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We describe ASTRA (attosecond transitions), a close-coupling approach to molecular ionization that uses many-
body transition-density matrices between ionic states with arbitrary spin and symmetry, in combination with
hybrid integrals between Gaussian and numerical orbitals, to efficiently evaluate photoionization observables.
Within the transition-density-matrix approach, the evaluation of interchannel coupling is exact and does not
depend on the size of the configuration-interaction space of the ions. Thanks to these two crucial features, ASTRA

opens the way to studying highly correlated and comparatively large targets at a manageable computational cost.
Here, ASTRA is used to predict the parameters of bound and autoionizing states of the boron atom and of the N2

molecule, as well as the total photoionization cross section of boron, the nitrogen molecule (N2), and formalde-
hyde (H2CO). Our results are in excellent agreement with theoretical and experimental values from the literature.
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I. INTRODUCTION

Excitation of correlated electronic motion is at the core
of light-induced chemical transformations in matter [1]. The
advent of attosecond spectroscopies [2–4] has made it possi-
ble to study electron dynamics on its natural sub-femtosecond
timescale [5–8]. Continuous advances in the XUV and soft-x-
ray ultrafast technologies, pursued at large free-electron-laser
facilities [9,10] as well as in several attosecond laborato-
ries around the world [11–16], have continued extending the
range of attosecond-pulse parameters to still shorter durations,
larger intensities, energies, and repetition rates [17–20]. At the
same time, the focus of attosecond experiments has moved
from atomic systems and small molecules to larger systems
with chemical and biological relevance [21–23].

Attosecond pump-probe observables, such as coincidence
photoelectron distributions and transient absorption spectra,
are complex functions of the laser parameters that reflect the
correlated and entangled dynamics of the probed system only
indirectly. Due this complexity, ab initio methods beyond the
single-particle approximation are essential to reconstruct and
ultimately control the many-body motion excited by short
light pulses [24].

Here we present ASTRA (attosecond transitions), a wave-
function close-coupling approach based on a transition-
density-matrix close-coupling (TDMCC) formalism, suited
to describe ab initio the ionization processes that are made
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accessible by the use of new sources of coherent ultrashort
light. ASTRA is designed to describe both atoms and larger
molecules, for both low- and high-energy photoelectrons.
It takes exchange and correlation into account to the full
extent allowed by state-of-the-art large-scale configuration-
interaction quantum-chemistry methods [25]. ASTRA admits
a natural extension to double-ionization processes, which are
needed to observe the motion of correlated electron pairs
in real time, as well as to multiple disjoint molecular frag-
ments that share electrons. Thanks to these properties, ASTRA

promises to appreciably expand the capabilities made avail-
able by existing molecular ionization codes.

This paper is organized as follows. Section II gives a
short overview of the theoretical methods currently avail-
able or under active development to describe the ionization
of polyelectronic molecular systems, and where ASTRA fits
in this context. Section III defines the close-coupling (CC)
states [26], the expressions for arbitrary operators within the
TDMCC formalism, and relevant observables. Section IV
illustrates how TDMCC is numerically implemented in
ASTRA. Section V presents ASTRA results for the boron
atom, the nitrogen molecule, and formaldehyde. Section VI
offers conclusions and perspectives. Appendix A summa-
rizes second-quantization formalism. Appendix B introduces
transition-density matrices and their spin-adapted reduced
counterparts. Appendix C details the derivation of the matrix
elements between spin-adapted close-coupling states. Finally,
Appendix D summarizes the CI-singles approximation.

II. CONTEXT

A broad group of many-body methods for atomic
and molecular ionization assumes a single reference for
both the initial bound state and the final state in the
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continuum. These include, the XATOM [27] and XMOLECULE

codes [28], suited for estimating fragment yields following
multiple sequential ionization steps by intense x-ray free-
electron lasers (XFEL) pulses [29]; the E-POLYSCAT code
[30,31], which has been applied to single-photon and mul-
tiphoton single ionization in the static-exchange approxima-
tion; TIRESIA B-spline density-function method, based on sin-
gle center [32,33] and polycentric expansion [34,35], which
was applied to strong-field ionization [36], core photoioniza-
tion [37–39], pump-probe ionization of molecules with bio-
logical relevance [21,40], and high-harmonic generation [41];
OCTOPUS, a general-purpose time-dependent density-function
theory (TDDFT) grid method applicable also to attosec-
ond photoelectron spectroscopy [42] and transient-absorption
spectroscopy [43]. While single-reference methods reproduce
the essential features of strong-field ionization processes [44]
of core photoelectron spectroscopy [45] and of processes
that lead to the complete fragmentation of a target [46],
wave-function-based multireference approaches are needed
for those cases in which multiply excited states and the en-
tanglement between photofragments play a fundamental role.

Time-dependent (TD) multiconfiguration (MC) self-
consistent-field (SCF) approaches offer a compact description
for the wave function. These include multiconfiguration
TD Hartree [47] and Hartree-Fock [48–50], TD restricted-
active-space (RAS) SCF [51,52], TD generalized-active-space
(GAS) SCF [53,54], TD complete-active-space (CAS) SCF
[55], TDMCSCF [56], and TD coupled-cluster methods [57].
These methods are effective for optical observables, whereas
photoelectron observables are more difficult to converge since
parent ions evolve even in the asymptotic limit, in absence of
fields.

The remaining methods rely on the close-coupling ap-
proach (CC), which guarantees the correct asymptotic behav-
ior of the wave function, and they give rise to a stable linear
evolution. These methods differ in the level of accuracy with
which the ions are represented, in the approximations made
to evaluate the matrix elements between CC states, and in the
limits imposed to the size and energy of the system.

In its simplest configuration-interaction singles (CIS) for-
mulation [58–60], the CC space is described by single
excitations from a reference single-determinantal function.

More general close-coupling approaches include correla-
tion in the (N − 1)-electron parent ions, as well as localized
N-electron configurations to reproduce the short-range cor-
relation of the neutral system in either bound or continuum
states. Furthermore, different methods adopt different ways of
reconciling the convenience of Gaussian-type orbitals (GTO)
to describe bound states with the need of employing numerical
bases to represent diffuse Rydberg and continuum orbitals,
such as monocentric [61] and polycentric [34] B splines, or
monocentric [62] and polycentric FEDVR functions [63].

The R-matrix method for molecular ionization [64], orig-
inally implemented for electron scattering and stationary
regimes (UKRmol) [65], has recently been extended to time-
dependent photoionization processes (UKRmol+) [66–68].
UKRmol+ employs hybrid Gaussian B-spline bases, and it
can deal with arbitrary hybrid integrals. The K-matrix RPA
approach has been applied to one- and two-photon transitions
in stationary regime [69,70].

The complex-Kohn approach, based on the MESA program,
(CK-MESA) has the unique feature of representing the effect
of short-range correlation by means of an optical potential
from a large CI space, which leads to accurate electron scat-
tering and one-photon photoionization amplitudes [71–75].
Recently, CK-MESA has been extended to two-photon tran-
sitions and applied to resonant pump-probe process [76].
The time-dependent recursive indexing code (T-RECX) is a
general software for the ab initio solution of large-scale
time-dependent problems in atomic and molecular physics,
including close coupling in a hybrid basis [77,78].

The XCHEM code circumvents the need of computing some
exchange terms in the close-coupling Hamiltonian and some
hybrid bielectronic integrals by confining the molecular ion in
a spherical region in which all electronic states are expanded
in terms of GTOs [79–85]. The polycentric B-spline basis
developed for the TIRESIA code has recently been coopted
for the development of a novel molecular ionization code
based on the algebraic diagrammatic construction (ADC) to
represent correlated many-body states [86,87]. The multi-
channel Schwinger configuration interaction method (MCSCI),
an established method for molecular photoionization, based
on the graphical unitary group approach [88,89], has also
been applied to the description of time-resolved photoelectron
spectroscopy in linear molecules [90].

ASTRA belongs to the latter group of most general CC
methods. It differs from the methods above because it relies
on a TDMCC formalism. In ASTRA, the intricacies of the
many-body interactions within the parent ions and between
the ions and the photoelectron(s) are confined to the n-point
correlation functions of highly correlated ionic states, which
are efficiently computed by a large-scale-CI bound-state code.
The computational cost for CC observables is independent of
the size of the CI space for the ion. Exchange terms are treated
exactly, so that the size of the target and the photoelectron
energy are not constrained. ASTRA predictions are in excellent
agreement with theoretical and experimental benchmarks for
atoms and small molecules.

III. TDMCC FORMALISM

A. The close-coupling ansatz

In single photoionization processes, an initially bound
molecular system M breaks into a photoelectron and a bound
state A of the M+ molecular parent ion. In the case of the
absorption of a single photon γ from the ground state, for
example, the process reads

Mg + γ −→ M+
A + e−. (1)

Once the two charged fragments are far apart, the parent ion
can be found in only a finite number of states, i.e., all those
permitted by conservation of energy, EA − Eg < h̄ωγ , where
ωγ is the photon frequency. When the parent ion and electron
are well separated, the configuration space may be represented
by a linear combination of parent ions times arbitrary one-
particle states for the photoelectron,

� � ÂN

∑
A,P

cA,P[�A(x1 · · · xN−1)ϕP(xN )], (2)

where AN is the antisymmetrization operator [91], ϕP(xN ) is
a spin orbital for the N th electron, �A(x1 · · · xN−1) is an ionic
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state, x = (�r, ζ ) indicates an electron’s spatial and spin coor-
dinates, and cA,P ∈ C are expansion coefficients. The ansatz
(2), known as close-coupling (CC) approximation [26], accu-
rately represents bound and autoionizing Rydberg series and
multichannel scattering states for large values of the photo-
electron radial coordinate.

At short range, a truncated CC expansion is able only in
part to reproduce the correlated dynamics of the parent ion and
the photoelectron. The CC approximation can be improved by
including N-electron short-range configurations, which can be
generated by extending the CC expansion to closed channels
with thresholds well above the energy of interest. If the ad-
ditional closed channels correspond to realistic ionic states,
this procedure fails to account for the contribution of the ionic
continuum, which may be relevant. A more effective and rapid
convergence can be obtained by artificially confining the ionic
states to a finite set of localized orbitals. In this paper, we
follow this latter approach.

B. CC-matrix elements

This section defines single-ionization CC states and derives
the matrix elements of arbitrary spin-free one-body and two-
body operators between them. The CC partial-wave channel
state formed by an ionic state A and a normalized spin orbital
P, to represent the photoelectron, is

�A,P(x1, . . . , xN )

= (−1)N−1
√

NÂN�A(x1, . . . , xN−1) φP(xN ). (3)

In this paper, it is convenient to employ the formalism of
second quantization, in which the partial-wave states are ex-
pressed as

�A,P(x1, . . . , xN ) ←→ |A, P〉 = a†
P|A〉. (4)

For a summary of the second-quantization formalism used in
the present paper, see Appendix A.

To determine the bound and scattering electronic states of a
molecule, and the electron dynamics induced by the exchange
of photons with an external field, it is necessary to evaluate
the matrix elements of the Hamiltonian and dipole operators
between CC states. In second-quantization formalism, oper-
ators are written as combinations of strings of creators and
annihilators. One-body operators are (see ch. 1 in [92])

Ô = oRS a†
RaS, (5)

where the sum over repeated indexes is implied, and oRS =
〈R|ô|S〉 is the operator matrix element between spin orbitals
for a single particle. The electron-electron repulsive Coulomb
potential, a two-body operators, is

Ĝ = 1
2 [PQ|RS] a†

Pa†
RaSaQ (6)

where [PQ|RS] is the electrostatic repulsion term between
the charge distributions ρPQ(�r) = ∑

ζ φ∗
P(�r, ζ )φQ(�r, ζ ) and

ρRS (�r) = ∑
ζ φ∗

R(�r, ζ )φS (�r, ζ ),

[PQ|RS] =
∫

d3r1 d3r2 ρPQ(�r1) r−1
12 ρRS (�r2).

The calculation of the Hamiltonian and dipole matrix ele-
ments between CC states is thus reduced to evaluating strings

of up to six creation and annihilation operators between ionic
states, e.g.,

〈A, P|Ĝ|B, Q〉 = 1
2 [TV |RS] 〈A|aPa†

T a†
RaSaV a†

Q|B〉.
Using the permutation symmetry of creation and annihilation
operators, these operator strings can be written as a linear
combination of strings in normal order (creators to the left,
annihilators to the right). The matrix elements between ionic
states of operators strings in normal order are known as
transition-density matrices (TDM). The one-, two- and three-
body TDMs are identified by the following notation [93],

ρBA
Q,P ≡ 〈A|a†

PaQ|B〉,
πBA

RS,PQ ≡ 〈A|a†
Pa†

QaSaR|B〉,
γ BA

STU,PQR ≡ 〈A|a†
Pa†

Qa†
RaU aT aS|B〉.

