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In ferromagnetic systems lacking inversion symmetry, an applied electric field can control the fer-
romagnetic order parameters through the spin-orbit torque. The prototypical example is a bilayer
heterostructure composed of a ferromagnet and a heavy metal that acts as a spin current source. In
addition to such bilayers, spin-orbit coupling can mediate spin-orbit torques in ferromagnets that
lack bulk inversion symmetry. A recently discovered example is the two-dimensional monolayer fer-
romagnet Fe3GeTe2. In this paper, we use first-principles calculations to study the spin-orbit torque
and ensuing magnetic dynamics in this material. By expanding the torque versus magnetization
direction as a series of vector spherical harmonics, we find that higher order terms (up to ℓ = 4)
are significant and play important roles in the magnetic dynamics. They give rise to deterministic,
magnetic field-free electrical switching of perpendicular magnetization.

I. INTRODUCTION

The electrical control of magnetization without exter-
nal magnetic fields has attracted a lot of interest due to
its potential applications in energy-efficient nonvolatile
magnetic random access memory devices and neuromor-
phic computing [1–4]. One of the promising mechanisms
to realize such functionality is spin-orbit torque [1, 3, 5–
7], which is derived from spin-orbit coupling and transfers
angular momentum from the crystal lattice to the mag-
netization [8]. The symmetry of the system determines
the dependence of the spin-orbit torque on the magne-
tization direction. This dependence, in turn, determines
the possible functionality of the torque in devices. As an
example, a bilayer heterostructure consisting of a ferro-
magnetic and a heavy metal layer often possesses a sym-
metry mirror plane containing the electric field and the
interface normal directions. This symmetry requires that
the spin-orbit torque vanishes when the magnetization is
in plane and perpendicular to the electric field. This
property, in turn, prevents the spin-orbit torque from af-
fecting deterministic switching of magnetic devices with
perpendicular magnetic anisotropy, which is desired for
applications [3, 4, 9–11]. Utilizing materials with reduced
crystal symmetry such as two-dimensional layered mate-
rials can overcome this limitation and results in deter-
ministic perpendicular switching [11–13].

In addition to conventional bilayer heterostructures,
ferromagnets without inversion symmetry [14] can also
exhibit sizable spin-orbit torques, offering another route
to useful switching dynamics. An example is the recently
discovered 2D magnetic material, monolayer Fe3GeTe2.
Fe3GeTe2 is additionally of great interest in ferromag-
netic spintronics applications because it is metallic and
has strong perpendicular magnetic anisotropy [15–18].
Johansen et al. recently predicted that this mate-
rial’s C3z symmetry leads to unique bulk spin-orbit
torques [19]. For example, the lowest order spin-orbit
torque is found to be time-reversal even and fieldlike, in

contrast to the conventional bilayer case that has a time-
reversal odd fieldlike torque and a time-reversal even
dampinglike torque. Interestingly, although the mate-
rial symmetry is compatible with deterministic perpen-
dicular magnetization switching, the lowest order torques
identified in previous work do not lead to deterministic
switching. Motivated by this, we compute the spin-orbit
torques in monolayer Fe3GeTe2 in this paper using ab ini-
tio calculations. We generalize the analysis of the sym-
metry properties of the material response and show that
higher order terms in the spin-orbit torque enable deter-
ministic switching of perpendicular magnetization.
This paper is organized as follows: In Sec. II, we de-

scribe how symmetry determines the form of spin-orbit
torques, which we express in vector spherical harmonics.
Using vector spherical harmonics as the expansion ba-
sis enables the convenient analysis of higher-order terms.
We provide symmetry tables for the Fe3GeTe2 structure
and for conventional bilayer systems. Section III presents
first-principles calculations of spin-orbit torques in mono-
layer Fe3GeTe2 and analyzes the important higher-order
terms in the results. Section IV presents the result-
ing dynamics of the ab initio torques computed with
the Landau-Lifshitz-Gilbert-Slonczewski equation. In
Sec. V, we provide a brief discussion of our main find-
ings and relevance to the experiments.

II. SYMMETRY ANALYSIS

A. Vector Spherical Harmonics

Crystal symmetry ultimately determines the depen-
dence of spin-orbit torque on the electric field and mag-
netization directions. Following Belashchenko et al. [20],
we expand the spin-orbit torque in the basis of vector
spherical harmonics. This expansion offers several advan-
tages over other approaches [21, 22] when describing spin-
orbit torques in systems with more complicated symme-
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tries than the typical bilayer system. First, the expansion
elements are orthogonal to each other, so adding more
terms to the expansion does not change the fit values for
the lower order terms. Second, there is a straightforward
procedure to determine all symmetry allowed elements
of the expansion set. This is in contrast to a polynomial
expansion of the torque in Cartesian coordinates, where
the number of tensor elements grows exponentially with
polynomial order. This makes higher order terms difficult
to identify and evaluate. As we show in this paper, higher
order terms (fourth order) can qualitatively impact the
features of the spin-orbit torque-induced magnetization
dynamics, so their identification is important. Third,
the terms in the vector spherical harmonics are auto-
matically partitioned into dampinglike or fieldlike torque
terms [20]. Knowledge of the fieldlike/dampinglike char-
acteristics of the torque can provide intuition about the
role of each term in magnetic dynamics. Finally, the ex-
pansion allows easy identification of time-reversal even
and odd torques. As we show below, both fieldlike and
dampinglike torques include time-reversal even and odd
components. We discuss these points in more detail be-
low.

We follow the same convention adopted in Be-
lashchenko et al. [20] to use two of the three vector spher-
ical harmonics. For the magnetization direction

m̂ =(sin θ cosϕ, sin θ sinϕ, cos θ), (1)

the torque components are defined in terms of scalar
spherical harmonics Ylm[m̂(θ, ϕ)] as

Y D
lm(m̂) =

∇m̂Ylm(m̂)√
l(l + 1)

, (2)

Y F
lm(m̂) =

m̂×∇m̂Ylm(m̂)√
l(l + 1)

, (3)

We explicitly label the vector spherical harmonics terms
in Eqs. 2 and Eq. 3 based on the fieldlike or dampinglike
nature of the torque. We label Y F

lm as fieldlike because
its corresponding effective field ∇m̂Ylm is a pure gradient
and has zero curl. Fieldlike torques result in precessional
motion of the magnetization. We label Y D

lm as damp-

inglike because it is proportional to m × Y F
lm and can

be generated from the curl of an effective field. Damp-
inglike torques direct the magnetization to fixed points.
The time-reversal properties of fieldlike and dampinglike
torques depend on whether l is even or odd; Table I sum-
marizes this relationship.

l even l odd

Y D
lm odd even

Y F
lm even odd

TABLE I. Time-reversal symmetry properties of the vector
spherical harmonics Y D,F

lm .

