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Abstract

In this report, we introduce a framework to analyze, monitor, and identify the state of indus-
trial wireless networks and their impact on industrial use cases. This framework is based
on a deep learning approach for modeling the interactions between the wireless network
and industrial use cases. The framework uses the information from different system lay-
ers including the spectrum measurements, physical layer metrics, network layer packets,
and application layer production-related metrics in order to study the industrial wireless
network behavior. The output of the framework can be generally used to improve system
management and optimization functions.
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1. Introduction

Industrial wireless communications networks are envisioned to play a crucial role in en-
abling the next generation of industrial evolution which is anticipated to be based on three
main elements; resilience, sustainability, and human-centric industries [1]. These core el-
ements are added to the current focus of the smart manufacturing and industry 4.0 visions
of enhancing digitization in smart production and the increased intelligence in industrial
automation. The enablers of the current and future industrial revolutions include industrial
wireless, artificial intelligence, data infrastructure and analytics, industrial process digiti-
zation, and human-machine interaction improvement technologies [2].

The integration of artificial intelligence (AI) capabilities within industrial wireless net-
works is being considered to achieve various goals including providing hybrid and con-
figurable wireless services to the industrial use cases, providing performance analysis and
monitoring tools, and supporting better knowledge and understanding for various interac-
tions within the industrial wireless networking layers. Precisely, AI can be viewed as a
tool to achieve industrial wireless networks goals of being responsive to the operational
demands, customizable following the application process requirements, and efficient from
various resource perspectives [3].

For an industrial wireless network to be analyzed, managed, and optimized, certain infor-
mation needs to be gathered including network configuration parameters, key performance
indicators (KPIs), traffic data, and the industrial operational metrics. However, the inter-
action and integration of these heterogeneous types of data are complex and its associated
complexity increases proportional to the size of the available data. As a result, AI can play
a crucial role in achieving two main goals. First, AI can be used in extracting useful infor-
mation from large set of available data. Second, deep learning can be employed to model
the complex interactions between different layers of the industrial cyber-physical system
(CPS) [4].

In this report, we introduce a framework that can be used to analyze, monitor, identify the
state of industrial wireless networks, and evaluate their impacts on industrial use cases. In
this framework, a deep learning approach is proposed to monitor the behavior patterns of
the collected data streams to be able to detect and identify the deviation of these patterns
from the normal behavior of an industrial process. The normal behavior of the industrial
process is used to train a generative adversarial network (GAN) such that the discriminator
part of the network can be later used to detect the behavior variations and identify the
system operation mode. GANs can be used to detect the deviation in behavior through
training a generative and a discriminative neural networks such that the generative network
captures the data distribution without labels and the discriminative network estimates the
probability that a sample does not follow the distribution of the generative network [5].
The GANs have been proven to be successful for unsupervised problems with implicit
probability distribution to model the system interactions [6].
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2. Related Work

The use of AI for wireless network analysis and management was presented in multiple
works. In [7], the authors used machine learning for automating management tasks such as
anomaly detection and fault management. In [8], a resource allocation optimization tech-
nique was proposed using machine learning techniques. In [9], a semi-supervised approach
was proposed to detect cell outages in a mobile network using handover statistics. In [10],
a framework for wireless network diagnosis deployed unsupervised machine learning tech-
niques.

The use of AI to predict specific events in wireless networks was also proposed in [11]
where machine learning is used to anticipate possible failures in a network. The use of K-
means clustering in pattern identification in mobile network behavior was described in [12].
In [13], a similar goal of behavior pattern identification of a radio-access network was
achieved for a self-organizing network. In [14], a Naive Bayes technique was used for cell
classification based on their network traffic patterns. Also, a random forest-based approach
was used for traffic pattern detection in the application layer [15]. Finally, in [4], the
authors proposed an approach that combined unsupervised and supervised techniques for
the analysis of the performance of a mobile network by monitoring the real-time traffic to
detect possible changes.

In this report, we propose a framework that can be used for the analysis of industrial wire-
less networks and their impact on the operational industrial process. The proposed frame-
work trains a deep neural network with the normal behavior of a CPS on various system
layers. The trained network can be used to identify the system mode of operation, the
real-time behavior changes, and operational system anomaly prediction. The output of
the proposed framework can be integrated into various resource management and network
optimization blocks of the CPS.

3. Framework Description

In this section, we describe the proposed framework’s various components, the data flow
through its various blocks, and the underlying neural network processing. We further ex-
plain various types of data that can be used throughout the framework, and describe the use
of the framework in various applications related to monitoring, analysis, and prediction for
various industrial wireless use cases.