(7)

As shown in Appendix A, using these definitions it is possi-
ble to compute matrix elements between single-ionization CC
states for different operators by combining the TDMs with the
operator matrix elements between basis orbitals. The overlap
between CC states, for example, reads

〈A, P|B, Q〉 = 〈P|Q〉δAB − ρBA
PQ. (8)

Even if the overlap between different ionic states is diago-
nal by construction (the ionic states are eigenstates of the
same model Hamiltonian), 〈A|B〉 = δAB, the overlap between
the orbitals used to augment the ionic states to form the
CC states, in general, is not: 〈P|Q〉 = spqδπθ , where 〈x|P〉 =
ϕp(�r) 2χπ (ζ ), 〈x|Q〉 = ϕq(�r) 2χθ (ζ ), spq = ∫

d3rϕ∗
p(�r)ϕq(�r).

The spin orbital 〈x|P〉 is defined as the product of a spatial
square-integrable function ϕp(�r) ∈ L2(R3) and the spin wave
function 2χπ (ζ ), where 2 is the electron multiplicity and π ∈
{− 1

2 , 1
2 } is the spin projection. Thanks to this generality, the

TDMCC formalism is compatible with nonorthogonal numer-
ical orbitals such as B splines [61] and FEDVR functions [94],
which are ideally suited to represent Rydberg and photoelec-
tron wavepackets. The matrix elements of one-body operators
contain both one- and two-body TDMs,

〈A, P|Ô|B, Q〉 = δAB oPQ + 〈P|Q〉 OAB − ρBA
P,R oRQ

− oPS ρBA
S,Q + oRS πBA

SP,QR (9)

where OAB = oRS ρBA
S,R is a matrix element between ionic

states. Finally, two-body operators require TDMs up to the
third order,

〈A, P|Ĝ|B, Q〉 = 〈P|Q〉 GAB + [PQ|RS]ρBA
S,R − [PS|RQ]ρBA

S,R

+ [PT |RS]πBA
T S,RQ + [QT |RS]πBA

PS,RT

− 1
2 [TU |RS]γ BA

USP,T RQ (10)

where GAB = 1
2 [TU |RS]πBA

US,T R.
Expressions (8)–(10) are valid for any value of the spin

quantum numbers of the excited orbitals and the ion states.
Since in the present paper we restrict our attention to spin-free
operators; however, it is convenient to determine the matrix
elements between spin-adapted CC states (SACC), |A, p; S�〉,
in which the spin of the ion and of the additional electron are
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coupled to a well-defined spin S and spin projection �,

|A, p; S�〉 =
∑
�Aπ

CS�

SA�A, 1
2 π

∣∣A�A , pπ

〉

=
∑
�Aπ

CS�

SA�A, 1
2 π

a†
pπ

∣∣A�A

〉
(11)

where we have expanded the capital-letter index P into the
(lower case) orbital index p and spin projection (Greek let-
ter) π , CS�

SA,�A, 1
2 π

are Clebsch-Gordan coefficients [95], with

SA and �A being the ion spin and spin projection quantum
numbers, respectively. The matrix element of a spin-free op-
erator between SACC states, of course, vanishes unless the
two states have the same spin S and spin projection �. For
brevity, therefore, in the following we will adopt the shorthand
notation

〈A, p|M̂|B, q〉 ≡ 〈A, p; S�|M̂|B, q; S�〉. (12)

The matrix elements between SACC states are derived in
Appendix A and summarized below. As explained more in
detail in the next section, it is convenient to partition the
spatial orbitals in inactive or core (I), active (A), virtual (V),
and external (E) orbitals. The TDMs vanish unless all their
indexes correspond to inactive or active orbitals. Furthermore,
the expressions for the TDMs with inactive indexes can be
simplified in such a way that the TDMs need to be evaluated
only for active-orbital indexes. In the following, all sums over
orbital indexes appearing in TDMs are assumed to be limited
to active orbitals only (or to vanish otherwise). The overlap,
for example, reads

〈A, p|B, q〉 = δAB spq + W BA
pq , (13)

where W BA
pq is a reduced one-body TDM obtained by coupling

the spin projections of ρBA
P,Q (see Appendix C). In (13), the

W BA
pq vanishes unless both p and q are active, in which case

spq = δpq. In all the other cases, only the δAB spq term survives.
For a generic one-body operator Ô,

〈A, p|Ô|B, q〉 = δAB opq + spq OAB + 〈Ô〉core W BA
pq

+W BA
pr orq + ops W BA

sq + ors PBA
rs,qp. (14)

See Appendix C for the definition of the reduced TDM
PBA

rs,qp in terms of πBA
PS,RQ. The term 〈Ô〉core = 2oxx represents

the contribution to the observable from the ionic inactive
orbitals. Finally, the complete Hamiltonian matrix element
between SACC states comprises both mono- and bielec-
tronic components and it involves up to three-body TDMs.
The Hamiltonian matrix elements between CC states that do
not contain any virtual or external orbital are most readily
evaluated using the same quantum-chemistry program that
computes the TDMs. For this reason, the current implementa-
tion of ASTRA does not explicitly use three-body TDMs. The
general matrix element between SACC in which at least one
of the two states involves a virtual or external orbital, reads

HAp,Bq = 〈A, p|Ĥ |B, q〉
= δAB(spqEA + h̃pq) + W BA

pr h̃rq + h̃prW
BA

rq

+ δSASB [pq|rs]QBA
sr + [ps|rq]W BA

sr

+ [pt |rs]PBA
ts,qr + [qt |rs]PBA

ps,tr (15)

where EA is the energy of the parent ion A, and where the
monoelectronic matrix element hpq has been replaced by an
effective Hamiltonian h̃pq that incorporates the Coulomb and
exchange terms with the core electrons,

h̃pq = hpq + (2[pq|r̃r̃] − [pr̃|r̃q]). (16)

The reduced TDM QBA
sr is defined in Appendix C [see (C8)].

C. Observables

In this paper, we focus on the parameters of bound states
and autoionizing states of selected atomic and molecular sys-
tems, as well as on the total photoionization cross section of
each system from its ground state. The energy of the bound
states and the position and width of the autoionizing states are
obtained by diagonalizing the electronic fixed-nuclei Hamil-
tonian in the SACC basis described above, with outgoing
boundary conditions. The radial functions used to build the
CC channels are confined to a quantization box r < Rbox,
with typical size of the order of few hundred Bohr radii.
Outgoing boundary conditions are enforced by adding to the
Hamiltonian a complex absorption potential (CAP) [96] VCAP

with support located near the boundary of the quantization
box,

H̃ =
∑

i

[
p2

i

2
−

∑
A

ZA

|�ri − �RA|

]
+

∑
i> j

1

|�ri − �r j |

+
∑
A>B

ZAZB

| �RA − �RB| + VCAP, (17)

VCAP = −i
∑
αi

bα θ (ri − Rα ) (ri − Rα )2, (18)

where ZA and �RA are the charge and position of nucleus
A, while �ri and �pi are the position and momentum opera-
tor of the ith electron. Here, the CAP is parametrized as
the sum of several negative imaginary parabolic potentials,
α = 1, 2, . . . , NCAP, each starting at a prescribed radius Rα;
θ (x) is the Heaviside step function, and bα are real posi-
tive constants. In dynamical conditions, the CAP prevents
artificial reflections of a photoelectron wavepacket from the
box boundary. While local multiplicative CAP are not perfect
absorbers [96], the reflection coefficient of an electron from
either the box boundary or the CAP itself can easily be re-
duced to machine precision in any energy range of interest by
combining multiple parabolic potentials across a sufficiently
large radial distance. For the present paper, in which we ex-
amine total energies within one Hartree from the ionization
threshold, we found that a combination of a broad and shallow
complex potential (b1 � 10−6, R1 � Rbox − 200 a.u.), which
efficiently absorbs slow electrons without reflecting them,
and a narrower and steeper complex potential (b2 � 10−4,
R2 � Rbox − 100 a.u.), which absorbs fast electrons before
they get reflected by the box boundary, is sufficient to achieve
convergence.

Let |φ〉 = (|φ1〉, |φ2〉, . . .) be the CC basis and H̃ =
〈φ|H̃ |φ〉 be the representation of the Hamiltonian with CAPs
in this basis. The diagonalization of H̃ can be written as

H̃ = URẼU†
L, (19)
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where Ẽi j = δi j Ẽi is the diagonal matrix of the complex eigen-
values of the projected H̃ , whereas UL/R are the left/right
eigenvectors, normalized so that U†

LUR = 1. The complex en-
ergies thus obtained can be grouped in three types: (i) those
below the first ionization threshold, with negligible imaginary
part, which correspond to bound states that have negligible
amplitude in the CAP region; (ii) sequences of eigenvalues
that branch out from each threshold and rapidly acquire large
negative imaginary components, which correspond to nonres-
onant continuum states; and (iii) isolated complex eigenvalues
Ẽi = Ēi − i�i/2, where Ēi = �e(Ẽi ) and �i = −2m(Ẽi ),
which are largely independent on the choice of the extinction
parameter bα and represent the complex energies of autoioniz-
ing states. In the region where the CAP vanishes, ∀i, α, ri �
Rα , the right eigenstates of H̃ can be regarded as Siegert states
[97–99].

The spectral resolution of the Hamiltonian in terms of
states that satisfy outgoing boundary conditions also allows
us to compute the total photoionization cross section, which
in length gauge reads

σtot (ω) = 4π2ω

c

∑
α

∣∣〈�αEg+ω

∣∣ε̂ · �μ|g〉∣∣2
, (20)

where |g〉 is the ground state of the target, c � 137.035 is
the speed of light in atomic units, ε̂ is the light-polarization
unit vector, ε̂∗ · ε̂ = 1, �μ = −∑Ne

i=1 �ri is the electronic dipole
moment, and |�αE 〉 are a complete set of orthonormal single-
ionization scattering states for all channels α open at the
energy Eg + ω, 〈�αE |�βE ′ 〉 = δαβδ(E − E ′). Indeed, for any
localized wavepacket |φ〉,∑

α

|〈�αE |φ〉|2 =
∑

α

〈φ|�αE 〉〈�αE |φ〉

= 〈φ|δ(E − H )|φ〉

= − 1

π
m[〈φ|G+(E )|φ〉], (21)

where G+(E ) = (E − H + i0+)−1 is the retarded resolvent
[100]. The total photoionization cross section, therefore, can
be written as (|φ〉 = ε̂ · �μ|g〉)

σtot (ω) = −4πω

c
m〈g| ε̂ · �μ G+

0 (Eg + ω) ε̂ · �μ |g〉, (22)

which is nothing other than the optical theorem applied to
photoionization processes. Since wavepackets of the form
G+(E )|φ〉 contain outgoing components only [100,101], we
can use the numerical spectral resolution of H̃ to write down
an explicit expression for the retarded resolvent in the CC
basis,

G+
0 (E ) = UR

1

E − Ẽ
U†

L. (23)

Equation (23) is accurate as long as the resolvent is applied to
wavepackets localized in the region where the CAP vanishes
and the result is evaluated in the same region. This is the
case for the dipole operator acting on the ground state of the
system, and hence

σtot (ω) = −4πω

c
m[μ† G+

0 (Eg + ω)μ], (24)

where μ = 〈φ| ε̂ · �μ |g〉. This expression bypasses the calcula-
tion of scattering states and it can be evaluated at a negligible
computational cost. The calculation of multichannel scatter-
ing states is beyond the scope of the present paper and will be
examined in future works.

IV. ASTRA IMPLEMENTATION

In this section, we examine some aspects of the numerical
implementation of ASTRA.

To reproduce molecular ionization observables, ASTRA re-
lies on internal components as well as on external tools:
DALTON [102], LUCIA [103], and GBTOlib [67]. DALTON

is a general-purpose quantum-chemistry program used to
compute an initial set of GTOs as well as mono- and bi-
electronic integrals between them. LUCIA is a molecular
electronic-structure program with a focus on efficient large-
scale configuration interactions [103]. Starting from an initial
set of orbitals and integrals, LUCIA can carry out sophisticated
calculations to optimize the initial orbital, compute corre-
lated bound states, as well as the TDMs between them (see
Sec. IV A for details). GBTOlib is a public library, part of the
UKRmol+ molecular scattering package that can compute elec-
tronic integrals between hybrid Gaussian/B-spline functions.
ASTRA employs also an additional independent set of B-spline
spherical functions external to the molecular region and whose
support is effectively disjoint from that of any GTO orbitals.
The flow diagram in Fig. 1 illustrates how the different ex-
ternal and internal components of ASTRA are connected with
each other. The external components are managed by a setup
script. One interface (A TDM IF) converts the TDMs gener-
ated by LUCIA to their reduced spin-adapted form. A second
interface (A INT IF) converts the hybrid integral generated by
GBTOlib to the internal database of ASTRA and complements
the hybrid integrals with those involving the additional set of
B splines that extends beyond the molecular region.

The right frame of the flow diagram delimits the core sec-
tion of ASTRA. The ASTRA operator program (A OP) generates
the representation of arbitrary operators in the SACC space,
starting from the reduced TDM, the hybrid integrals, and the
specifics of the close-coupling configuration file (not shown).
Subsequently, the ASTRA TISE program determines the eigen-
states and eigenvalues of the system with either vanishing
or outgoing boundary conditions. In parallel, the Lippmann-
Schwinger equation solver (A LSE) determines the scattering
states. The generalized and the confined eigenstates of the
system can then be used to evaluate stationary observables,
such as the one-photon total ionization cross section (see
Sec. V), the photoelectron emission due to external pulses (A
TDSE, A PSS), by solving the TDSE in the full CC basis, or
the optical response by solving the TDSE in a reduced model
space of Siegert states (A ES TDSE, A OPT RES). Due to
its reliance on quantum-chemistry external tools, ASTRA only
handles molecular spatial symmetry groups that are subgroups
of D2h [91].