For the most common spin-orbit torques found in bi-
layers with a broken mirror plane perpendicular to z,

the dampinglike torque m̂ × ((E × ẑ) × m̂) is even un-
der time reversal and the fieldlike torque m̂× (E× ẑ) is
odd. The terms “time-reversal even torque” and “damp-
inglike torque” are often used interchangeably, as are the
terms “time-reversal odd torque” and “fieldlike torque”.
However, these equivalences do not hold for higher order
terms in the expansion of the torque.
Since the electric-field-induced spin-orbit torque is al-

ways perpendicular to the magnetization m and the vec-
tor spherical harmonics form a complete set of functions,
we can write the spin-orbit torkance for an electric field
in the Ê direction of magnitude E

T Ê(m̂) = τ Ê(m̂)E (4)

in the basis of Y D
lm and Y F

lm

τ Ê(m̂) =
∑
lm

[
Y D

lmC
D
lm(Ê) + Y F

lmC
F
lm(Ê)

]
, (5)

where the Cs are complex Cartesian coefficients with the

real part being the coefficient of the ReY D,F
lm and the

imaginary parts the negative coefficients of the ImY D,F
lm .

The crystal symmetry determines what combinations of
coefficients are allowed.
When we expand spin-orbit torkance in vector spher-

ical harmonics, we have 2l + 1 independent choices of
vector spherical harmonics, one for each integer m with
−l ≤ m ≤ l for a given l in the absence of symme-
try constraints. As with spherical harmonics, the vec-
tor spherical harmonics with −m are the complex con-
jugates of those with m. Since the torques are real, we
use the real and imaginary parts of the vector spheri-

cal harmonics as the expansion functions, e.g., ReY D,F
lm

and ImY D,F
lm . When we make this choice, we restrict m

to be non-negative so we do not overcount. Note that
we use a different notation for the vector spherical har-
monic torque components than found in Belashchenko
et al. [23]. Crystal symmetries constrain the choices of
m for a given l. Table II gives the constraints due to
important mirror plane symmetries of the structure. Ro-
tational crystal symmetries place additional constraints
on m, as described in Appendix A.
Conventionally, for thin film heterostructures com-

posed of ferromagnets and heavy metals, the structure is
assumed to be disordered, so crystal symmetry does not
play a role. The bilayer structure itself breaks the mirror
plane σp̂,Ê , but the other two structural mirror planes
remain. The presumed continuous rotational symmetry

restricts m = 1 [20, 21], so that for l odd, only ImY D,F
l1

is allowed and for l even, only ReY D,F
l1 .

The material of interest in this paper, Fe3GeTe2, pre-
serves the mirror plane perpendicular to the interface
normal but breaks one of the mirror planes that contain
the interface normal. The mirror plane perpendicular to
the interface normal restricts m to be even. When the
crystal is orientated such that the electric field is along
the x direction as in Fig. 1(a), σp̂,n̂ is preserved, so terms
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containing ReY D,F
lm require l to be odd and terms con-

taining ImY D,F
lm require l to be even. If the crystal is

oriented so that the electric field is along the y direction
as in Fig. 1(a), the allowed l values for the different terms
switches.

Systems like that in Ref. [11] are similar but do not
have the mirror plane perpendicular to the interface, so
there is no restriction that m be even. Depending on the
orientation of the electric field along the crystal, different
terms are allowed for different combinations of l and m.

Mirror plane ReY D,F
lm ImY D,F

lm

σÊ,n̂ l even l odd

σp̂,n̂ l +m odd l +m even
σp̂,Ê m even m even

TABLE II. Symmetry constraints on m for a given l provided
by different mirror planes in magnetic thin films and thin film
heterostructures. The applied electric field is in Ê direction,
the film normal direction is n̂, and p̂ = n̂ × Ê. If a system
has more than one mirror, the constraints combine. In this
table, the vector spherical harmonics are defined based on a
coordinate frame such that x̂ = Ê, ẑ = n̂, and ŷ = p̂

It can be informative to take a different approach from
that used in Table II, in which the vector spherical har-
monics are defined with respect to the interface normal
and the electric field direction and instead to fix the crys-
tal orientation. Then the vector spherical harmonics do
not change as the electric field direction is changed and it
becomes possible to relate the coefficients of the different
terms for the different electric field directions. This pro-
cess is explained in Appendix A, allowing us to determine
the angular dependence of the torque when the electric
field is along y from calculations done for the field along
x.

B. General form of the torkance for monolayer
Fe3GeTe2

The vector spherical harmonic expansion of the spin-
orbit torque for Fe3GeTe2 is determined by its crystal
structure, shown in Fig. 1. Monolayer Fe3GeTe2 has
the D3h symmetry of the P63/mmc space group, which
means that it has mirror plane symmetry with respect
to the plane of the film (x − y plane), three-fold rota-
tional symmetry around the out-of-plane axis, and three
in-plane mirror planes (y − z plane and equivalents ro-
tated by 120◦), but mirror-plane symmetry is broken in
the mutually perpendicular planes (x−z plane and equiv-
alents rotated by 120◦). Its lack of inversion symmetry
is key to allowing current-induced spin-orbit torque.

Following the general procedure outlined in Ap-
pendix A, the symmetry-allowed spin-orbit torkance for
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FIG. 1. Crystal structure and band structure of the mono-
layer Fe3GeTe2. (a) Top-down view; (b) side view. We can
see that the monolayer Fe3GeTe2 does not have the mirror
symmetry with respect to xz-plane. (c) Band structure along
the high-symmetry direction G(0, 0, 0)-K( 1

3
, 1
3
, 0)-M( 1

2
, 0, 0)-

G(0, 0, 0). Red dots represent bands obtained from sym-
metrized tight-binding Hamiltonian while black lines repre-
sent the bands obtained from plane-wave basis. The blue
horizontal line indicates the Fermi level.

an electric field in the x direction is given by

τ even
x̂ (m̂) =

∑
lm

CF
2l,6m±2 ImY F

2l,6m±2(m̂)

+CD
2l+1,6m±2 ReY D

2l+1,6m±2(m̂).