3.1. Overview

In modern CPSs, a large volume of heterogeneous data is generated and transferred within
a variety of equipment, sensors, controllers, and computing platforms. Data analytics for
CPSs play a critical role in improving factory operation and product quality, reducing ma-
chine downtime, and enhancing manufacturing efficiency. Modeling industrial wireless
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and its impact on CPSs includes identifying the normal behavior of various system compo-
nents such as the wireless network and the physical operational equipment. This modeling
process is highly complex because of the heterogeneity of the data and the dependency
between various data flows and correlations in their temporal behaviors. The use of unsu-
pervised learning for such tasks allows the detection of any deviation in the performance
from the normal behavior without being trained using labeled data. As a result, the use of
unsupervised deep learning-based techniques for modeling CPS performance abnormalities
can be applied to achieve the required CPS identification and analysis.

3.2. Framework Data Processing

The framework data flow starts with the data collection to go through various data pro-
cessing stages to evaluate the required system metrics. A block diagram of the framework
data processing at various stages is shown in Fig. 1. The upper part of the block diagram
presents the GAN training process while the lower part describes the deployment of the
trained network for CPS testing and assessment. In the following, we describe the function
of each block and the data processing through various stages of the proposed approach.

Fig. 1. A block diagram of the framework data processing at various stages.

3.2.1. Data Collection

The data used by the framework is collected in two different phases, namely, the normal
behavior data collection and the testing data collection. In both phases, the same streams
of data are collected. The collected data may include all variables that can be impacted
by the industrial wireless network used. All data streams are formed as multi-dimensional
time series. This framework can be applied to the data collected at different system levels
including the network and operational measured data streams. However, the framework can
also be used for the simpler cases of data collected from a single layer of the system under
test. Initially, the framework will include the spectrum data, wireless channel physical and
medium access layers data, network layer data, and application-based operational layer
data.
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3.2.1.1. Normal Behavior Data Collection

The normal behavior is defined to be the behavior of the CPS when it is not affected by
wireless network impairments. It can be measured and used for training the deep-learning
model. The first option is to collect normal behavior data by deploying the wired CPS
behavior, if possible. If the CPS’s industrial wireless network can be replaced by wired
connections, then this option is applicable. Thus the framework can be used to measure the
performance of wireless network due to its various impairments. The second option, which
is more widely applicable, is to measure the normal behavior over the wireless network
without the impact of the impairments included on the testing stage. This can be done
either through operating the CPS in a controlled wireless environment or through post-
processing of the data where the deep-learning model is trained only using data without the
impairments. This can be achieved by setting thresholds on the physical metrics of the use
case.

3.2.1.2. Testing Data Collection

The testing data streams are the same data streams of the normal behavior data but it is
collected from the deployed industrial wireless network under test. It will be collected
when the network is deployed under normal working conditions and hence impacted by
various impairments that could exist and affect its performance.

3.2.2. Data Alignment

Data alignment is the next processing stage after data collection. In this stage, the het-
erogeneous data streams collected from the multiple sources are aligned and resampled
such that the measuring instants of all streams are identical or time synchronized. Hence,
these streams can be combined for further processing. This process is required to overcome
the issues of having different update rates, different series lengths, and asynchronous data
collection devices. This process will depend mainly on applying interpolation techniques
while taking into consideration the various constraints with respect to the data streams.

3.2.3. Analytics and Feature Extraction

Then, the data is analyzed and the features to be used for training and industrial wireless
testing are selected. The main goal of this block is identifying the statically relevant fea-
tures with respect to the testing goals and understating the correlation between different
factors. As a result, the statistical behavior of each measured data stream is assessed and
the correlation to other streams is evaluated. The result of this block includes a selected set
of features that are impacted by the wireless network impairments and does not include a
large set of dependent features. Principal component analysis can be deployed for this task
to project the selected set of features onto an independent set of principal components.
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3.2.4. GAN Training and Deployment

GANs are powerful modeling frameworks for high-dimensional data that build on two
competing networks, namely, a generator G and a discriminator D. The generator network
is trained to produce synthetic data examples that are similar to real data patterns by taking
a random vector z, drawn from an input distribution Pz(z) in a latent Z-Space. If trained
only with normal data patterns, the generator captures the hidden multivariate distribution
of the training sequences and can be seen as an implicit model of the system at a normal
state. On the other hand, the discriminator network is trained to distinguish between the
generated synthetic examples and real data patterns, and then classify data patterns into one
of these two classes.

The continuous measurements of various system metrics produce multivariate time-series
data streams, which are used to monitor the system’s working conditions. In order to deal
with these intrinsically multivariate time-series data, the discriminator and the generator
are constructed as Long Short-Term Memory-Recurrent Neural Network (LSTM-RNN)
networks. Such networks assume that data samples are not independent of each other and
that there is a temporal dependency among them. Thus, instead of dealing with isolated
data samples, sequences of data are considered and stored in memory units. In this context,
computations are performed for every element of a sequence such that the computation
outputs for one element of the sequence serve as input for the computation of the following
element in that sequence.