A. CASCI ionic states and TDM

The molecular orbitals can be determined using LUCIA

for several wave-function methods: Hartree-Fock, complete
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FIG. 1. ASTRA flow scheme. Rounded boxes represent executables, whereas square boxes represent databases. The “A” prefix indicates an
executable from the ASTRA suite. In the setup section (left frame), from a set of configuration files (not shown), the ASTRA setup script invokes,
in sequence: (i) DALTON, to compute a starting set of GTO and their associated integrals; (ii) LUCIA, to optimize the orbitals, to compute the
correlated ionic states, as well as the TDM between them; (iii) GBTOlib, to compute, from the optimized orbitals, the hybrid integrals with the
B splines in the molecular region. See text for details on the steps that involve only ASTRA components. Starred elements are currently under
development.

active space self-consistent field calculations (CASSCF),
and generalized and restricted-active-space SCF calculations
(GASSCF and RASSCF). Molecular ionization processes
start from a neutral state and lead to the production of multiple
ionic states with different symmetries and multiplicities. It
is therefore advantageous to optimize the orbitals so they
provide a balanced representation of a set of target states with
different number of electrons, multiplicities, spatial symme-
try, and energy. Such optimizations go under the name of
state-averaged (SA) MCSCF calculations, and LUCIA is capa-
ble of optimizing the orbitals for an ensemble of such states.
This makes LUCIA a well-suited QC engine for generating the
orbitals and CI expansions that subsequently are used in the
photoionization codes.

In a subsequent step, LUCIA computes the required TDMs
between all the ionic states in the CC expansion, as well as the
overlap, Hamiltonian, and dipole matrix elements between all
the states obtained by augmenting these ions by any of the
active orbitals. For one-electron photoionization processes,
one- and two-electron density matrices are sufficient, but LU-
CIA can also calculate the three-electron TDMs required for
double photoionization. The TDMs are obtained in LUCIA

over spin orbitals and are subsequently spin-adapted by the
ASTRA interface. The LUCIA code determines the TDMs from
CI expansions in the Slater determinant (SD) basis. However,
in order to assure that the involved states have well-defined
spin of the involved states, these states are defined in terms
of spin-adapted configuration state functions (CSFs). The cal-
culations of the TDMs and the inner part of a direct CI step
are thus preceded by a transformation from the CSF to the SD
basis.

The expansion of a CI state in terms of Slater determinants
is realized using the formalism of spin strings [92,103,104].
In this formalism, a SD is expressed as an alpha-spin string,
which is an ordered product of the creation operators for
the alpha-spin orbitals, times a beta-spin string, which is an
ordered product of creation operators for beta-spin orbitals.
The use of spin strings provides a formally simple approach
that can perform the CI optimization and the subsequent cal-
culation of TDMs in an efficient manner. An advantage of
the spin-string formalism is that the information required to
determine the action of a general operator on a CI expansion
is easy to determine and store. In the present implementation,
only information about single-electron removal and addition

from strings is determined and stored. The action of operators
containing several creation or annihilation operators is con-
structed on the fly from the lists of one-electron removals and
additions.

The TDMs are also written and computed in terms of
spin strings [105,106]. A TDM is thus written as matrix with
indices defining spin strings,

ρBA
ν,μ = 〈A|O†

μOν |B〉. (25)

By letting O be strings of one-, two-, and three-electron anni-
hilation operators, the one-, two- and three-electron density
matrices of Eq. (7) are obtained. The various forms of the
TDMs are calculated using a common suite of routines, where
the states Oμ|A〉,Oν |B〉 first are determined as expansions in
SDs |I〉,

Oμ|A〉 =
∑

I

CA
μI |I〉, Oν |B〉 =

∑
I

CB
νI |I〉. (26)

For a given state A, the dimension of CA
μI and the operation

count for its evaluation is approximately NnNdet, where N is
the number of active orbitals, n is the order of the TDM, and
Ndet is the number of SDs in the expansion. In a second step,
the TDM is obtained by matrix multiplication,

ρBA
ν,μ = 〈A|O†

μOν |B〉 =
∑

I

CA∗
μI CB

νI . (27)

This matrix multiplication scales as N2nNdet. For an example
with 20 active orbitals and one million SDs, the operation
count for the evaluation of CB

νI for a two-electron TDM is
about 4 × 108 and the following matrix multiplication re-
quires about 3 × 1011 operations. In the above estimates,
simplifications arising from spatial symmetry were neglected.
For a molecule with NIRR irreducible representations, the op-
eration count the the matrix multiplication is reduced by a
factor of about N2

IRR. On a single core of a modern CPU, the
discussed TDM for a molecule with four irreducible represen-
tations may thus be evaluated in a few seconds.

B. Orbital basis

As commented in Sec. III B, the expressions for the CC-
matrix elements suggest a natural partition of the orbitals in
inactive, active, virtual, and external, which helps simplify
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FIG. 2. Schematic classification of the electronic orbitals used
in ASTRA CC expansion. The labels over the frames, AC, VC, and
EC, indicate the active, virtual, and external component of the close-
coupling channel obtained by augmenting a given ion by the full set
of the noninactive orbitals.

their calculation. Figure 2 illustrates schematically the differ-
ent orbitals.

An initial set of atomic GTO orbitals are used to gen-
erate an orthonormal set of molecular orbitals (MO), φM

i ,
〈φM

i |φM
j 〉 = δi j , optimized by means of a self-consistent-field

calculation (HF, RASSCF, CASSCF, etc.). All MOs are neg-
ligible beyond a certain distance Rmol from the molecular
barycenter. We call r < Rmol the molecular region. The MOs
are divided in inactive orbitals (IMO), which are doubly oc-
cupied in all the ions, active orbitals (AMO), which have
variable occupation numbers in the ions, and virtual orbitals
(VMO), unoccupied in the ions,{

φM
i

} = {
φIM

i

}
i∈IIM

∪ {
φAM

i

}
i∈IAM

∪ {
φV M

i

}
i∈IV M

The MOs are assumed to be adequate to represent the corre-
lated state of the N − 1 electrons of the ion. However, they are
normally insufficient to describe the state of an N th electron
in interaction with the ion, particularly for energies close to
or above the ionization continuum. The virtual hybrid orbitals
(VHO) are obtained by complementing the virtual MOs with
a set of internal spherical B splines [61,107,108], with support
within the molecular region,

χ int
n�m(�r) = Nnr−1Bint

n (r) X�m(r̂), (28)

where X�m(r̂) are real spherical harmonics and Nn are normal-
ization constants. The internal B splines are orthonormalized
to the MOs,

φV H
i =

∑
nm�

χ int
n�m cnm�,i +

∑
j

φM
j c ji, (29)

〈
φV H

i

∣∣φM
j

〉 = 0,
〈
φV H

i

∣∣φV H
j

〉 = δi j . (30)

This second step is carried out by GBTOlib [67], by perform-
ing a Gram-Schmidt orthogonalization of the B-spline basis
with the MOs (leaving the MOs unchanged) followed by a
symmetric orthogonalization of the resulting set. The program
also evaluates the monoelectronic and bielectronic integrals
involving these hybrid orbitals.

The MOs and VHOs together afford to the CC space
considerable flexibility for the description of a photoelectron
subject to the polycentric field of the ion. Finally, the external
spherical orbitals (ESO) are spherical B splines that extend
the internal B spline set beyond the molecular region

φE
n�m(�r) = Nnr−1 Bext

n (r) X�m(r̂). (31)

FIG. 3. Block structure of the Hamiltonian matrix between the
CC states. The parts in white are empty. While the blocks are not to
scale, it is clear that the matrix is highly sparse. There are essentially
five different types of blocks (colored online), which correspond to as
many separately optimized formulas and set of integrals: 1 for (C22),
2 for (C23), 3 for (C24) and for 4, 5 see (C25).

The MOs and the external B splines have effectively disjoint
support

φM
i (�r) φE

n�m(�r) � 0, ∀�r, (32)

which means that the integral of any local operator between
an external B spline and an hybrid orbital can be expressed in
terms of integrals between B-spline functions only.

C. Matrix elements

Taking into account the different groups of orbitals used to
form the CC channels, we can further simplify the expression
for the matrix elements of the different operators given in
Sec. III. The structure of the Hamiltonian matrix is schema-
tized in Fig. 3, where the colored regions identify coupling
between channels while the white areas correspond to regions
with null matrix elements. The evaluation of the overlap and
of one-body operators is relatively simple. The most complex
monoelectronic matrix elements to evaluate are those between
AC states, which involves both 1B-TDM and 2B-TDM [see
(14)]. Overall, however, purely monoelectronic operators are
straightforward to evaluate. In this section, therefore, we will
focus on the Hamiltonian only. Apart for the complex absorb-
ing potential, which affects exclusively the diagonal blocks
between external orbitals, the rest of the Hamiltonian is Her-
mitian. Therefore, without loss of generality, we can limit
the description of the Hamiltonian matrix elements to the
upper triangular set of blocks of the close-coupling matrix.
The evaluation of an Hamiltonian matrix element requires the
3B-TDM only when both CC states belong to an AC. Since
this matrix elements involves MOs only, it is convenient to
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carry out the calculation directly within LUCIA. ASTRA is then
left with the minimal task of evaluating, from the Hamiltonian
matrix element between CC states, only those involving at
least a VC or EC state, as detailed in Appendix C 4.

Let us now consider the general expression (15) for
the other blocks. For the active-virtual blocks (AV), the
Hamiltonian is

HAV
Ap,Bq = δABh̃pq + W BA

pr h̃rq + [pq|rs]QBA
sr

+ [ps|rq]W BA
sr + [qt |rs]PBA

ps,tr,

whereas the blocks between active and external states are
zero, HAE

Ap,Bq = 0. Notice that the AV blocks are the only ones
involving 2B-TDMs. Since there are comparatively few such
elements, the calculation is inexpensive. For the VV block,
the Hamiltonian contains both local and nonlocal interchannel
coupling potentials,

HVV
Ap,Bq = δAB(EAδpq + h̃pq) + [pq|rs]QBA

sr + [ps|rq]W BA
sr ,

whereas in the VE and EE blocks only the local potential
remains (X = V, E),

HXE
Ap,Bq = δAB(EAδpq + h̃pq) + [pq|rs]QBA

sr . (33)

The local potential [pq|rs]QBA
sr describes the repulsion be-

tween two disjoint distributions of charge, one confined within
and one outside the molecular region, i.e., the multipo-
lar electrostatic coupling between channels. The expression,
therefore, can be conveniently rearranged by means of a mul-
tipole expansion of the electron-electron repulsion energy

1

|�r − �r′| =
∑
�m

4π

2� + 1

r�
<

r�+1
>

X�m(r̂)X�m(r̂′), (34)

where X�m(r̂) are real spherical harmonics [109]. The bielec-
tronic matrix element [pq|rs] then becomes

[pq|rs] =
∑
�m

o(�m)
pq M (�m)

rs ,

where

o(�m)
pq = 〈p|X�m(r̂)

r�+1
|q〉, M (�m)

rs = 4π〈r|r�X�m(r̂)|s〉
2� + 1

.

We can now recognize that the one-body part of the Hamilto-
nian h̃pq defined in (16) already contains a multipolar nuclear
attraction potential, whose associated set of moments are
given by

M (�m)
nuc = 4π

2� + 1

Nat∑
α

ZαR�
αX�m(R̂α ). (35)

It is convenient, therefore, to gather the nuclear attraction and
the electronic repulsion terms in a single-transition multipolar
momentum M(�m)

AB , defined as

M(�m)
AB =

∑
rs

′
M (�m)

rs QBA
sr + 2

core∑
x

M (�m)
xx − M (�m)

nuc , (36)

The monopolar momentum, of course, is simply the ionic
charge, M(00)

AB = δABZion, and the expression for the Hamil-
tonian in the outer region given in (33) can therefore be

rewritten as

HXE
Ap,Bq = δAB

(
spqEA + tpq − Ziono(00)

pq

)
+

�>0∑
�m

o(�m)
pq M(�m)

AB . (37)

where tpq is a kinetic-energy matrix element.

V. RESULTS

This section illustrates ASTRA performance by comparing
its results with well established and independent single-
ionization codes, together with experimental references, when
available. We apply ASTRA to the calculation of selected
bound and resonant state parameters, and total photoioniza-
tion cross section of three reference model systems: the boron
atom, the nitrogen molecule, and formaldehyde, H2CO, as
a representative of an open-shell atomic system, a diatomic
molecule, and a simple polyatomic molecule, respectively.
The results are compared with the best values available in the
literature, with which we find an excellent agreement. In the
case of N2, we consider different levels of approximation to
illustrate both the consistency of the method with independent
benchmark calculations, such as CIS, as well as the flexibility
with which electronic correlation in ionization can be treated
already within the current implementation of ASTRA.