(6)

We then project the first-principles results of spin-orbit
torkance onto this symmetry-constrained form (up to
ℓ = 16) to obtain the full expansion coefficients. Details
about the important terms in this expansion are given in
Sec. III. Some of the terms are illustrated in Fig. 2. The
lowest order time-reversal even term can be written in
Cartesian coordinates as

ImY F
2,2 ∝ − sin θ cos 2ϕ θ̂ +

1

2
sin 2θ sin 2ϕ ϕ̂

= m̂× (my,mx, 0).
(7)

This form, which is shown in Fig. 2(c) and which has
been derived from the Cartesian expansion [19], acts as
a fieldlike torque even though it is the time-reversal even
component of the spin-orbit torque.
The time-reversal odd torkance is given by

τ odd
x̂ (m̂) =

∑
lm

CD
2l,6m±2ImY D

2l,6m±2

+CF
2l+1,6m±2ReY

F
2l+1,6m±2.

(8)

The leading term in this expression is in Fig. 2(d), and
in Cartesian coordinates takes the form:

ImY D
2,2 ∝ 1

2
sin 2θ sin 2ϕ θ̂ + sin θ cos 2ϕ ϕ̂

= m×
(
(my,mx, 0)×m

)
.

(9)

This time-reversal odd torque acts as dampinglike and is
the second lowest-order in magnetization m.
Utilizing Eq. A8, we can write the final symmetry-

constrained form of torkance under the applied E field
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(g) 𝓣 ∝ Im𝒀!,𝟒
$(a) 𝓣 ∝ &𝒚×𝒎 ∝ Im𝒀%,%
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$
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(
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(
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$

FIG. 2. Angular dependence of the exemplary spin-orbit torques for an applied electric field in the x direction. The arrow
(color) on the sphere indicates the direction (relative magnitude) of the torque at the given magnetization. The circles below
the spheres show the torque along the equator correspondingly. (a) and (b) apply to bilayer heterostructures, while (b)-(h)
apply to Fe3GeTe2. Deterministic switching of Fe3GeTe2 requires torque contributions as shown in (f) and (g).

in the ŷ-direction by keeping the same coefficients and
swapping the Re and Im operating on the vector spheri-
cal harmonics (see Appendix A for details). In this ma-
terial, even though the coefficients of the torques are the
same for fields in the x̂ and ŷ directions, and the real
and imaginary parts of the vector spherical harmonics
are the same but rotated through π/m, the differences
between those rotational angles are sufficient to qualita-
tively change the torques for fields in the two directions.
For electric fields in the ŷ direction, symmetry prevents
magnetic-field free switching of perpendicular magneti-
zations. However, the different relationship between the
electric field and the mirror plane allows for predictable
perpendicular switching for an electric field in the x di-
rection. In the following, we focus particularly on this
case.

It is interesting to compare the spin-orbit torques for
this system with those typically discussed for bilayer sys-
tems. Figures 2(a) and (b), respectively, show the typical
fieldlike and dampinglike torques. These systems have a
broken mirror plane perpendicular to the interface nor-

mal. When the electric field is applied in plane, both
torques vanish when the magnetization points in the in-
plane direction perpendicular to the electric field. The
torques are finite when the magnetization is perpendicu-
lar to the interface. Monolayer Fe3GeTe2 does not break
this mirror plane but rather one containing the interface
normal. In this case the torques are strictly zero when
magnetizations are perpendicular to the layer. The three
fold rotational symmetry then gives more complicated
angular dependence than that seen in the bilayer sys-
tems. We discuss the consequences of these differences
in Sec. IV.

A motivation for symmetry analysis is the techno-
logical application of current-induced switching of per-
pendicular magnets [24, 25]. Deterministic spin-orbit
torque switching of perpendicular magnetization requires
a nonzero out-of-plane torque when the magnetization is
along the equator. This form of torque cannot be realized
in typical devices composed of isotropic heavy metal lay-
ers and ferromagnetic layers due to their in-plane mirror
symmetries. The use of in-plane-symmetry-breaking ma-
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terials such as WTe2 have been reported previously [11–
13, 26–28] as a means to accomplishing field-free switch-
ing.

Here we describe a different scenario for achieving de-
terministic switching of perpendicular magnetizations in
Fe3GeTe2 in which symmetry-allowed higher-order terms
in the vector spherical harmonics expansion play an es-
sential role. A first requirement is that when the mag-
netization is in plane there be an out-of-plane torque to
break the symmetry between up and down. Only time-
reversal even torques [such as Figs. 2(c), 2 (f) and 2(g)]
can provide such functionality because C2y symmetry en-
forces the out-of-plane torque to have the time-reversal
even form, τz ∝ cos 2mϕ. The second requirement is that
there will be a stable fixed point out-of-plane, otherwise,
the torque will vanish at an in-plane direction. Figure 2
(f) shows that torque ReY D

3,2 is the lowest order expan-

sion term to satisfy this requirement. However, a ReY D
3,2

torque alone cannot switch the magnetization from one
hemisphere to the other because of symmetry around the
equator for m = 2 terms. The fixed point in one hemi-
sphere is exactly equivalent to a fixed point at the other
hemisphere connected by (θ, ϕ) → (π − θ, π/2− ϕ). Al-

though the ReY D
3,2 torque can drive the magnetization

away from the north or south pole when we turn on the
field, the new fixed point is still in the same hemisphere.
As we turn off the electric field, the magnetization will
then go back to the same pole, thus resulting in no switch-
ing. The third requirement is breaking the symmetry
connecting points in the northern and southern hemi-
spheres which can happen if the higher-order torques
with m > 2 terms are also present. Figure 2(g) shows

one example of such torque, ImY
(F)
4,4 . The combination

of ImY F
4,4 and ReY D

3,2 can deterministically switch ferro-
magnets with perpendicular magnetic anisotropy, as we
show in the following sections.

III. FIRST-PRINCIPLES CALCULATIONS OF
SPIN-ORBIT TORKANCES IN MONOLAYER

FE3GETE2

We adopt the experimental unit cell parameters [29]
a = 0.3991 nm of monolayer Fe3GeTe2 (space group
D3h) for our first-principles calculations using Quantum
ESPRESSO [30]. We then use a Wannier function based
approach [31] to compute the linear responses, described
in more detail in Appendix B. The time-reversal even
and odd torkances computed using Kubo formula with
the constant broadening and relaxation time approxima-
tions are given by [28, 32, 33]

τ evenij = 2e
∑
k,n,
m̸=n

fnk
Im ⟨ψnk| ∂Hk

∂ki
|ψmk⟩ ⟨ψmk| Tj |ψnk⟩

(Em − En)2 + η2
,

(10)

τoddij = −e
∑
k,n

1

2η

∂fnk
∂Enk

⟨ψnk|
∂Hk

∂ki
|ψnk⟩ ⟨ψnk| Tj |ψnk⟩ .

