accuracy at the expense
of higher complexity. On the other hand, the GRU reduces
the gating signals to two compared to LSTM. However, it
has to increase the hidden state of size n to achieve a similar
performance to LSTM, leading to a similar complexity for
a similar accuracy performance.

V. CONCLUSION
In this article, we present a power grid event classifi-
cation method where different AI-assisted algorithms are
used to process different events that can effectively improve
system performance. For a large-scale power grid system
with multiple edge cloud nodes, a collaborative cloud and
edge computing scheme is introduced to balance the load
and reduce the overall processing delay, Twhole, of the whole
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system. The complexity and processing time of some widely
used machine learning algorithms, such as LSTM, GRU,
LeNet, and AlexNet, are investigated and compared. Using
different scenarios our investigations show that the proposed
event classification method, together with the collaborative
cloud and edge computing scheme, can improve accuracy
and effectively share the balance.
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