A. Boron

In this section, we discuss the computation of the bound-
state energies, resonance parameters, and photoionization
cross-section of atomic boron and compare the results with
the NEWSTOCK suite of atomic photoionization codes [110]
as well as with a dedicated three-active-electron atomic code
(TAEC) [111]. Boron doublet CC space is built from ions
with both singlet and triplet multiplicity. This comparison,
therefore, is particularly relevant because it allows us to test
the correct implementation of the TDMCC method when
TDMs between states with different multiplicity are required.
Although both ASTRA and NEWSTOCK use equivalent CC
expansions, the two approaches are intrinsically different.
NEWSTOCK, as an atomic photoionization code, uses the full
SO(3) symmetry of the atom, whereas ASTRA uses the D2h

Abelian point group. NEWSTOCK relies on the nonrelativis-
tic multiconfiguration Hartree-Fock (MCHF) program of the
ATSP2K [112] package to compute the parent-ion states. To
obtain the equivalent degree of local electron correlation,
we employ the same number of ionic states in ASTRA and
NEWSTOCK calculations. The ionic states are optimized by
including all possible single and double excitations from the
reference determinant with active orbitals up to the principal
quantum number n = 4. TAEC [111] uses a virtually complete
two-electron basis for the two active valence electrons of the
B+ ion in the field of a polarizable core, as well as an opti-
mized set of several thousands configurations selected from
the full-CI three-active-electron space, and a significantly
larger CC expansions compared with either NEWSTOCK or AS-
TRA. As one may expect from a dedicated program, therefore,
TAEC results are closer to the experimental values listed in the
NIST database [113]. In constructing the CC expansion for
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TABLE I. Comparison of the energies of the first 11 singlet and
triplet bound states of B II, E − E2s2 (eV).

Conf. ASTRA NEWSTOCK TAEC [111] Exp. [113]

2s2p (3Po) 4.6563 4.6308 4.6391 4.6317
2s2p (1Po) 9.3240 9.3421 9.1187 9.1000
2p2 (3Pe) 12.373 12.256 12.287 12.266
2p2 (1De) 12.856 12.860 12.706 12.691
2p2 (1Se) 16.012 16.001 15.835 15.827
2s3s (3Se) 16.036 16.037 16.095 16.089
2s3s (1Se) 17.166 17.300 17.069 17.062
2s3p (3Po) 17.839 17.831 17.858 17.853
2s3p (1Po) 17.880 17.910 17.874 17.866
2s3d (3De) 18.652 18.650 18.681 18.678
2s3d (1De) 19.230 19.380 19.183 19.178

ASTRA and NEWSTOCK calculations, we have included the first
12 parent ions, which are listed in Table I. For the ASTRA

computation, the ionic Hartree-Fock orbitals are generated
with DALTON [102] using the aug-cc-pVQZ basis. In ASTRA

and NEWSTOCK, the results of the ionic states with dominant
configurations up to 2s3d (1De) are compared in Table I rela-
tive to the 2s2(1Se) ionic ground state. The agreement between
our results and the experimental values is remarkable. The
values computed with ASTRA lie within 0.03 to 0.2 eV of the
experimental values, which is deemed sufficient to ascertain
the consistency of ASTRA’s implementation. In both ASTRA

and NEWSTOCK, the twelve parent ions are coupled to pho-
toelectrons with angular momentum up to lmax = 3, within a
quantization box of 300 a.u., employing B splines of order
seven and node separation of 0.3 a.u. In ASTRA, Rmol = 20
a.u. and a single CAP is used, which starts at Rα = 200 a.u.

Table II lists the first few bound-state energies of B I with
doublet and quartet symmetries. For the 2s22p(2Po) ground
state, the absolute value of energy obtained from ASTRA is
–24.600 14 a.u., which differs from more accurate nonrela-
tivistic MCHF calculations [114] by 0.0538 a.u. This energy
difference is commensurate with the value of 0.044 735 a.u
estimated for the K-shell correlation energy [115], which is
not accounted for in the present calculation. The residual
discrepancy is compatible with the larger active space used
in the MCHF calculation.

In ASTRA, the resonance parameters are obtained by
diagonalizing the multichannel CC Hamiltonian in the pres-
ence of a CAP, whereas NEWSTOCK enforces outgoing
boundary conditions using exterior-complex scaling (ECS)
[116–118]. Table III compares the effective quantum number,
n∗ = [2(Ethr − En)]−1/2, and resonance width � of selected

TABLE II. Bound-state energies of B I, E − E2s22p (eV).

Conf. ASTRA NEWSTOCK TAEC [111] Exp. [113]

2s2p2 (4Pe) 3.584 3.564 3.552
2s23s (2Se) 4.869 4.881 4.958 4.964
2s2p2 (2De) 5.916 5.927 5.939 5.933
2s23p (2Po) 5.993 5.990 6.021 6.027
2s23d (2De) 6.707 6.682 6.785 6.790

TABLE III. Comparison of effective quantum number, n∗ and
resonance width � (a.u.), of 2Po resonances between 2s2 and
2s2p(3Po) thresholds. The notation 5.94[–3] stands for 5.94 × 10−3.

ASTRA NEWSTOCK TAEC [111]

Conf. n∗ � n∗ � n∗ �

2s2p3s 2.146 5.94[–3] 2.131 5.58[–3] 2.140 5.73[–3]
2s2p4s 3.120 1.79[–3] 3.157 1.63[–3] 3.157 1.59[–3]
2s2p5s 4.170 6.98[–4] 4.164 6.96[–4] 4.161 6.69[–4]
2s2p6s 5.172 3.59[–4] 5.166 3.60[–4] 5.162 3.44[–4]
2s2p7s 6.173 2.10[–4] 6.167 2.10[–4] 6.163 2.00[–4]

autoionizing states with 2Po symmetry, between the the
2s2(1Se) and 2s2p(3Po) B+ thresholds. The results for the
dominant 2s2p(3Po)ns series from ASTRA are in excellent
agreement with those obtained with NEWSTOCK and TAEC.
Table IV shows the parameters for the first few terms of the
2s2p(3Po)np (2Se) autoionizing states. The resonance param-
eters for the two main series, 2s2p(3Po)np and 2s2p(3Po)n f
of 2De autoionizing states are listed in Table V. Figure 4 com-
pares the total photoionization cross-section of boron, from
the 2Po ground state to the energy region between the 2s2 and
the 2s2p B+ thresholds, computed in the length gauge with
ASTRA, with the one computed with NEWSTOCK, both in length
and in velocity gauge. As discussed in Sec. III, in this paper,
ASTRA evaluates the total cross section using the optical theo-
rem (24), whereas the cross section in NEWSTOCK is computed
from the dipole transition matrix elements between the ground
state and a complete set of scattering states of the atom. The
two calculations, which differ entirely in their methodology,
are in remarkable agreement with each other. In particular,
ASTRA accurately reproduces the characteristic asymmetry of
the multichannel resonant profiles of the many autoionizing
states in this region.

Figure 4(a) covers the whole energy interval between the
first and second threshold. Figure 4(b) shows a close up on
the resonant region, and identifies selected terms in the three
main resonant series. The broad 2s2pnp (2De) and the narrow
2s2p3p(2Se) series dominate the total cross section. A much
narrower 2s2pn f (2De) series is visible near the second ion-
ization threshold. As shown in Fig. 4(a), the boron spectrum
computed with ASTRA exhibits a few additional ultra-narrow
resonant features, highlighted by vertical tics (green online),
that deserve some comments. By comparing the positions of

TABLE IV. Comparison of effective quantum number, n∗ and
resonance width � (a.u.), of 2Se resonances between 2s2 and
2s2p(3Po) thresholds.

ASTRA NEWSTOCK TAEC [111]

Conf. n∗ � n∗ � n∗ �

2s2p3p 2.765 4.99[–4] 2.743 5.22[–4] 2.733 4.70[–4]
2s2p4p 3.767 1.81[–4] 3.754 1.89[–4] 3.736 1.67[–4]
2s2p5p 4.766 8.51[–5] 4.756 8.96[–5] 4.736 7.75[–5]
2s2p6p 5.765 4.67[–5] 5.756 4.93[–5] 5.736 4.21[–5]
2s2p7p 6.765 3.15[–5] 6.756 2.99[–5] 6.735 2.54[–5]
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TABLE V. Comparison of effective quantum number, n∗ and res-
onance width � (a.u.), of 2De resonances between 2s2 and 2s2p(3Po)
thresholds.

ASTRA NEWSTOCK TAEC [111]

Conf. n∗ � n∗ � n∗ �

2s2p3p 2.581 1.95[–3] 2.579 1.88[–3] 2.568 1.74[–3]
2s2p4p 3.596 6.75[–4] 3.594 6.46[–4] 3.585 5.68[–4]
2s2p5p 4.601 3.12[–4] 4.599 2.98[–4] 4.585 2.87[–4]
2s2p6p 5.601 1.70[–4] 5.601 1.62[–4] 5.588 1.54[–4]
2s2p7p 6.603 1.06[–4] 6.601 9.77[–5] 6.588 9.34[–5]
2s2p4 f 4.013 1.56[–7] 4.013 1.07[–7] 4.009 1.57[–7]
2s2p5 f 5.012 1.37[–7] 5.012 9.73[–8] 5.009 1.19[–7]
2s2p6 f 6.012 1.32[–7] 6.011 7.27[–8] 6.008 8.65[–8]

the Rydberg bound states in NEWSTOCK and ASTRA, it can
be shown that this series corresponds to 2Pe bound states.
These bound states manifest themselves as vanishingly nar-
row resonances in the photoionization spectrum due to the
miniscule coupling of the 2Pe bound states to the 2De con-
tinuum. Similar minor symmetry mixing are to be expected
in a molecular code because, in D2h symmetry, the distinction
between some SO(3) irreducible representations is enforced
dynamically, through numerical cancellations, rather than ge-
ometrically. That said, the mixing is small indeed. The largest
of these resonances, at ∼9.2 eV, has a width of just ≈10−13

a.u., comparable to machine precision, with the higher terms
of the series being narrower still. Far from representing a
failure of the code, therefore, such small values testify the
remarkable accuracy with which ASTRA does reproduce the
spherical symmetry of the atom.

The agreement between the two different ab initio
approaches shows that the ASTRA formalism, based on non-
standard high-order TDMs between ionic states with different
multiplicities and designed for molecular systems, is consis-
tent and can be used to obtain accurate results for atoms [119]
as well.

B. Nitrogen molecule

The nitrogen molecule is an ideal system to test the ac-
curacy of states in the ionization continuum, thanks to the
availability of several theoretical and experimental bench-
marks in the literature. In this subsection, we report on several
comparisons, within the fixed-nuclei approximation (FNA).
First, we ascertain that, to the minimal CIS level, ASTRA

exactly reproduces the same result as an independent ad hoc
CIS code, as it should. Next, we test ASTRA consistency and
performance with the CC space constructed from correlated
ions by comparing our results with those obtained with XCHEM

[80], a state-of-the art molecular-ionization code, as well as
with experimental values.

1. Comparison with ad hoc CIS Code

The ASTRA suite has been benchmarked against an ad hoc
CIS code for the N2 molecule, described in Appendix D. In
the CIS model, the ionic states for the CC expansion are
obtained by creating a vacancy in any of the valence orbitals

FIG. 4. (a) Total photoionization cross section between the
2s2(1Se) and 2s2p(3Po) thresholds, from 2Po ground state of atomic
boron, computed with ASTRA (solid black line) and compared with
the length (dashed blue line) and the velocity (dash-dotted red line)
gauge results from NEWSTOCK. The solid green lines indicate the po-
sitions of the bound states of 2Pe symmetry. (b) Same cross section as
in the top panel, magnified in the resonant region, which exhibits
autoionizing states with both 2Se and 2De symmetry. The notation
n�(2Le) denotes a resonance with dominant configuration 2s2pn�

coupled to 2Le symmetry.

of the Hartree-Fock determinant of the N2 ground state. All
these single-configuration ions are subsequently coupled to all
available VMOs and VHOs. The CC space obtained with this
approach, therefore, coincides with the CIS space from the HF
ground state of N2. The HF ground state was computed using a
6-31G basis, whereas for the hybrid orbitals we used B splines
of order six, with a node separation of 0.77 a.u. and angular
momentum � � 2, within a 20 a.u. quantization box. The
formulas for the transition-density matrices in the CIS basis,
and the CC-matrix elements of the Hamiltonian and the dipole
operators, are particularly simple, as shown in Appendix D.
The density matrices were used to test, in the CIS case, the
consistency of the TDMs generated by LUCIA, as well as
that of the spin-adapted reduced TDMs evaluated by ASTRA.
The matrix elements of the Hamiltonian, computed separately
by the CIS code, were used to ascertain the correctness of
the ASTRA structure code. The singlet states energy obtained
from the Hamiltonian diagonalization in ASTRA agree with
those computed with the CIS code within 10−12 a.u., which is
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TABLE VI. Energy of and dipole oscillator strength (OS) be-
tween the ground state and the first few bright states of N2, computed
with XCHEM and ASTRA in the CI-singles limit, using a 6-31G basis
for the HF orbitals. The energies are relative to ASTRA ground state.