(11)
|ψnk⟩ and Enk are the eigenstates and eigenvalues of
Hamiltonian Hk, where k is the Bloch wave vector and
n is the band index. The equilibrium Fermi-Dirac distri-
bution function is fnk = (e(Enk−µ)/kBT + 1)−1, µ is the
Fermi level, η is the broadening parameter, and e is the
electron charge. The torque operator is T = − i

ℏ [∆·Ŝ, Ŝ].
S is the spin operator and ∆ is the time-reversal odd
spin-dependent exchange-correlation potential.
One important input parameter to the calculation is

the broadening parameter. Figure 3 shows the depen-
dence of torkance on broadening parameter and chemical
potential. In Fig. 3(a), we find that the time-reversal
odd component τxx is always larger than the even com-
ponent τxz when m̂ = ŷ at the Fermi level. Both time-
reversal even and odd torkances increase as the broaden-
ing parameter becomes smaller with the odd component
increasing faster. The longitudinal resistance is indicated
by black line in Fig. 3(a). In the broadening parameter
regime η ∈ (0.02, 0.04) eV, where the resistance is about
400 Ω, the odd torkance is almost one order of magnitude
larger than the even component. However, the torkance
as a function of chemical potential for a fixed η = 25 meV
shown in Fig. 3(b) shows that this ratio does not always
hold. Both even and odd components are peaked around
0.3 eV above the Fermi level with a much smaller mag-
nitude difference. In some regions such as 0.2 eV below
the Fermi level, the even component can be much larger
than the odd component.
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FIG. 3. Torkance and sheet resistance as a function of broad-
ening (a) and chemical potential relative to the Fermi level
(b). The applied electric field is in the x̂ direction and the
magnetization is in the ŷ direction. Red and blue lines give
the time-reversal even and time-reversal odd torkances respec-
tively. The black line gives the two-dimensional sheet resis-
tance. Note that the time-reversal even torkance is only in
the ẑ direction and time-reversal odd torkance is only in the
x̂ direction due to symmetry constraints. We use η = 25 meV
in (b).

We choose a constant broadening parameter η =
25 meV for the results presented below. The corre-
sponding constant electron momentum relaxation time is
τ = ℏ/2η = 13 fs. The computed longitudinal resistance
[Fig. 3(a)] using this η = 25 meV at low temperature is
around 400 Ω which agrees well with the experiment [16].
Although one experiment [16] finds the Curie tempera-



6

ture for monolayer Fe3GeTe2 can reach up to 100 K, we
treat the smaller temperature T = 20 K [15] where the
ferromagnetic order is most robust.

Figure 4 gives the first-principles calculations of spin-
orbit torkance in the monolayer Fe3GeTe2 as a function
of magnetization angle (θ, ϕ). Comparing Fig. 4(a) with
Fig. 2(c) gives clear evidence of the existence of higher-
order terms. There is a vanishing torque band in both
north and south hemispheres. We compute the expansion
of even and odd torques in vector spherical harmonics as
in Eqs. 6 and 8 up to ℓ = 16, and find that for ℓ > 7,
the coefficients are a factor of 100 smaller than leading
order terms. We find that the following three terms in
the expansion of the even torque are dominant:

τ even
x̂ (m̂) ≈ CF

2,2ImY F
2,2 + CF

4,2ImY F
4,2

+ CD
3,2ReY

D
3,2.

(12)

For the odd torques, the important terms in this expan-
sion are

τ odd
x̂ (m̂) ≈ CD

2,2ImY D
2,2 + CD

4,2ImY D
4,2

+ CF
3,2ReY

F
3,2.

(13)

The numerical values of these and a few of the next terms
in the expansion are given in Tables III and IV. Using the
fitted coefficients of these nonzero vector spherical terms,
we can replicate Fig. 4. This allows us to understand
specifically how each term contributes to the magnetiza-
tion dynamics, the focus of the next section.

ℏ
𝑒𝑎!

𝜏"#"$

ℏ
𝑒𝑎!

𝜏"#"$

ℏ
𝑒𝑎!

𝜏%&&

ℏ
𝑒𝑎!

𝜏%&&

(a) 𝑬 ∥ #𝒙

(c) 𝑬 ∥ #𝒚

(b) 𝑬 ∥ #𝒙

(d) 𝑬 ∥ #𝒚

FIG. 4. Angular dependence of the time-reversal even (a,c)
and time-reversal odd (b,d) torkance on the magnetization
direction (θ, ϕ) under an external electric field along the x̂
(a,b) direction and ŷ (c,d) direction at the Fermi level. The
arrow (color) on the sphere indicates the direction (magni-
tude) of the torkance at the given magnetization. We use
kT = 2 meV, η = 25 meV.

Figures 4 (c) and 4 (d) show the angular dependence
of spin-orbit torques when the applied electric field is in
ŷ direction. Because of the C3z rotation symmetry, these
results are expected to be related with the results of the
applied field in the x̂ direction according to Eq. A8. We

CF
2,2 CF

4,2 CF
6,2 CF

4,4 CF
6,4 CD

3,2

−0.0087 0.0096 −0.0015 0.0007 0.0006 −0.0075

TABLE III. Expansion coefficients of the time-reversal even
torques as in Eq. (6). The torques are in units of ea0/ℏ where
a0 is the Bohr radius. Other terms with magnitudes less than
0.0005 are not shown in this Table.

CD
2,2 CD

4,2 CF
3,2 CF

7,2

0.2018 0.0017 0.0153 0.0013

TABLE IV. Expansion coefficients of the time-reversal odd
torques as in Eq. (8). The torques are in units of ea0/ℏ where
a0 is the Bohr radius. Other terms with magnitudes less than
0.001 are not shown in this table.

have checked that the numerical results are indeed consis-
tent with this relationship. If we look at each individual
vector spherical harmonic term, the difference between
the cases for E ∥ ŷ and E ∥ x̂ is a simple azimuthal ro-
tation by an angle of π

2m to swap the real and imaginary
parts. After summing over all m, the total torques for
the two cases are not related by a simple rotation. This
enables an out-of-equator fixed point for E ∥ x̂, as we
describe next.

(a) 𝑬 ∥ #𝒙

𝜃/
𝜋

𝜙/𝜋

ℏ
𝑒𝑎!

𝜏
(b) 𝑬 ∥ #𝒚

𝜙/𝜋

0.0001

0.0002

0.0003

0.0004

FIG. 5. Zoomed-in contour plot of torkance magnitude as a
function of magnetization direction (θ, ϕ) under an external
electric field along the x̂ (a) direction and ŷ (b) direction
at the Fermi level. Horizontal red dashed line indicates the
equator position where θ = π/2. (a) Zero torkance near ϕ =
π/4; (b) zero torkance at ϕ = 0.