3.2.5. System Metrics Evaluation

The final processing stage is the system performance metrics and the evaluation process
from the discriminator neural network score (SD). The discriminator score represents a
probabilistic indicator of the deviation of a measured feature vector from the normal be-
havior of the CPS. Two main approaches for network metric evaluation can be achieved.
First, evaluating average performance metrics which include averaging the discriminator
score over time to evaluate the deviation of the tested network from the normal behavior
on average. This approach can be used to identify the mode of the industrial wireless net-
work or more generally, the average impact of a specific set of parameters on the network
performance. The second approach is using the real-time value of the discriminator score
to either detect the anomalies in the CPS performance and how a specific event in the in-
dustrial wireless network can impact the CPS performance in different layers. It can also
be used for predicting failures in the wireless network in order to take actions for better
resiliency.

4. Conclusions and Future Directions

This work presents an initial prototype describing the use of deep learning to study the
system performance of an industrial wireless system. We propose a framework that uses a
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GAN to model the behavior of the industrial wireless system in order to use the discrim-
inator loss for identifying the deviation of the performance from the normal behavior of
the system. The discriminator loss of a trained GAN can provide insights into the wireless
communications state within an industrial use case. More specifically, the temporal track-
ing of the discriminator loss identifies the instants at which the industrial wireless system
performance deviates from the normal behavior so more analysis can be performed at these
instances for identifying the cause of the problem. On the other hand, the various statistical
metrics of the discriminator loss can be used as a comparison tool for various deployment
scenarios and parameter settings.

In future, we plan to extend this work to identify and characterize industrial wireless sys-
tems by including various operational, network, and spectrum features. Moreover, post-
processing metrics that use the discriminator loss are to be defined for identifying the op-
erating modes of the system. We plan to identify the specific statistical metrics and their
use in specific scenarios such as studying the impacts of various interference types on the
network and hence the suitability of wireless technologies for deployment. Another impor-
tant directions is the use of the proposed tool as an integrated part in the feedback control
of the CPS and the industrial wireless network which used the real-time version of this
approach to make decision on optimizing the wireless network and the control decisions.
This specific direction requires more work towards obtaining the real time version of the
proposed prototype and more collaboration with wireless network and CPS control system
designers in order to achieve this envisioned integration.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this paper in or-
der to specify the experimental procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of Standards and Tech-
nology, nor is it intended to imply that the materials or equipment identified are necessarily
the best available for the purpose.
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[13] Raivio K, Simula O, Laiho J, Lehtimäki P (2003) Analysis of Mobile Radio Access
Network Using the Self-Organizing Map (Springer US, Boston, MA), , pp 439–451.
https://doi.org/10.1007/978-0-387-35674-7 42. Available at https://doi.org/10.1007/
978-0-387-35674-7 42

[14] Clemente D, Soares G, Fernandes D, Cortesao R, Sebastiao P, Ferreira LS (2019)
Traffic forecast in mobile networks: Classification system using machine learn-
ing. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp 1–5.
https://doi.org/10.1109/VTCFall.2019.8891348

[15] Wang C, Xu T, Qin X (2015) Network traffic classification with improved random for-
est. 2015 11th International Conference on Computational Intelligence and Security
(CIS), pp 78–81. https://doi.org/10.1109/CIS.2015.27

7

https://doi.org/10.3390/s21103347
https://www.mdpi.com/1424-8220/21/10/3347
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/JIOT.2020.3024800
https://doi.org/10.1109/ACCESS.2019.2938410
https://doi.org/10.1109/ACCESS.2019.2938410
https://doi.org/10.1109/MNET.2016.7389830
https://doi.org/10.1109/LCOMM.2015.2426187
https://doi.org/10.1109/LCOMM.2015.2426187
https://doi.org/10.1109/TVT.2015.2431742
https://doi.org/10.1109/MCI.2017.2773824
https://doi.org/10.1109/TWC.2005.847088
https://doi.org/10.1007/978-0-387-35674-7_42
https://doi.org/10.1007/978-0-387-35674-7_42
https://doi.org/10.1007/978-0-387-35674-7_42
https://doi.org/10.1109/VTCFall.2019.8891348
https://doi.org/10.1109/CIS.2015.27

	Introduction
	Related Work
	Framework Description
	Overview
	Framework Data Processing
	Data Collection
	Normal Behavior Data Collection
	Testing Data Collection

	Data Alignment
	Analytics and Feature Extraction
	GAN Training and Deployment
	System Metrics Evaluation


	Conclusions and Future Directions
	References