Energy (eV) OS (a.u.)

State XCHEM ASTRA XCHEM ASTRA

X 1�+
g 0.004 0.000

1 1�u 15.236 15.236 0.2062 0.2066
1 1�+

u 16.267 16.287 0.2053 0.2098
2 1�u 16.311 16.321 0.0812 0.0802

compatible with the propagation of error entailed by the nec-
essary operations, executed with machine precision.

2. Comparison with XCHEM in CI-singles subspace

ASTRA accounts for the matrix elements between polycen-
tric GTOs and B splines, as well as for the exchange terms
between hybrid and ionic orbitals. This feature allows us to
use B splines across the whole radial range, thus providing
the flexibility necessary to achieve the large photoelectron
energies typical of core spectroscopies (several hundreds eV)
as well as to describe the continuum of comparatively large
molecules.

As detailed in the previous section, we ascertained that
ASTRA predictions coincide with those of an ad hoc CIS
code, when the same hybrid integrals are used. In the present
section, we show that, in the CIS case, the results generated
by ASTRA are compatible with those computed with XCHEM,
an independent and well established suite of molecular pho-
toionization codes. Like ASTRA, XCHEM is based on the CC
ansatz and on the use of Gaussian-B-spline hybrid functions
[79–82,84]. In contrast with ASTRA, however, XCHEM employs
a different algorithm to evaluate CC-matrix elements, and
it confines B splines beyond a certain distance R0 to limit
their overlap with the ionic polycentric GTOs. In XCHEM, the
molecular and the external regions are bridged by a diffuse set
of monocentric GTOs Gi�k (r) = r�+2k exp (−αir2) [108].

Table VI compares the energy of the N2 ground state and
of the first few excited singlet states, as well as the dipole
oscillator strengths from the former to the latter, obtained
by diagonalizing the CC Hamiltonian computed either with
XCHEM, using the 6-31G basis, or with ASTRA, using the
6-31G and the larger cc-pVQZ basis. In all these cases, the
CC expansion includes the X 2�+

g , A 2�u and B 2�+
u parent

ions, augmented by single-electron states with � � 2, in a
400 a.u. quantization box. The ions were confined to a sphere
with radius Rmol = 20 a.u. and two CAP were employed,
starting at 100 and 200 a.u. with a strength of 10−6 and
10−5, respectively. The ionic states are obtained from the HF
configuration by removing one electron from the 3σg, 1πu,
and 2σu orbitals. The B splines were of order eight, the node
separation chosen as �r = 0.5 a.u. and for the diffuse GTOs
in XCHEM we followed the same even-tempered set of expo-
nents αi defined in [81], with k = 2. The nitrogen molecule is
aligned along the ẑ axis and the internuclear distance is set to
the experimental equilibrium value R = 1.098 Å [120]. The

FIG. 5. Quantum defect μ�
n vs the effective principal quantum

number n∗ for four Rydberg series of bound states in three symme-
tries, computed with XCHEM (filled circles, yellow online) and ASTRA

(black empty circles) within the same CI-singles CC space used in
Table VI. Horizontal lines indicate μ�

∞ = limn→∞ μ�
n .

energies computed with XCHEM and ASTRA using the 6-31G
basis differ by no more than 0.02 eV, which is a remarkable
agreement, given how different the virtual monoelectronic
orbitals in the molecular region are for these two methods.
The oscillator strength is more sensitive to the quality of the
underlying electronic numerical basis. Nevertheless, ASTRA’s
results do not deviate more than 1% from those of XCHEM.

In Fig. 5, we compare the quantum defect μn ≡ n − n∗ of
four Rydberg series converging to the first ionization threshold
X 2�+

g . The quantum defects obtained with the two methods
are within 0.5% for all values of n∗. The agreement, therefore,
is not restricted to the first few bound states, which may be
well represented by GTOs alone, but it extends to Rydberg
states with large quantum numbers and with a radial size
well beyond the molecular region. These positive comparisons
shows that, for the present calculation: (i) the two different
configuration spaces made available to the N th electron in
XCHEM and ASTRA are equivalent, and (ii) ASTRA correctly
employs the GBTOlib hybrid basic integrals.

3. CC with correlated ions

In this section, we go beyond the CIS approximation
by considering the CC expansion obtained from the X �+

g ,
A 2�u, and B 2�+

u correlated ions augmented by virtual or-
bitals with asymptotic angular momentum up to �max = 3.
The ions are computed by means of a CASCI calculation
[92], over the {2σg/u, 3σg/u, 1πu, 1πg} set of active orbitals,
keeping the core 1σg/u orbitals inactive (doubly occupied),
and employing three different GTO bases: 6-31G, cc-pVDZ,
and cc-pVTZ. Table VII compares the energies of the first five
singlet bound states obtained with ASTRA in the three different
bases, alongside those obtained with XCHEM in the minimal
6-31G basis. All the energies are relative to the ground state
obtained with ASTRA with the cc-pVTZ basis. For the XCHEM

calculations, the same active space defined for ASTRA is em-
ployed to perform a CASCI and obtain the correlated ionic
states. The same basis of diffused GTOs utilized in the CIS
calculations is used to complement the polycentric GTOs at
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TABLE VII. Energy of the first five singlet states of N2, in eV,
obtained by including correlated parent ions in the CC (see text for
details) and using different GTO basis. The energy values are with
respect to the ASTRA ground state when the basis set used to generate
the molecular orbitals is cc-pVTZ.

XCHEM ASTRA

State 6-31G 6-31G cc-pVDZ cc-pVTZ

1 1�+
g 0.639 0.631 0.128 0.000

1 1�g 12.890 12.889 10.841 10.219
1 1�−

u 13.142 13.138 11.078 10.467
2 1�+

g 15.051 15.051 13.038 12.784
1 1�u 15.636 15.639 13.622 13.411

short range. Once again, the agreement between XCHEM and
ASTRA is excellent. In the present implementation, the CC
expansion only consists of correlated ionic states augmented
with an extra electron either in a bound or unbound orbital.
A truncated CC expansion may be insufficient to accurately
reproduce all the resonant states in the energy region of in-
terest. This is because, in the CC expansion, the response of
the ionic bound electrons to an additional electron is described
only in terms of the expansion on a small set of states. While
the CC captures well the polarization of the ion when the
additional electron is located at several Bohr radii from the
nucleus, it cannot describe well dynamic correlation at short
range, such as the Coulomb hole [125], which has components
in the multiple-ionization states of the ion itself. A standard
way of dealing with this deficiency of the CC approach is to
extend the expansion to include a pseudochannel with a large
number of N-electron configurations built out of localized or-
bitals, without constraining N − 1 electrons to any specific set
of eigenstates of the ionic Hamiltonian. This pseudochannel,
which is sometimes referred to as the Q space [126], can be
very large. The CK-MESA code [76] has an efficient way of
including the Q space via an optical potential built entirely out
of GTOs [127]. XCHEM can also account for the Q space, even
if it does so explicitly, which is more demanding than via an
optical potential [76]. The inclusion of the Q space in ASTRA

is outside the scope of the present paper. One viable approach
to circumvent this limitation is extending the CC expansion
so to include closed ionization channels whose parent ions
are augmented only by AMO, VMO, and VHO, and in which
the extra parent ions do not have to accurately reproduce any
eigenstates of the ion.

We followed this approach to reproduce the high-resolution
synchrotron radiation photoionization spectrum of N2, in the
vicinity of the Hopfield series of autoionizing states [81]. Be-
sides the three parent ions X 2�+

g , A 2�u, and B 2�+
u we have

used in the previous calculations, we added another 15 to the
CC: 2 2�+

g , 1 2�−
g , 1-2 2�g, 1 2�g, 2-4 2�u, 2 2�+

u , 1-2 2�u,
1-3 2�g, and 1 2�−

u , to define the close ionization channels. In
Fig. 6 we show the comparison of the photoionization cross
section computed with ASTRA, the XCHEM result reported
in [81] alongside four experimental spectra [121–124]. The
theoretical signals have been convoluted with a 0.015 eV
width normalized Gaussian to account for the experimental
resolution. In the photoionization spectrum we can distin-

FIG. 6. Total photoionization cross section of N2 in the Hopfield
resonances region. The spectrum computed with ASTRA (solid black
line) is compared with four independent measurements (triangles and
diamonds) [121–124] and another theoretical spectrum obtained with
XCHEM (dashed line) [81].

guish the three Hopfield series of resonances converging to
the B 2�+

u ionization threshold: nsσg, ndσg, and ndπg, for
which we indicate the first three terms. The ASTRA result is
in very good agreement with both the XCHEM calculation and
with the experimental spectra. For the first resonant feature
corresponding to 3dσg, both theoretical the results show a
broader peak than the measured value, which is likely due to
residual electronic correlation missing in the early terms of
the Rydberg series.

The size of the close-coupling space, in this case, is 16 418
for the Ag D2h symmetry, and 10 918 for all the other D2h

symmetries considered. The calculations were conducted on a
standalone workstation equipped with two 2.8 GHz Intel Xeon
Platinum-8362 processors (32 cores each). While the current
implementation of ASTRA is serial, LAPACK [128] diagonaliza-
tion routines employ multithreaded drivers that occupied, on
average, between 17 and 19 cores. The calculation of the CC
matrix elements for all the operators, the full diagonalization
of the real and complex Hamiltonian and the calculation of the
photoionization cross section took ∼2 hours.

C. Formaldehyde

To test ASTRA on a nonlinear polyatomic molecule, we
selected formaldehyde, H2CO, for which reasonably accurate
experimental [129,130] and theoretical [70] photoionization
cross sections are available. As for N2, we used the FNA
at the equilibrium geometry: RCO = 1.21 Å, RCH = 1.12 Å,
�HCH = 116.5o [131,132]. As detailed below, we conducted
calculations with ASTRA at several levels of accuracy. In our
largest calculation, the molecular orbitals are optimized by
a state average MCSCF calculation on the first ten neutral
state of the molecule, the VHO and ESO orbitals are com-
puted with � � 4, and the CC expansion includes the first 37
molecular ions. The first ten ions are augmented with the full
set of internal and external orbitals (AMO, VMO, VHO, and
ESO), whereas the remaining 27 ions, which are all closed in
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FIG. 7. Formaldehyde total photoionization cross section above
the ionization threshold. The ASTRA result (black-solid line) is ob-
tained by including 37 ions in the CC expansion with � � 4. The
ions were obtained through a CASCI using the orbitals coming from
a SA-MCSCF calculation (see text for details). The ASTRA spectrum
is compared with the RPA calculation in [70] (dotted-dash line)
and two measurements, with lower (dashed line and squares) and
higher spectral resolution (orange-solid line) [129,130]. The top of
the figure shows the first seven molecular orbitals included in the
ASTRA active space, in ascending energy order, up to the LUMO
(2b2) [133,134].

the energy region of interest, are augmented by the internal
orbitals only (AMO, VMO, and VHO).

Figure 7 compares the photoionization cross section of
formaldehyde computed with ASTRA between 11 eV and
22 eV, using the highest level of electronic correlation de-
scribed above, with Cacelli et al. RPA calculation [70], and
with two measurements: one from a lower-resolution 1996
experiment by Cooper et al. [129] and the other from a higher-
resolution 2017 experiment by Tanaka et al. [130]. The spec-
trum exhibits two prominent shape resonances, a narrower
one near 13 eV, and a broader less pronounced one at 15 eV.
In the higher-resolution experiment by Tanaka, the first peak
has smaller width and larger height. Considering the different
resolutions, however, the results of the two experiments are
compatible with each other. The results from ASTRA are con-
voluted with a 1.2-eV Gaussian window, the same as in [70],
in line with the ≈5% resolution reported by Cooper [129].
The RPA calculation [70] predicts well the position of the first
peak, which it underestimates by just 0.2 eV, while it overesti-
mates the position of the second peak by about 1 eV. Further-
more, the height of the first and second peak are significantly
under- and over-estimated, respectively. These results suggest
that both resonances are highly sensitive to correlation. In the
ASTRA results, the position of the first peak is overestimated
by about 0.2 eV, but its magnitude is in better agreement with
the experiment by Cooper. Similarly to Cacelli’s result, the
position of the second peak predicted by ASTRA is about 1 eV

FIG. 8. Formaldehyde total photoionization cross section above
the ionization threshold. Seven ASTRA spectra are shown together
with Cooper’s experiment (�E ≈ 1.2 eV) [129]. Six of the ASTRA

calculations employed the same SA-MCSCF orbitals to perform the
CASCI for the ionic states and they differ in the number of ions in-
cluded in the CC expansion and in the maximum angular momentum
considered for the partial waves. The format SA CC-N,L means that
the calculation was performed by using the SA orbitals and a CC
expansion with N ions and � � L.

above the experimental value. The peak height, however, is
almost coincident with one observed in the experiment.

The results obtained with ASTRA are arguably the ones
in best agreement with the experiment, to date. However,
they also suggest that the theoretical model used here is still
incomplete. Two possible causes for the discrepancy with the
experiment are the residual dynamic correlation not captured
by the CC expansion, and the fixed-nuclei approximation,
which prevents us from accounting for the effects of nu-
clear motion and rearrangement in the molecular ion. On the
electronic-structure side, ideally, the CC expansion should
include a flexible and large pseudo-channel formed by arbi-
trary localized configurations. On the nuclear side, one should
treat consistently nuclear motion and nuclear rearrangement
on multiple excited electronic potential energy surfaces in a
molecule with several degrees of freedom. While we plan
to tackle both of these challenges in the future, these are
formidable tasks beyond the scope of the present paper.