Figure 5 shows a zoomed-in contour plot of the magni-
tude of the total spin-orbit torkance near the equator.
In the case of E ∥ ŷ, the mirror symmetry σyz en-
forces a zero torkance fixed point at m = x̂, shown in
Fig. 5(b). Microscopically, all vector spherical harmonic
terms in Eq. A17 are zero when (θ, ϕ) = (π/2, 0). In
contrast, Fig. 5(a) shows one of the four out-of-equator
zero torkance fixed points near (θ, ϕ) = (π/2, π/4). The
fixed points in (a) and (b) are inequivalent due to the
broken σxz mirror symmetry in Fe3GeTe2. The three
additional zero-torkance points include one on the same
hemisphere and two on the opposite hemisphere. For a
particular electric field, the two fixed points on the same
hemisphere are stable and the other two on the opposite
hemisphere are unstable. The stability of each points
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changes with the sign of the electric field, allowing deter-
ministic switching, discussed in the next section.

Fig. 5(a) shows a tiny polar angle difference from π/2
which is unlikely to be thermally stable in realistic ap-
plications. The reason the angle is so small is that CD

3,2

is relatively small compared to lower order terms such

as CD,F
2,2 which all have the fixed points at equator. The

smallness of CD
3,2 is not always true, as shown in the fit-

ted coefficients as function of the chemical potential in
Fig. 6. The important CD

3,2 term can be very prominent
as we increase chemical potential a few tens of millielec-
tron volts indicated by the red line. At this chemical
potential range, the out-of-equator fixed point can be
detectable much more easily, as shown in the contour
plot of Fig. 7 (a). While the properties we calculate of
Fe3GeTe2 are not likely to be suitable for applications,
our focus is on the new physics and its trends dictated
by the symmetries in Fe3GeTe2, rather than specific val-
ues. Other materials that share the same symmetry may
have properties that are more amenable.

●

■

★

𝐶!,#
$,%&%'

𝐶#,#
(,%&%'

𝐶#,#
$,)**

𝜇 (eV)

ℏ 𝑒𝑎
+
𝐶 ,
,-

FIG. 6. Fitted parameters Cl,m as a function of chemical
potential relative to the Fermi level. The applied electric
field is in x̂ direction. Red dots represent the CD,even

3,2 co-
efficients which is crucial in generating out-of-equator fixed
points demonstrated in Fig. 2(f). Blue squares and orange
stars represent the lowest order time-reversal even and time-
reversal odd fitted parameters, corresponding to Fig. 2(c) and
(d) respectively. We use η = 25 meV.

IV. DYNAMICS

In this section, we focus on how the spin-orbit torques
computed in the previous section affect the magnetiza-
tion dynamics. The spin dynamics of a ferromagnet with
perpendicular easy-axis anisotropy is governed by the fol-
lowing Landau-Lifshitz-Gilbert equation with additional
current-induced spin-orbit torque terms [34]

dm̂

dt
− αm̂× dm̂

dt
= −γµ0HA (m̂× ẑ) (m̂ · ẑ) + T , (14)

(a) Contour plot

!/#

!/
#

ℏ
%&!

' (b) Spin dynamics, E= 0.4 V/nm 

m

time (ps)

mx

my

mz
0.003

0.009

0.015

0.021

0.027

0.033

FIG. 7. (a) shows a zoomed-in contour plot of torkance mag-
nitude as a function of magnetization direction (θ, ϕ) under
an external electric field along the x̂ direction at µ = 0.1 eV
above the Fermi level. Horizontal red dashed line indicates
the equator position where θ = π/2. (b) shows the spin dy-
namics in the presence of electric-field-induced (E ∥ x̂) ab ini-
tio spin-orbit torkance. Red, blue, and black lines represent
the dynamics of mx,my,mz respectively. We use α = 0.01,
µ0HA = 20 T, and µ = 0.1 eV in the Landau-Lifshitz-Gilbert
dynamics simulation. The applied electric field strength
0.4 V/nm gives a current density of 4 × 1014 A/m2 assum-
ing a 2.5 nm sample thickness and a 400 Ω sheet resistance.

where m̂ is the normalized magnetization, α is the
Gilbert damping parameter, γ is the absolute value of
the gyromagnetic ratio, µ0 is vacuum magnetic perme-
ability, HA is the magnetic anisotropy field, and T is the
current-induced spin-orbit torque.
We directly compute the spin dynamics with the ab

initio fitted spin-orbit torques as input into the Eq. 14.
We use the full expansion of the torque (up to ℓ = 16)
even though we obtain nearly identical results in test
calculations significantly truncating the expansion. In
the simulation, we choose µ0HA = 20 T by calculat-
ing the energy difference for out-of-plane and in-plane
magnetic configuration [35]. For the Gilbert damping,
we choose α = 0.01 [36]. Fig. 7(b) shows a typi-
cal zero-temperature magnetic trajectory when the ap-
plied electric field is larger than a critical threshold.
The stable fixed point (θE , ϕE) corresponds to the same
fixed point near ϕ = π/4 determined by the spin-orbit
torkance shown in Fig. 7(a) but shifted by the presence
of the anisotropy torque. There is another electric-field
driven stable point near the symmetry related fixed point
(θE , ϕE+π) depending on the initial state of the magneti-
zation. Reversing the sign of electric field makes the other
two fixed points [(π − θE ,−ϕE) and (π − θE ,−ϕE − π)]
become stable so that it is possible to switch the magne-
tization from the south pole to the north hemisphere.
The spin-orbit torques in monolayer Fe3GeTe2 lead to

dynamics that are quite distinct from those of the conven-
tional cases as analyzed in Ref. [10]. First, the instabil-
ity condition of the initial magnetization is very different
from the cases found in bilayers. In the bilayer case, for a
perpendicular easy-axis anisotropy, the spin-orbit torque
is finite on the initial magnetization (±ẑ), see Fig. 2(a,b).
For Fe3GeTe2 on the other hand, the torque on that ini-
tial magnetization is zero by symmetry as seen in Fig. 4.
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For this aspect of the reversal, the initial instability for
Fe3GeTe2 has more in common with the instability for a
bilayer system with an in-plane easy-axis along the ±ŷ,
because in that case the torque is also zero.

The instability case for Fe3GeTe2 also differs signifi-
cantly from that of the bilayer with in-plane easy-axis
anisotropy. As seen in Fig. 2(b), when the magnetiza-
tion in the bilayer system precesses around the easy axis,
the dampinglike torque pushes magnetization toward the
easy axis or away from it depending on the sign of the
current but independent of the phase of the precession.
This means that the dampinglike torque competes with
the damping torque, which is a factor of α smaller than
the precession torques. On the other hand, the torques
shown in Fig. 4(a,b) have no net push toward the easy
axis along the poles (due to the σxy symmetry mak-
ing the poles saddle points for the spin-orbit torques)
and so they do not compete with damping torque. For
Fe3GeTe2, when the magnetization is near the poles, the
spin-orbit torques compete with the anisotropy directly.
This competition gives the unfortunate consequence that
reversal instability in Fe3GeTe2 requires larger currents
than might be the case for other symmetries. However,
when the magnetization is close to the fixed points near
the equator, the spin-orbit torque competes directly with
the damping, giving smaller critical currents for the sta-
bility of those fixed points.

Once the critical current is reached and the ẑ direction
becomes unstable for the magnetization, Fe3GeTe2 has
the advantage over the bilayer system with perpendicu-
lar anisotropy that the switching is deterministic with-
out any other symmetry breaking, like in-plane magnetic
fields, applied to the system. In the bilayer system with-
out symmetry breaking the magnetization goes to the ŷ.
When the current is turned off, small fluctuations deter-
mine whether the magnetization reverses or returns to its
original state. For Fe3GeTe2 on the other hand, as shown
in Fig. 7, the stable minima near mz = 0 are in one equa-
tor or the other, so that when the current is turned off,
the magnetization goes to the pole on that side of the
equator.

V. DISCUSSION

Our findings have several experimental implications.
The lowest order ImY F

2,2 has been found to be important

in assisting the conventional dampinglike torque ImY D
1,1

in perpendicular switching of bilayer CoPt/CuPt [37, 38].
This combination shares the similar traits as Fe3GeTe2.
Reversal requires mixing vector spherical harmonics with
different m and nonzero out-of-plane torques when the
magnetization is in-plane. Our numerical results also give
a large time-reversal odd dampinglike torque ImY D

2,2 in
Fe3GeTe2, which can be tested in existing second har-
monics setups [39].

In order to quantify all the symmetry-allowed higher
order torques, a complete sweep of magnetization is re-

quired. Similar work has been done in WTe2/Ni80Fe20
bilayer [11]. Instead of expanding the measured torques
into trigonometric functions, we need to expand them
into vector spherical harmonics and obtain the fitting pa-
rameters. As we have shown, the coefficients vary largely
as we change the chemical potential. Thus, adding a
bias gate to change the charge density [15] in monolayer
Fe3GeTe2 might be a way to find useful experimental
conditions.
The critical electric field to switch the perpendicular

magnetization in Fe3TeGe2 is high because the mirror
symmetry σxy restricts torques to those with even m.
This restriction requires the spin-orbit torques to com-
pete with the anisotropy torque instead of the damping
torque. This mirror symmetry can be broken in the pres-
ence of a substrate or applied out-of-plane electric field,
similar to the case of bilayer CoPt/CuPt [37, 38].
In summary, we perform first-principles calculations

of spin-orbit torque in monolayer Fe3GeTe2 and discover
that the bulk spin-orbit torque expressed in higher-order
vector spherical harmonics can deterministically switch
the perpendicular magnetization. We have provided a
symmetry table for other reduced symmetry systems as
well. Utilizing higher-order spin-orbit torque offers a new
perspective to realize novel electrical control of magneti-
zation.
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Appendix A: Symmetry-constrained form of
spin-orbit torque in vector spherical harmonics basis

The symmetry allowed form of spin-orbit torque ten-
sor can be obtained by averaging all possible symmetry
transformed tensors τ sym = 1

N

∑
τ ′ where N is the num-

ber of symmetry operations and τ ′ indicates the tensor
after the transformation. If we consider an orthogonal
transformation to a Cartesian tensor, we can usually get
the explicit transformation form under a rotation R

τ ′ijk... =
∑

αβγ...

det(R)RiαRjβRkγ ...ταβγ.... (A1)

In Cartesian form such as Ti = τijkEjmk to arbitrary
order, the number of nonzero components in the tensor



9

τ becomes exponentially large as we increase the ten-
sor rank. It becomes practically intractable to obtain
the symmetry-allowed higher-order terms in m̂ of τ in
Cartesian form.

We next describe the transformation of the torkance
tensor in the expansion of vector spherical harmonics.
For this purpose, it’s convenient to write the tensor with
a slightly different notation than used in the main text.
In what follows, the tensor τ relates the electric field E
to torque T according to:

T = τ ·E (A2)

τ is the outer product of a vector spherical harmonic Y
which specifies the torque direction, and a row vector C
that contracts with the electric field:

τ = Y(θ, ϕ)⊗C (A3)

A coordinate transformation U of the system will act on
both electric field and magnetization directions, and is
represented by UM̂ and UÊ , respectively:

UM̂T = τ · (UÊE) (A4)

For operations which leave the crystal invariant, we re-
quire that the transformed torkance is also invariant, so
that τ satisfies:

τ = U−1

M̂
τUÊ (A5)

The above equation provides symmetry constraints on τ
for a given symmetry transformation U .
In the following, we apply this procedure for Fe3GeTe2

for each of the materials symmetry operations. The
monolayer Fe3GeTe2 has the point group symmetry D3h

[19] which consists of one C3 rotations around z-axis,
three C2 rotations including one around y-axis, and one
mirror reflection respect to xy-plane, as shown in Fig. 1.
Since we are interested in the case where electric field
is applied in-plane, it is convenient to consider the rota-
tion symmetry around z-axis first. According to Eq. 4,
the torkance tensor τ is invariant under a rotation be-
cause both torque T and electric field E follow the same
transformation under a rotation. Since the vector spher-
ical harmonics absorbs an extra phase under a rotation

of angle γ, i.e., Y
(ν)
lm (θ, ϕ − γ) → Y

(ν)
lm (θ, ϕ)e−imγ , the

transformed vector coefficients C need to have additional
phase factors eimγ to compensate e−imγ in order to keep
the tensor τ invariant. If the rotation symmetry is con-
tinuous, the only possible way is either m = 0,C ∝ ẑ
or m = ±1,C ∝ x̂ ± iŷ. We can then get the relation
Cl,±1(ŷ) = Cl,±1(x̂)e

∓iπ/2 = ∓iCl,±1(x̂).
For the discrete rotation angle γ = 2π/ν (ν = 3 for

Fe3GeTe2), we can consider ν cases depending on the
modulus:

m (mod ν) = 0, 1, ..., ν − 1. (A6)

When we perform a rotation of angle γ from x-axis, the
new electric field becomesE = (cos γ, sin γ, 0)E. Because

the torkance is invariant under this transformation, we
can rewrite the x-axis as the new axis and the ϕ goes to
ϕ− γ. This leads to the following equation