To illustrate the effect of the CC basis on formaldehyde
photoionization cross-section, within the current capabilities
of ASTRA, in Fig. 8 we compare the results obtained with seven
different calculations, carried out with progressively more de-
manding parameters. In the first calculation, the CC expansion
comprises six ionic states, 1-2 2B1, 1 2B2, 1-3 2A1, obtained
from a CASCI calculation of 12 electrons in the nine active
orbitals, {3a1, 4a1, 1b1, 5a1, 1b2, 2b1, 2b2, 6a1, 3b1}, whereas
the two core orbitals 1a1 and 2a1 (corresponding to the O1s
and C1s K shells) were doubly occupied. These orbitals are
obtained from the HF calculation of the neutral molecule
within the cc-PVTZ GTO basis. To build the CC channels,
each of these ions was augmented by an electron in any of the
GTO (AMO, in the notation of Sec. III) and hybrid orbitals
(VHO), and B splines with asymptotic angular momentum
� � 3 spanning the whole quantization box (ESO). The B
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spline and VCAP parameters coincide with those used for ni-
trogen.

This first ASTRA calculation reproduces the characteristic
double-hump structure of the spectrum and it is in very good
agreement with the results by Cacelli et al. [70]. In partic-
ular, the absolute magnitude of the two peaks in the two
independent calculations are remarkably similar. Both theo-
retical calculations, however, underestimate the position and
magnitude of the first peak, and overestimate the energy and
magnitude of the second peak, compared with the experiment.

In the other six ASTRA calculations, the molecular GTO
orbitals are optimized through a SA-MCSCF step over the
first 10 neutral states, with equal weights. The ions are sub-
sequently determined by a CASCI calculation with the same
number and type of inactive and active orbitals as in the first
case.

In the second calculation, the CC space is generated from
the first six ionic states only, augmented with orbitals with
� � 3. The first and the second calculation, therefore, differ
only in the optimization of the ion orbitals. The calculation
reproduces very well the position of the first peak, quite
possibly a coincidence, whereas the second peak splits into
a shoulder around the position of the peak observed in the
experiment and in a prominent third peak around 17 eV, with
no correspondence in the measured data.

In the third calculation, the ions in the CC expansion
coincide with those in the second calculation, but all the
ions are now augmented with orbitals with � � 4. The sec-
ond and the third calculation, therefore, differ only in the
photoelectron partial-wave expansion. Both photoionization
cross sections are almost identical except in the energy re-
gion approaching the ionization threshold (E < 12 eV), which
indicates that in the region of interest, the partial-wave expan-
sion is close to convergence for � � 4.

The fourth calculation coincides with the third, except that
the CC expansion is extended to include the first 10 ions,
each augmented by both the internal (AMO, VMO, and VHO)
and by the external (ESO) partial-wave orbitals. The shoulder
observed in the two previous spectra is greatly reduced and the
magnitude of the second peak decreases, being closer to the
experiment. The position of the first peak gets shifted 0.2 eV
to higher energies and it’s magnitude decreases by 2 Mb.

In the remaining three calculations, we investigated the
convergence of the cross section using the same number of
fully-augmented partial-wave channels as in the fourth, but
adding 9, 18, and 27 other ions to the CC expansion, each aug-
mented by the internal orbitals only. Since the corresponding
channels are all closed in the energy region of interest, these
last three calculations include progressively more dynamic
correlation. Going from 10 to 19 to 28 ions, the position of
the second peak is lowered by almost 1 eV. The position of
the first peak is only marginally affected. The inclusion of
nine other ions, from 28 to 37, has a comparatively small
effect, which suggests that these calculations are close to
convergence for the present choice of orbitals.

VI. CONCLUSIONS AND PERSPECTIVES

We have described a transition-density-matrix approach
to the close-coupling method (TDMCC) for molecular pho-

toionization, implemented in the ASTRA code, and used it to
compute the bound-state parameters, autoionizing-state pa-
rameters, and the single-photon integral photoionization cross
section of benchmark atomic and molecular systems. The
TDMCC method scales well with the size of the CI space of
the parent ion, and it delivers results in excellent agreement
with those in the literature.

In future studies, we will explore the scalability of AS-
TRA by studying the ionization process in increasingly larger
systems. Preliminary calculations indicate that ASTRA is ca-
pable of simulating the ionization of molecules as large as
metallo-porphyrines, organometallic compounds comprised
of 37 or more atoms, which opens a new way to the detailed
predictions of wave-function-based methods for the ionization
of molecules of biological interest.

From the methodological point of view, the ASTRA program
has several natural directions along which to evolve. First,
is the calculation of multichannel scattering states, which
will allow us to determine photoelectron angular distribu-
tions [135,136], either in stationary regime, or as a result of
the interaction of a target molecule with an ultrashort pulse
of radiation. Second, is the extension of the calculation of
the ionic states and of their TDMs from the present CASCI
level to the more general RASCI [137–140] level. This exten-
sion will be particularly useful to describe highly conjugated
systems. Third, we plan to use the SACC space as the ba-
sis for the time-dependent description of the photoionization
wavepackets generated by the interaction of a target molecule
with a sequence of ultrashort ionizing pulses [84,141,142].
This direction will allow us to reproduce transient-absorption
spectra [143–146], four-wave mixing spectra [147–149], and
photoelectron spectra [150] for state-of-the-art experiments.

In the longer term, we plan to explore also the many
other natural extensions of the TDMCC formalism of AS-
TRA, such as the inclusion of a Q space for the accurate
description of short-range correlation [151], the inclusion of
double-escape channels [152–154], to reproduce molecular
double-ionization processes, as well as the description of mul-
tifragment systems [155–159] (e.g., a dissociating molecule,
or a loosely bound aggregate) in terms of the TDMs of its
separated components, in which the TDMs of the whole ag-
gregate naturally factorizes, thus leading to drastic reduction
in computational cost.
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APPENDIX A: SECOND-QUANTIZATION FORMALISM

In this section we summarize the correspondence between
antisymmetric electronic functions in the first-quantization
coordinate representation and the associated Fock space, as
well as some basic properties of many-body operators in

043115-14



ASTRA: TRANSITION-DENSITY-MATRIX APPROACH … PHYSICAL REVIEW RESEARCH 5, 043115 (2023)

second quantization (SQ). For a general description of the SQ
formalism, we refer the reader to the first chapter in [92].

Let us gather the spatial coordinate �r and the spin coordi-
nate ζ ∈ {− 1

2 , 1
2 } of an electron in the coordinate x = (�r, ζ ).

The state space for a single electron is spanned by a basis
of spin orbitals φP(x) = ϕp(�r)2χπ (ζ ), where ϕp(�r) ∈ L2(R3),
2χπ (ζ ) = 〈ζ |π〉 = δσπ , and P = (p, π ) is a spin-orbital in-
dex, with π ∈ {− 1

2 , 1
2 }. In an N-electron system, the state

space is spanned by Slater determinants |P〉 built from arbi-
trary selections P = (P1, . . . , PN ) of N distinct spin orbitals
from a complete one-particle basis, and defined as

〈x|P〉 = 1√
N!

∣∣∣∣∣∣∣∣
φP1 (x1) φP2 (x1) · · · φPN (x1)
φP1 (x2) φP2 (x2) · · · φPN (x2)

...
...

. . .
...

φP1 (xN ) φP2 (xN ) · · · φPN (xN )

∣∣∣∣∣∣∣∣
=

√
N! Â [φP1 (x1)φP2 (x2) · · · φPN (xN )]

= ∣∣φP1φP2 · · · φPN

∣∣, (A1)

where x = (x1, x2, . . . , xN ) are the electronic coordinates,
Â = 1

N!

∑
P∈SN

(−1)pP is the antisymmetrizer, Â2 = Â,
Â† = Â, SN is the symmetric group (group of permutations
of N objects), and P and p are a permutation and its parity,
respectively. These antisymmetric functions can be expressed
in an equivalent way with the SQ formalism.

In SQ, the state of a system is expanded on a basis of
occupation states that specify, for each spin orbital in an
ordered list, if it is occupied by an electron or not. A state
in which spin orbitals 1, 3, 4, and 7 are occupied, for example,
is indicated by the ket |1, 0, 1, 1, 0, 0, 1, 0, 0, 0, . . .〉. The total
number of electrons in any such occupation state is given by
Ne = ∑

n ni, where ni are the occupation numbers. A state
with no electrons is represented by the so-called vacuum state,
|−〉 = |0, 0, 0, 0, . . .〉, 〈−|−〉 = 1. The space spanned by all
occupation-number states with finite number of electrons is
referred to as Fock space. To describe the action of arbitrary
observables in this space, it is convenient to introduce opera-
tors that rise or lower the occupancy of a given spin orbital.
The annihilation operator aP removes an electron from the
spin orbital P, if full, and annihilate the state otherwise. It acts
on an occupation-number state as

aP |k1, . . . , kP, . . .〉 = δkP 1 �k
P |k1, . . . , 0P, . . .〉, (A2)

where �k
P = (−1)k1+k2+···+kP−1 . The adjoint of aP, a†

P, adds an
electron to spin orbital P, if empty, and annihilate the state
otherwise,

a†
P|k1, . . . , kP, . . .〉 = δkP 0 �k

P |k1, . . . , 1P, . . . 〉. (A3)

Creation and annihilation operators satisfy the following well-
known anticommutation relations,

{aI , aJ} = {a†
I , a†

J} = 0, {a†
I , aJ} = δIJ . (A4)

The correspondence between first- and second-quantization
formalism is completed by a phase convention for the equiv-
alence between Slater determinants and occupation-number
states. Here, we adopt the following convention:∣∣φP1φP2 · · ·φPN

∣∣ ↔ a†
P1

a†
P2

· · · a†
PN

|−〉. (A5)

a. Operators in second-quantization formalism

In first quantization, the definition of one-body operators,
〈x|Ô|x′〉 = ∑Ne

i=1 o(xi; x′
i ), and of the two-body Coulomb re-

pulsion operator, 〈x, x′|Ĝ|x, x′〉 = ∑
i, j<i |�ri − �r′

j |−1, depend
explicitly on the number of particles in the system. In SQ, on
the other hand, these operators do not explicitly depend on the
number of electrons, which is a major advantage,

Ô =
∑
RS

oRSa†
RaS, (A6)

Ĝ = 1

2

∑
PQRS

[PQ|RS] a†
Pa†

RaSaQ, (A7)

where

oRS =
∫∫

dx dx′ φ∗
R(x)o(x, x′)φS (x′),

[PQ|RS] =
∫∫

dx dx′ φ∗
P(x)φQ(x) φ∗

R(x′)φS (x′)
r12

.

In ASTRA, we need to evaluate matrix elements of strings
of creation and annihilation operators between states |A〉 and
|B〉 with well-defined spin, SA, SB, and spin projections, �A,
�B, respectively. To this end, it is convenient to expand the
operators in spherical tensors OT τ , and make use of Wigner-
Eckart theorem,

〈
A�A

∣∣OT τ

∣∣B�B

〉 = CSA�A
SB�B,T τ√
2SA + 1

〈A‖OT ‖B〉, (A8)

where Ccγ
aα,bβ are Clebsch-Gordan coefficients and 〈A‖OT ‖B〉

is a reduced matrix element [95]. To treat spin tensors OT τ

consistently, it is necessary to adopt the convention on the
phase imparted to these operators by the ladder spin operators,

[Ŝ±,OT τ ] =
√

T (T + 1) − τ (τ ± 1)OT τ±1,

[Ŝz,OT τ ] = τ OT τ , (A9)

where the rising and lowering operators Ŝ± = Ŝx ± iŜy are
related to the spherical tensor component of spin through
Ŝ± = ∓√

2S±1. The convention in (A9) is consistent with
[160] [see Eq. (2.3.1)], as well as with [95] [see Eq. (1) in
ch. 3].