Clm(x̂)e−imγ = Clm(x̂) cos γ + Clm(ŷ) sin γ, (A7)

where Clm(x̂, (ŷ)) are scalar coefficients that needed to
be obtained by fitting the numerical results. The full
vector form is Clm = Clm(x̂)x̂ + Clm(ŷ)ŷ, which will
contract with the applied Efield vector E. If m = nν, we
see that Eq. A7 cannot be satisfied because the left hand
side is always 1. The reason is that Cνz symmetry only
allows out-of-plane field-induced torque (E ∥ ẑ) in this
case. Now let’s consider the case m = nν ± 1, Eq. A7
gives

Cl,nν±1(ŷ) = ∓iCl,nν±1(x̂). (A8)

In fact, m = nν ± 1 are the only two possible cases for
C3z rotation symmetry. For C2z symmetry, Eq. A7 is
always satisfied for odd m. For C4z, C6z symmetries, we
need to consider more cases, which is summarized in the
Table V and Table VI.

m = 4n Not allowed
m = 4n± 1 ∓i
m = 4n+ 2 -1

TABLE V. The ratio Clm(ŷ)/Clm(x̂) in C4z systems.

m = 6n Not allowed
m = 6n± 1 ∓i

m = 6n± 2 ∓i− 2
√
3

3

m = 6n+ 3 −
√
3

TABLE VI. The ratio Clm(ŷ)/Clm(x̂) in C6z systems.

Now we only need to focus on the applied field in x̂
direction to obtain the additional symmetry constraints.
Under the mirror reflection respect to xy-plane, both the
torque T decomposed in θ̂, ϕ̂ directions and applied field
are even. Thus the torkance τ has to be even under the
transformation as well,

τ (θ, ϕ)
σxy−−→ τ (θ, ϕ+ π) = eimπτ (θ, ϕ). (A9)

This enforces that m must be an even number, i.e., m =
6n ± 2. The remaining crystal symmetry constraint is
due to the C2y rotation symmetry,

τ (θ, ϕ)
C2y−−→ τ (π − θ, π − ϕ) = τ (π − θ,−ϕ). (A10)

Because T θ = T · θ̂,T ϕ = T · ϕ̂, and applied field in x̂ all
flip the sign under C2y rotation, thus the torkance has ac-
tually to be even under the rotation. To further simplify
the constraint, we consider the real and imaginary part
of vector spherical harmonics separately by observing the
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following relation:

ReY
(D,F)
lm (π − θ,−ϕ) = (−1)l+m+1ReY

(D,F)
lm (θ, ϕ),

ImY
(D,F)
lm (π − θ,−ϕ) = (−1)l+mImY

(D,F)
lm (θ, ϕ).

(A11)

Given that m is always even, we are only allowed to have
odd/even number l for the real/imaginary part of vec-
tor spherical harmonics. Last but not the least, we can
always decompose the current-induced torque into time-
reversal even and odd parts. Under the time-reversal
symmetry transformation,

τ (θ, ϕ)
T−→ τ (π − θ, π + ϕ) = τ (π − θ, ϕ). (A12)

The real and imaginary part of vector spherical harmon-
ics both satisfy

Y D
lm(π − θ, ϕ) = (−1)l+1Y D

lm(θ, ϕ),

Y F
lm(π − θ, ϕ) = (−1)lY F

lm(θ, ϕ).
(A13)

The final symmetry-constrained form of time-reversal
even torkance under the applied E-field in x̂-direction is

τ even(x̂) =
∑
lm

CF
2l,6m±2ImY F

2l,6m±2

+CD
2l+1,6m±2ReY

D
2l+1,6m±2,

(A14)

and time-reversal odd torkance is

τ odd(x̂) =
∑
lm

CD
2l,6m±2ImY D

2l,6m±2

+CF
2l+1,6m±2ReY

F
2l+1,6m±2.

(A15)

By utilizing Eq. A8, we can write down the final
symmetry-constrained form of torkance under the ap-
plied E-field in ŷ-direction is

τ even(ŷ) =
∑
lm

± CF
2l,6m±2ReY

F
2l,6m±2

∓ CD
2l+1,6m±2ImY D

2l+1,6m±2,

(A16)

and time-reversal odd torkance is

τ odd(ŷ) =
∑
lm

± CD
2l,6m±2ReY

D
2l,6m±2

∓ CF
2l+1,6m±2ImY F

2l+1,6m±2.

(A17)

Note that scalar coefficients Clm appearing in equations
above are the same. We only need to calculate the ap-
plied E-field in x̂ case and fit the numerical results with
the vector spherical harmonics form to obtain the co-
efficients Clm. Note that for this system, changing the
direction of the electric field swaps Re and Im. The differ-
ences in these functions correspond to rotations through
the azimuth by π/2.

Appendix B: Details of the torque calculation.

The first step is to obtain the tight-binding Hamilto-
nian in a localized atomic orbital basis using a combina-
tion of Quantum Espresso [30] andWannier90 [31]. In the
Quantum ESPRESSO implementation, we use the pseu-
dopotentials from PSlibrary [40] generated with a fully
relativistic calculation using Projector Augmented-Wave
method [41] and local density approximation exchange
correlations [42]. We utilize a 18 × 18 × 1 Monkhorst-
Pack mesh [43], 2 nm vacuum layer, 2720 eV cutoff en-
ergy, 1.36× 10−3 eV total energy convergence threshold
and obtain the relaxed positions with the forces smaller
than 0.02 eV/nm. The second step is to use Wannier90
[31] to obtain the Hamiltonian in an atomic basis. We
project plane-wave solutions onto atomic s, p, d orbitals
of Fe atoms, s, p orbitals of Ge and Te atoms without per-
forming maximal localization. We then symmetrize the
tight-binding Hamiltonian using TBmodels [44]. The fi-
nal symmetrized tight-binding band structures agree very
well with these bands from plane-wave methods shown
in Fig. 1(c). The band inconsistencies at higher higher
above the Fermi level are expected and do not signifi-
cantly affect our results because states near the Fermi
level dominate the torkance calculations through the en-
ergy denominator in Eq. (10).
Equipped with the spin-orbit coupled tight-binding

Hamiltonian, We then apply linear response theory to
compute the torkance [28, 32, 33]. We denote the jth

component of the torkance in response to an electric field
along the i-direction with τij . An applied electric field
can modify both the electron distribution function and
the wavefunction. The linear response from the change of
the distribution function is time-reversal odd [45] while
the linear response from the change of the wavefunc-
tion is time-reversal even [32]. Using the standard Kubo
formula [28, 32], the even and odd components of the
torkance are given by Eq. (10) and Eq. (11) respectively.
The even and odd components are also denoted as Fermi
sea and Fermi surface terms [32]. The torque operator is
obtained as the change of magnetization with respect to
time,

T =
d∆

dt
=

i

ℏ
[H,∆] = − i

ℏ
[∆ · Ŝ, Ŝ]. (B1)

where S is the spin operator and ∆ is the time-reversal
odd spin-dependent exchange-correlation potential. In
order to compute the angular dependence of the torkance,
we manually rotate the magnetization direction from
the ground state θ = 0 to an arbitrary angle (θ, ϕ) by
performing a rotation on this time-reversal odd spin-
dependent exchange-correlation potential. We use a
80×160 mesh of (θ, ϕ) to obtain the angular dependence
results shown in Fig. 4.
We use a very dense k-mesh of 1200×1200 to evaluate

the torkance Eqs. 10 and 11. Note that we adopt the
tight-binding approximation [46] that Wannier orbitals
are perfectly localized on atomic sites and the spin op-
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erators S are described by the Pauli matrices spanned
in the Wannier orbital basis in the implementation. We
also adopt a constant broadening model to evaluate the
longitudinal conductivity [32],

σxx =
e2

πℏ
∑
knm

η2Re[⟨ψnk| ∂H
∂kx

|ψmk⟩ ⟨ψmk| ∂H
∂kx

|ψnk⟩]
[(Em − µ)2 + η2][(En − µ)2 + η2]

.

(B2)

Eq. B2 also becomes diverge as a function of 1/η at the
zero broadening limit, similar to Eq. 11. The sheet resis-
tance then is the reciprocal of longitudinal conductivity
per unit cell area.
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K.-J. Lee, S. Blügel, P. M. Haney, H.-W. Lee, and
Y. Mokrousov, Phys. Rev. Res. 2, 033401 (2020).

[9] D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun,
P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J.
O’Sullivan, and R. P. Robertazzi, Applied Physics Letters
98, 022501 (2011), https://doi.org/10.1063/1.3536482.

[10] S. Yan and Y. B. Bazaliy, Phys. Rev. B 91, 214424
(2015).

[11] D. MacNeill, G. M. Stiehl, M. H. D. Guimaraes, R. A.
Buhrman, J. Park, and D. C. Ralph, Nature Physics 13,
300 (2016).

[12] I.-H. Kao, R. Muzzio, H. Zhang, M. Zhu, J. Gobbo,
S. Yuan, D. Weber, R. Rao, J. Li, J. H. Edgar, J. E.
Goldberger, J. Yan, D. G. Mandrus, J. Hwang, R. Cheng,
J. Katoch, and S. Singh, Nature Materials 21, 1029
(2022).

[13] L. Wang, J. Xiong, B. Cheng, Y. Dai, F. Wang,
C. Pan, T. Cao, X. Liu, P. Wang, M. Chen,
S. Yan, Z. Liu, J. Xiao, X. Xu, Z. Wang,
Y. Shi, S.-W. Cheong, H. Zhang, S.-J. Liang, and
F. Miao, Science Advances 8, eabq6833 (2022),
https://www.science.org/doi/pdf/10.1126/sciadv.abq6833.

[14] H. Kurebayashi, J. Sinova, D. Fang, A. C. Irvine, T. D.
Skinner, J. Wunderlich, V. Novák, R. P. Campion, B. L.
Gallagher, E. K. Vehstedt, L. P. Zârbo, K. Výborný, A. J.
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Reynolds, R. A. Buhrman, and D. C. Ralph, Phys. Rev.
B 96, 054450 (2017).

[27] G. M. Stiehl, R. Li, V. Gupta, I. E. Baggari, S. Jiang,
H. Xie, L. F. Kourkoutis, K. F. Mak, J. Shan, R. A.
Buhrman, and D. C. Ralph, Phys. Rev. B 100, 184402
(2019).

[28] F. Xue, C. Rohmann, J. Li, V. Amin, and P. Haney,
Phys. Rev. B 102, 014401 (2020).

[29] H.-J. Deiseroth, K. Aleksandrov, C. Reiner, L. Kienle,
and R. K. Kremer, European Journal of Inorganic Chem-
istry 2006, 1561 (2006).

https://doi.org/10.1103/RevModPhys.91.035004
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1109/TMAG.2021.3078583
https://doi.org/10.1109/TMAG.2021.3078583
https://doi.org/10.1063/5.0094205
https://doi.org/10.1063/5.0094205
https://doi.org/https://doi.org/10.1038/nature10309
https://doi.org/10.1103/PhysRevLett.109.096602
https://doi.org/10.1126/science.1218197
https://doi.org/10.1103/PhysRevResearch.2.033401
https://doi.org/10.1063/1.3536482
https://doi.org/10.1063/1.3536482
https://arxiv.org/abs/https://doi.org/10.1063/1.3536482
https://doi.org/10.1103/PhysRevB.91.214424
https://doi.org/10.1103/PhysRevB.91.214424
https://doi.org/10.1038/nphys3933
https://doi.org/10.1038/nphys3933
https://doi.org/10.1038/s41563-022-01275-5
https://doi.org/10.1038/s41563-022-01275-5
https://doi.org/10.1126/sciadv.abq6833
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abq6833
https://doi.org/10.1038/nnano.2014.15
https://doi.org/10.1038/nnano.2014.15
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/10.1038/s41563-018-0149-7
https://doi.org/10.1038/s41563-018-0149-7
https://doi.org/10.1126/sciadv.aaw8904
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.aaw8904
https://doi.org/10.1021/acs.nanolett.9b01043
https://arxiv.org/abs/https://doi.org/10.1021/acs.nanolett.9b01043
https://doi.org/10.1103/PhysRevLett.122.217203
https://doi.org/10.1103/PhysRevB.101.020407
https://doi.org/10.1038/nnano.2013.145
https://doi.org/10.1038/nnano.2013.145
https://doi.org/10.1063/5.0024019
https://doi.org/10.1063/5.0024019
https://doi.org/DOI 10.1088/0022-3727/46/7/074003
https://doi.org/DOI 10.1088/0022-3727/46/7/074003
https://doi.org/https://doi.org/10.1063/1.4902443
https://doi.org/10.1103/PhysRevB.96.054450
https://doi.org/10.1103/PhysRevB.96.054450
https://doi.org/10.1103/PhysRevB.100.184402
https://doi.org/10.1103/PhysRevB.100.184402
https://doi.org/10.1103/PhysRevB.102.014401
https://doi.org/https://doi.org/10.1002/ejic.200501020
https://doi.org/https://doi.org/10.1002/ejic.200501020


12

[30] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo,
A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio,
A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer,
U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa-
mura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri,
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