For each orbital p, the two creation operators a†
pπ

, with
π = ± 1

2 , comply with the phase conventions (A9), whereas
the adjoint operators apπ

≡ (a†
pπ

)† do not. For this reason, it
is convenient to define a second set of tensors operators b†

pπ

and bpπ
,

b†
pπ

= a†
pπ

, bpπ
= (−1)

1
2 +πap−π

, (A10)

which satisfy (A9), as well as the convention

(bpπ
)† = (−1)

1
2 +πb†

p−π
. (A11)

Two spherical tensors AT τ and BJμ can be coupled to a rank-K
tensor as

[AT ⊗ BJ ]Kκ ≡
∑
τμ

CKκ
T τ,Jμ AT τ BJμ. (A12)
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Conversely, the product of two spherical tensors can be ex-
panded in spin-coupled products

AT τ BJμ =
∑
Kκ

CKκ
T τ,Jμ[AT ⊗ BJ ]Kκ . (A13)

In particular,

a†
Pa†

Q = a†
pπ

a†
qθ

= b†
pπ

b†
qθ

=
∑
T τ

CT τ
1
2 π, 1

2 θ
[b†

p ⊗ b†
q]T τ ,

a†
Pa†

Qa†
R =

∑
JμT τ

CJμ
1
2 π,T τ

CT τ
1
2 θ, 1

2 ρ
[b†

p ⊗ [b†
q ⊗ b†

r ]T ]Jμ. (A14)

These expressions, when used in combination with Wigner-
Eckart’s theorem, allow us to compute matrix elements for
arbitrary values of n spin magnetic quantum numbers from
selected matrix elements in which two of those n quantum
numbers are fixed,

〈A‖OT ‖B〉 =
√

2SA + 1

CSAM
SBM,T 0

〈AM |OT 0|BM〉. (A15)

This step is essential for the current ASTRA implementation,
which relies on quantum-chemistry calculations that consider
a single well-defined spin-projection M at a time. For tensors
with an equal number of creation and annihilation operators,
with T = 0, 1, 2, it is always possible to find an M such that
CSBM

SAM,T 0 �= 0. Notice that

[bp ⊗ bq]T τ = (−1)1−T [bq ⊗ bp]T τ ,

[b†
p ⊗ b†

q]T τ = (−1)1−T [b†
q ⊗ b†

p]T τ . (A16)

APPENDIX B: TRANSITION-DENSITY MATRICES

ASTRA evaluates matrix elements within a CC space ob-
tained by augmenting a given set of multiconfiguration ionic
states with arbitrary single-electron functions. To this end,
it is convenient to define the first-, second-, and third-order
transition-density matrices (TDMs) as the matrix elements
between ionic states of strings containing one, two, or three
creator operators followed by an equal number of annihilation
operators (normal order),

ρBA
QP = 〈A|a†

PaQ|B〉, (B1)

πBA
RS,PQ = 〈A|a†

Pa†
QaSaR|B〉, (B2)

γ BA
STU,PQR = 〈A|a†

Pa†
Qa†

RaU aT aS|B〉. (B3)

The rest of this section describes the coupling scheme used
in ASTRA to express these TDMs in terms of their reduced
counterpart.

b. Inactive, active, and virtual orbitals.

In the expressions that involve TDMs between ionic states,
it is convenient to distinguish between: (i) inactive spin or-
bitals, which are identically represented in all of the ions, and
which we designate with the letters W , X , Y , Z; (ii) active
orbitals, i.e., those without a well defined occupation in the
CI of the ion; and (iii) virtual orbitals, which lie outside the
active space, and hence have zero occupation in all the ions.
Any TDM element with virtual-orbitals indexes, of course, is

zero. The matrix elements with inactive orbitals, which also
often vanish, admit simple expressions in terms of lower-order
density matrices. In particular,

ρBA
QX = ρBA

XQ = δABδXQ,

πBA
XS,PQ = πBA

SX,QP

= (1 − δXS )(1 − δPQ)
(
δPX ρBA

SQ − δQX ρBA
SP

)
,

πBA
RS,PX = πBA

SR,XP

= (1 − δRS )(1 − δPX )
(
δSX ρBA

RP − δRX ρBA
SP

)
,

πBA
RS,XY = πBA

XY,SR

= δAB(1 − δRS )(1 − δXY )(δSY δRX − δSX δRY ),

πBA
XP,Y Q = −πBA

XP,QY

= (1 − δXP )(1 − δY Q)
(
δXY ρBA

PQ − δQX δPY δAB
)
,

πBA
XY,ZQ = δAB(1 − δXY )(1 − δZQ)(δXZδQY − δQX δY Z ).

These formulas allow us to incorporate the two-body inter-
actions with the electrons in the core orbitals in effective
one-body operators.

c. Reduced transition-density matrices

The quantum chemistry code LUCIA does not provide arbi-
trary TDM elements, since it restricts the total spin projection
to be the same for the two ions. However, within this con-
straint, LUCIA does provide a sufficient number of independent
matrix elements to reconstruct all the others by means of
the Wigner Eckart theorem (WE). To take advantage of this
theorem, it is necessary to cast the string of operators involved
in the TDM in terms of well-defined spin tensors. As dis-
cussed in the previous section, the first step to use creators and
destructor operators consistently with the phase conventions
for spherical tensors, we have to express them in terms of the
b and b† operators. Subsequently, we can apply WE to express
any TDM elements in terms of reduced matrix elements of its
tensorial components.

In the case of the one-body TDM,

ρBA
QP = (−1)

1
2 −θ 〈A|b†

pπ bq−θ |B〉
= (−1)

1
2 −θ

∑
T τ

CT τ
1
2 π, 1

2 −θ
〈A|[b†

p ⊗ bq]T τ |B〉

= (−1)
1
2 −θ

�SA

∑
T

RBA
[q,p]T

∑
τ

CT τ
1
2 π, 1

2 −θ
CSA�A

SB�B,T τ (B4)

where �ab··· = √
(2a + 1)(2b + 1) · · · and we have intro-

duced the notation RBA
[q,p]T

to designate the reduced one-body
TDM,

RBA
[q,p]T

= 〈A‖[b†
p ⊗ bq]T ‖B〉. (B5)

To evaluate the reduced one-body TDMs from selected matrix
elements between states with the same spin projection, let
us consider the cases T = 0, 1 separately. For T = 0, the
matrix RBA

[q,p]0
is nonzero only if the two ions have the same

multiplicity. For any value of their projection �A = �B, we
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can compute the reduced matrix element as

RBA
[q,p]0

=
√

SA + 1/2
∑

σ

ρBA
qσ pσ

. (B6)

For T = 1, the reduced matrix element is zero if both A and
B are singlet states. For parent ions with an odd number of
electrons, it is possible to compute RBA

[q,p]1
from the uncoupled

density matrix between the states with �A = �B = � = 1/2,

RBA
[q,p]1

=
√

SA + 1/2

CSA1/2
SB1/2,10

(
ρBA

qα pα
− ρBA

qβ pβ

)
. (B7)

For parent ions with an even number of electrons, the matrix
element between ions with different spin can be computed
choosing �A = �B = � = 0 (which is required if one of the
two spin is zero). For parent ions with the same, nonzero spin,
however, it is necessary to use any other spin projection (e.g.,
�A = �B = � = 1)

RBA
[q,p]1

=
√

SA + 1/2

CSA�
SB�,10

(
ρBA

qα pα
− ρBA

qβ pβ

)
. (B8)

In the two-body TDM, we first couple the spin of the two
creation operators and those of the two annihilation operators
to a total spin T = 0, 1 and J = 0, 1, respectively. These are
subsequently coupled to a total spin K = 0, 1, 2,

πBA
RS,PQ = −(−1)−σ−ρ〈A|b†

pπ b†
qθ bs−σ

br−ρ
|B〉

= −(−1)−σ−ρ�−1
SA

∑
JT K

ΠBA
[[sr]J ,[pq]T ]K

×
∑
μτκ

CSA�A
SB�B,KκCKκ

T τ,J−μCJ−μ
1
2 −σ, 1

2 −ρ
CT τ

1
2 π, 1

2 θ
(B9)

where the reduced matrix element ΠBA
[[sr]J ,[pq]T ]K

is

ΠBA
[[sr]J ,[pq]T ]K

= 〈A‖[[b†
p ⊗ b†

q]T ⊗ [bs ⊗ br]J ]K‖B〉.
As shown in (A16), spin-coupled electron pairs anticommute
or commute depending on whether they form a singlet or a
triplet, respectively, which implies the following permutation
symmetries:

ΠBA
[[sr]J ,[pq]T ]K

= (−1)J+1ΠBA
[[rs]J ,[pq]T ]K

= (−1)T +1ΠBA
[[sr]J ,[qp]T ]K

= (−1)J+T ΠBA
[[rs]J ,[qp]T ]K

. (B10)

The two-body reduced matrix elements have the following
expression in terms of TDMs between states with the same
spin projection �A = �B = �,

ΠBA
[[sr]J ,[pq]T ]K

= (−1)J�SA

CSA�
SB�,K0

∑
πθσρτ

(−1)τ

× CK0
T τ,J−τCJτ

1
2 σ, 1

2 ρ
CT τ

1
2 π, 1

2 θ
πBA

rρsσ ,pπ qθ
.

Finally, the coupling scheme for the 3B-TDM is

γ BA
STU,PQR = ζ 〈A|b†

pπb†
qθ b†

rρbu−υ
bt−τ

bs−σ
|B〉

= ζ

�SA

∑
CDFJK

ΓBA
[[[ut]F s]J ,[[pq]C r]D]K

×
∑

γ δϕμκ

CCγ
1
2 π, 1

2 θ
CDδ

Cγ , 1
2 ρ

CFϕ
1
2 −υ, 1

2 −τ

×CJμ

Fϕ, 1
2 −σ

CKκ
Dδ,JμCSA�A

SB�B,Kκ (B11)

where ζ = (−1)−1/2−υ−τ−σ and

ΓBA
[[[ut]F s]J ,[[pq]C r]D]K

= 〈A‖ [[[b†
p ⊗ b†

q]C ⊗ b†
r ]D ⊗ [[bu ⊗ bt ]F ⊗ bs]J ]K‖B〉.

(B12)

APPENDIX C: MATRIX ELEMENTS
BETWEEN CC STATES

This Appendix derives the overlap as well as the matrix
elements of one-body and two-body operators between CC
states, without and with spin adaptation. The evaluation of
each of the relevant matrix elements between CC states starts
with the reduction of the corresponding operator string.

1. Overlap

The CC states are generally not orthogonal, so it is neces-
sary to evaluate their overlap,

〈A, P|B, Q〉 = 〈A|aPa†
Q|B〉. (C1)

In normal form, the string of operators is

aPa†
Q = SPQ − a†

QaP, (C2)

where SPQ = 〈P|Q〉, and hence

〈A, P|B, Q〉 = 〈A|aPa†
Q|B〉 = SPQδAB − ρBA

PQ. (C3)

The CC states built from internal active orbitals, therefore, in
general are not normalized,

〈A, P|A, P〉 = 1 − ρAA
PP . (C4)

Using (C3) and (11), we obtain the expression for the overlap
between SACC states,

〈A, p|B, q〉 =
∑

�A�Bπθ

CS�

SA�A, 1
2 π

CS�

SB�B, 1
2 θ

(
Spqδπ,θ δAB − ρBA

pπ qθ

)

= δABSpq −
∑

�A�Bπθ

CS�

SA�A, 1
2 π

CS�

SB�B, 1
2 θ

ρBA
pπ qθ

.

Summing the Clebsch-Gordan coefficients, we can rewrite the
overlap as

〈A, p|B, q〉 = δABSpq + W BA
pq ,

where

W BA
pq = η

∑
T

RBA
[p,q]T

�T

{
T 1/2 1/2
S SB SA

}
,

and η = (−1)SB−1/2+S .

2. One-body operators

The matrix element between CC states of a generic spin-
free one-body operator is

〈A, P|Ô|B, Q〉 = oRS〈A|aPa†
RaSa†

Q|B〉, (C5)
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where summation over repeated magnetic quantum numbers
and orbital indexes is implied. In normal form, the operator
string reads

aPa†
RaSa†

Q = δPRδQS + SPQa†
RaS − δPRa†

QaS

− δQSa†
RaP + a†

Qa†
RaPaS, (C6)

and hence the matrix element becomes

〈A, P|Ô|B, Q〉 = oPQ δAB + SPQ OAB

− oPS ρBA
S,Q − ρBA

P,R oRQ + oRS πBA
SP,QR

where OAB = 〈A|Ô|B〉. Notice that we can evaluate OAB

within ASTRA starting from the one-body TDM provided by
LUCIA. Such one-body spin-free operator vanish unless �A =
�B,

〈A|Ô|B〉 = ors〈A|a†
rσ asσ |B〉 = orsρ

BA
sσ rσ

. (C7)

Since the two spin projections coincide, the expression for ρ

becomes

ρBA
sσ rσ

=
∑

T

RBA
[s,r]T

�SA

∑
τσ

(−1)
1
2 −σCT τ

1
2 σ, 1

2 −σ
CS�

S�,T τ

=
∑

T

CS�
S�,T 0RBA

[s,r]T

�SA

∑
σ

(−1)
1
2 −σCT 0

1
2 σ, 1

2 −σ

= RBA
[s,r]0√
2 �SA

.

We introduce here the quantity

QBA
sr =

√
2 RBA

[s,r]0

�SA

(C8)

with which

〈A|Ô|B〉 = ors
�−1

SA√
2

RBA
[s,r]0

= orsQ
BA
sr /2. (C9)

The extra factor of 2 in the definition of QBA
rs is the legacy

of an arbitrary convention. As shown further down, QBA
rs is

contained also in the expression of two-body operators, where
it appears without prefactors.

It is now possible to obtain the expression for the matrix
element between SACC states. After some straightforward
recoupling of tensor operators and contraction of Clebsch-
Gordan coefficients, one finds

〈A, p|Ô|B, q〉
= Spq OAB + opq δAB

+ η
∑

T

(
RBA

[p,r]T
orq + opsRBA

[s,q]T

)
�T

{
T 1/2 1/2
S SB SA

}

+ η ors

∑
KT J

(−1)J+K ΠBA
[[ps]J ,[qr]T ]K

�KT J

×
{

SA K SB

1/2 S 1/2

}{
J T K

1/2 1/2 1/2

}
. (C10)

We can condense the notation by using the tensor W BA
pq intro-

duced above, and the new tensor

PBA
ps,qr = η

∑
KT J

(−1)J+KΠBA
[[ps]J ,[qr]T ]K

�KT J

×
{

SA K SB

1/2 S 1/2

}{
J T K

1/2 1/2 1/2

}
, (C11)

with which the matrix element becomes

〈A, p|Ô|B, q〉 = Spq OAB + opq δAB

+W BA
pr orq + ops W BA

sq + ors PBA
ps,qr .

(C12)

The orbitals used to augment the ions do not include inac-
tive orbitals. As a consequence, the summation over the orbital
indexes in the third and fourth term can be restricted to the
active orbitals only. On the other hand, inactive orbitals do
give a contribution to the fifth term, which can be expressed
in terms of one-body density matrices. By explicitly indicat-
ing the summation over orbitals indexes, and labeling with a
prime the sums over active orbitals only, the result reads

〈A, p|Ô|B, q〉 = Spq OAB + opq δAB + 〈O〉core W BA
pq

+
∑

r

′(
W BA

pr orq + oprW
BA

rq

) +
∑

rs

′
orsP

BA
ps,qr,

(C13)

where 〈O〉core = 2
∑

x oxx. Notice that only when both ions
are augmented by an active internal orbital do all terms in
the expression contribute to the matrix element. If one of the
two orbitals is external, only one of the terms involving the B
tensors survive. If both orbitals are external, only the first two
terms survive.

3. Two-body operators

The matrix element of a two-body spin-free operator be-
tween CC states is

〈A, P|Ĝ|B, Q〉 = 1
2 [TU |RS]〈A|aPa†

T a†
RaSaU a†

Q|B〉. (C14)

A term on the right-hand side vanish, of course, unless the
spin projections of T and U , and of R and S coincide. For the
sake of clarity, however, we do not split the orbital and spin
indexes yet. In normal form, the operator string reads

aPa†
T a†

RaSaU a†
Q

= δPRδQS a†
T aU − δUQδPR a†

T aS

− δT PδQS a†
RaU + δT PδUQ a†

RaS

+ δPR a†
T a†

QaU aS + δQS a†
T a†

RaU aP

− δPQ a†
T a†

RaU aS + δUQ a†
T a†

RaPaS

+ δT P a†
Qa†

RaU aS + a†
T a†

Qa†
RaU aPaS. (C15)

The general expression for the matrix element, considering
that the operator is spin free, becomes

〈A, P|Ĝ|B, Q〉
= GABSPQ + δπθ [pq|rs]ρBA

sρ ,rρ
− [ps|rq]ρBA

sπ ,rθ
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+ [pt |rs]πBA
tπ sρ ,rρqθ

+ [qt |rs]πBA
pπ sρ ,rρ tθ

− 1
2 [tu|rs]γ BA

uτ sρ pπ ,tτ rρqθ
. (C16)

We can now obtain an expression for the matrix element of the
two-body operator between SACC states. The full expression
of the result is not only lengthy to derive but also rather long.
Luckily, as in the case of the overlap and of the one-body op-
erators, it is possible to express it in condensed form with the
help of ad hoc auxiliary tensors. We have already defined three
of these tensors, QBA

sr , W BA
rs , and PBA

rs,tu. It is now convenient to
define

CBA
psu,trq = η

2

∑
CDFJK

(−1)K+D+C−1/2 �CDFJK

×
{

SA K SB

1/2 S 1/2

}{
J C 1/2

1/2 K D

}{
C 1/2 J
F 1/2 1/2

}

× ΓBA
[[[ps]F u]J ,[[tr]C q]D]K

. (C17)

After making the necessary contractions, the total electron-
electron repulsion matrix element between SACC states can
be rewritten as

〈A, p|Ĝ|B, q〉 = Spq GAB + [pq|rs] QBA
sr + [ps|rq]W BA

sr

+ [pt |rs] PBA
ts,qr + [qt |rs] PBA

ps,tr

+ [tu|rs]CBA
psu,trq. (C18)

Notice that the last term involving the third-order TDM needs
to be evaluated exclusively when both ions are augmented
by an active ionic orbital. Since in this case all the orbitals
involved are GTOs, the matrix element is most conveniently
evaluated within the LUCIA Quantum Chemistry code, which
also computes the TDMs.

4. Hamiltonian matrix elements

As in the case of the monoelectronic operators, it is conve-
nient to factor out the contribution of the inactive orbitals in
the two-body matrix element. In doing so, it will emerge that
the core orbitals contribute to the interelectronic repulsion as
an effective one-body potential. The most natural context to
separate effective one-body and two-body terms is in the eval-
uation of the full Hamiltonian, which we presently proceed to
carry out.

Here, we assume that the Hamiltonian is diagonal in the
ion basis, 〈A|H |B〉 = EAδAB. The matrix element of the total
Hamiltonian between SACC states then becomes

〈A, p|Ĥ |B, q〉 = δAB(SpqEA + hpq)

+W BA
pr hrq + hpsW

BA
sq + hrsP

BA
ps,qr

+ [pq|rs]QBA
sr + [ps|rq]W BA

sr

+ [pt |rs]PBA
ts,qr + [qt |rs]PBA

ps,tr

+[tu|rs]CBA
psu,trq. (C19)

All the summations over the ionic orbitals can be restricted
to the active orbitals only, provided that the monoelectronic
Hamiltonian hpq is replaced by an effective Hamiltonian h̃pq

that incorporates the Coulomb and exchange terms with the

core,

h̃pq = hpq + 2Jcore
pq − Kcore

pq , (C20)

where

Jcore
pq =

core∑
x

[pq|xx], Kcore
pq =

core∑
x

[px|xq]. (C21)

The total matrix element of the Hamiltonian reads

〈A, p|Ĥ |B, q〉
= δAB(SpqEA + h̃pq) + Ecore W BA

pq

+
∑

r

′(
W BA

pr h̃rq + h̃prW
BA

rq

) +
∑

rs

′
h̃rsP

BA
ps,qr

+
∑

rs

′(
[pq|rs]QBA

sr + [ps|rq]W BA
sr

)

+
∑
rst

′(
[pt |rs]PBA

ts,qr + [qt |rs]PBA
ps,tr

)

+
∑
turs

′
[tu|rs]CBA

psu,trq. (C22)

Notice that in this formulation, the matrix elements lend
themselves to an efficient implementation. The Hamiltonian
matrix elements between active channels can be computed by
the LUCIA program. In ASTRA, therefore, (C22) is used only
when at least one of the two augmented orbital indexes, p
or q, does not correspond to an active internal orbital. Let
us assume, therefore, without loss of generality, that q is a
virtual orbital (the case in which p is virtual and q is not
is obtained by Hermitian conjugation). The expression then
greatly simplifies to

〈A, p|Ĥ |B, q〉
= δAB(SpqEA + h̃pq)

+
∑

r

′
W BA

pr h̃rq +
∑

rs

′(
[pq|rs]QBA

sr + [ps|rq]W BA
sr

)

+
∑
rst

′
[qt |rs]PBA

ps,tr q ∈ VO. (C23)

If both p and q are virtual orbitals, the formula simplifies
further to

〈A, p|Ĥ |B, q〉 = δAB(SpqEA + h̃pq)

+
∑

rs

′(
[pq|rs]QBA

sr + [ps|rq]W BA
sr

)
.

(C24)

Owing to the compact support character of the spherical nu-
merical functions used to describe the N th electron at large
distances, and to the rapid decrease with r of any of the
GTO active orbitals used to build the ions, for all practical
purposes, the product of most of the former functions with
any of the latter is zero. The virtual orbitals with this property
are effectively external to the molecular region. If either p or
q is an external spherical orbital (ESO), then the expression
for the Hamiltonian simplifies even further. For example, if q
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is an ESO,

〈A, p|Ĥ |B, q〉 = δAB(SpqEA + h̃pq)

+
∑

rs

′
[pq|rs]QBA

sr q ∈ ESO. (C25)

Finally, if q is an AMO and p is an ESO, their supports are
effectively disjoint and hence the Hamiltonian matrix element
vanishes entirely.

a. Matrix elements between AC blocks

The evaluation with the TDMCC formalism of the Hamil-
tonian matrix elements between ionic states that are both
augmented by active orbitals requires the use of three-body
TDMs, which is both computationally and logistically de-
manding. For this reason, it is convenient to use auxiliary
matrix elements that are generated by the same code that
prepares the TDMs. LUCIA can generate elements of the form

〈A|aPĤa†
Q|B〉, (C26)

in which the ion and electron spins are not coupled. Once a
sufficient number of such independent matrix elements are
available, it is possible to extract the reduced matrix elements
of the associated singlet and triplet operators [bpĤb†

q]T τ , and
from these evaluate those between SACC states. Let us define

HAB
[p,q]T

≡ (−1)T +1〈A‖[bpĤb†
q]T ‖B〉

= (−1)T +1�−1
SA

∑
�A�Bπθτ

(−1)
1
2 −πCT τ

1
2 −π, 1

2 θ

×CSA�A
SB�B,T τ 〈A|aPĤa†

Q|B〉.
The reduced element HAB

[p,q]T
can be determined from the ma-

trix elements between states with a same (suitable) � = �A =
�B, and operators with the same spin projection, π = θ ,

HAB
[p,q]T

=
∑

θ

�SACT 0
1
2 θ, 1

2 −θ

(−1)
1
2 −θCSA�

SB�,T 0

〈A|aPĤa†
Q|B〉.

Notice that this is the same relation as the one between W BA
[q,p]T

and ρBA
qθ pθ

. Once the matrix elements HAB
[p,q]T

are available, the
Hamiltonian between SACC states can be shown to be given
by

〈A, p|Ĥ |B, q〉 = −η
∑

T

HAB
[p,q]T

�T

{
T 1/2 1/2
S SB SA

}
.

APPENDIX D: CIS MODEL

ASTRA was tested for consistency by comparison with a
CIS model, in which the configuration space comprises a sin-
gle determinant for the neutral ground state |K〉, as well as all
the single excitations |KP

A〉 = a†
PaA|K〉 (P �= A, 〈P|Q〉 = δPQ

∀P, Q). This space, of course, coincides with the CC space
generated by all the ions |A〉 = |KA〉 ≡ aA|K〉. All CIS states

are orthonormal,〈
KP

A

∣∣KQ
B 〉 = δPQδAB, 〈K|K〉 = 1,

〈
KP

A

∣∣K〉 = 0.

The matrix elements of arbitrary one-body and two-body op-
erators between such CIS states are readily determined with
Slater rules [161]. For monoelectronic operators,

〈K|Ô|K〉 =
∑
I∈K

oII = 〈Ô〉K, 〈K|Ô∣∣KQ
B

〉 = oAQ,

〈
KP

A

∣∣Ô∣∣KQ
B

〉 = δAB[δPQ(〈Ô〉K − oAA) + oPQ].

Let us introduce the notation 〈IJ||KL〉 = 〈IJ|KL〉 −
〈IJ|LK〉 = [IK|JL] − [IL|JK]. For the matrix elements be-
tween CIS states of the interelectronic repulsion then are

〈K|Ĝ|K〉 = 1

2

∑
I,J∈K

〈IJ‖IJ〉,

〈K|Ĝ∣∣KQ
B

〉 =
∑
I∈K

〈BI‖QI〉,

〈
KP

A

∣∣Ĝ∣∣KP
A

〉 = 1

2

∑
I,J∈KP

A

〈IJ‖IJ〉,

〈
KP

A

∣∣Ĝ∣∣KQ �=P
A

〉 =
∑
I∈K

〈AI‖QI〉 + 〈AP‖QP〉,
〈
KP

A

∣∣Ĝ∣∣KP
B �=A

〉 =
∑
I∈K

〈BI‖AI〉 + 〈BP‖AP〉,
〈
KP

A

∣∣Ĝ∣∣KQ �=P
B �=A

〉 = 〈BP‖AQ〉.
If the initial state is a closed-shell Hartree-Fock state, then
the expressions can be simplified into sums over the doubly
occupied orbitals. These results are sufficient to implement an
ad hoc code to test the accuracy of the results obtained with
the more sophisticated ASTRA code, in the CIS limit.

Thanks to its simplicity, the CIS approximation offers also
a way of testing the consistency of the phase conventions in
the interface between LUCIA and ASTRA. Indeed, within the
CIS approximation, the TDM have the following elementary
expressions

ρBA
QP = 〈K|a†

Aa†
PaQaB|K〉

= (1 − δAP ) (1 − δBQ) (δABδPQ − δAQδPB),

πBA
RS,PQ = 〈K|a†

Aa†
Pa†

QaSaRaB|K〉
= (1 − δAP )(1 − δAQ)(1 − δPQ)

× (1 − δBR)(1 − δBS )(1 − δRS )

× (δABδPRδQS − δABδQRδPS + δQBδARδPS

− δPBδARδQS + δPBδQRδAS − δQBδPRδAS ).
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