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1. Preliminaries <z> (=1)"(=2)
=7 % 4)

Throughout this paper we adopt the following set nota-

tions: No := {0} UN ={0,1,2,3,...}, and C repre-  we will also use the common notational product

sents the complex numbers. The rising factorial  conventions, g€ C, 1 €N, r € Ny, eag.,

(Pochhammer symbol) for a € C, n € Ny is given by

(DLMF, (5.24), (5.2.5)) (a), := (a)(a+1)---(@a+n—1). (ar, ....ar), = (a1)(@2) - () (5)

The gamma function (DLMF, Chapter 5) is related to the

risin:factorial, namely for a € (C\p— Ny, one has T, ....a) =T(@) - Ta). (©)
The generalized hypergeometric function (DLMF,

(@), = F(a+n)’ (1)  Chapter 16) is defined by the infinite series (DLMF,
I(a) (16.2.1))
which allows one to extend the definition to non-posi- a, ....a > (ay, ....a), 2"
tive integer values of n. Some other properties of rising 'Fs(bh ..., b 52) = Z (by, ---,bs)kﬂ' )
factorials which we will use are (n, k € Ny, n > k) k=0
(=1)"I'(a) where b; ¢ — Ny, for je{1,...,s}; and elsewhere
I'(a—n) = —a), (2) by analytic continuation. Further define Olver's
B '" (scaled or regularized) generalized hypergeometric
(=n), = & (3) series
(n —k)!

ay, ..., d, 1 aiy, ...,4,
One also has the following expression for the generalized rFs iz = Fs 4

. . . b1,...,b5 r(b11--~1b5) b1,...,b5
binomial coefficient for z € C, n € Ny (DLMF, (1.2.6))
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_ i (ar, ....ar), z_" @®
£~ T'(by +k, coabs k) K
which is entire for all a,b;eC, Ie{1,...,r},

j€{1,...,s}. Both the generalized and Olver's gen-
eralized hypergeometric series, if nonterminating, are
entire if r <s, convergent for |z| < 1if r=5s+1 and
divergent if r > s+ 1.

The Gauss hypergeometric function F; has many
useful and interesting properties. For instance it sat-
isfies several useful derivative relations which we will
rely upon. These are given by cf. (DLMF, (15.5.2),
(15.5.4), (15.5.6), and (15.5.9))

d 2oF; (alb;W

C

dn — a —C alb

— W (1 = W), ("‘C”f]_” ; w). (12)

The Jacobi polynomial and many of the other
special functions which we will study in this paper
are given in terms of a terminating Gauss hypergeo-
metric function. In particular, one of the most impor-
tant classical orthogonal polynomials, the Jacobi
polynomial, is defined as (DLMF, (18.5.7))

(o +1), —nn+ot+B+1
—"2F s

P00 = at1 2

n

(13)

2. Definitions and properties of the Jacobi
functions

Jacobi functions are complex solutions w = w(z) =
wf,“’B)(z) to the Jacobi differential equation (DLMF,
Table 18.8.1)

d’w dw

(1—zz)@Jr(B—a—z(ochBJrz))E (14)

+y(e+B+y+ 1w =0,

which is a second order linear homogeneous differen-
tial equation. Jacobi functions of the first and second
kind are solutions to the Jacobi differential Equation
(14) which are regular as |zl — 1 and |z|] — oo,

respectively. There are several important references for
Jacobi  functions such as  (Erdélyi,  Magnus,
Oberhettinger, & Tricomi, 1981, Section 10.8), and
(Durand, 1978; Durand, 1979; Flensted-Jensen &
Koornwinder, 1973; Koornwinder, 1984; Kuijlaars,
Martinez-Finkelshtein, & Orive, 2005; Szego, 1975;
Wimp, McCabe, & Connor, 1997).

2.1. The Jacobi function of the first kind

The Jacobi function of the first kind is a generaliza-
tion of the Jacobi polynomial where the degree is
no longer restricted to be an integer. In the follow-
ing section we provide some important properties
for the Jacobi function of the first kind.

2.1.1. Single Gauss hypergeometric representations
In the following result we present the four single
Gauss hypergeometric function representations of
the Jacobi function of the first kind.

Theorem 2.1. Let o, B,y € C such that oo +vy ¢ —N.
Then the Jacobi function of the first kind P(Y“’m:
C\(-o00, = 1] — C has the following single Gauss
hypergeometric function representations

PS&,B)(Z):F(Q+Y+1)2F _YIO(+B+'Y+1;1_Z
/ T(v+1) ot 2

(15)

CT(a+y+1)( 2 BF B-yout+y+11-2
T T+ \z+1) 2 o+ 2

(16)
_r(a+v+1)(z+1>YF —y, —B—y z—1
T OT(y+1) 2 )70 a4l 'z
(17)

_F(a+y+1)< 2 >ot+ﬁ+y+1
o T(y+1 z+1
(v+1) (18)
a+y+T,o+B+y+1 z-1
X 2F; — .
o+ 1 z+1

Proof. Start with (13) and replace the rising factorial
by a ratio of gamma functions using (1) and the fac-
torial n'=T(n+1) and substitute n+— yeC,
x — z. Application of Pfaff's and Euler's transforma-
tions (DLMF, (15.8.1)) provides the other three repre-
sentations. This completes the proof. O

One of the consequences of the definition of the
Jacobi function of the first kind is the following spe-
cial value:

F(a4+7y+1)

(o B) —
Pt () TCla+1T(y+1)" (19)

where oo + v ¢ — N.



2.2. The Jacobi function of the second kind

Studies of the Jacobi function of the second kind
o§°"3> traditionally used a degree y which was inte-
ger valued (see for instance Szegd, 1975, §4.61).
However, in this paper we treat the Jacobi function
of the second kind where y is not necessarily
restricted to be an integer. In the following material
we provide some important properties for the Jacobi
function of the second kind.

2.2.1. Single Gauss hypergeometric representations
Below we give the four single Gauss hypergeometric
function representations of the Jacobi function of
the second kind.

Theorem 2.2. let v,0,8,z€C  such  that
oa+v,B+v ¢—N. Then, the Jacobi function of the
second kind Q§°"B ) C\[-1,1] — C has the following
single Gauss hypergeometric function representations

P04y + DI +7+1)
(Z _ 1)ot+7+1 (Z + 1)[3

L (YR 2
"N a+Bpr2y+21-2

2P (o +y+ IR+ +1)
- (Z _ 1)0(+B+“/+1

<B+y+1,a+ﬁ+y+1 2 )
2F; )

QP (2) :=

Y

(20)

o+ B+2y+2

2P (o y+ DIB+y+ 1)
- (z_.l)u(z+1)[3+y+1
‘o <y+1,[3+y+1_ 2 > =
a+pB+2y+2'1+z
2T e+ y+ OB+ + 1)
(z+1)o¢+ﬁ+y+1

F at+y+lo+P+y+1 2
a a+pB+2y+2 '

Proof. Start with (Erdélyi et al, 1981, (10.8.18)) and let
n— vyeC and x — z. Application of Pfaffs and
Euler's transformations (DLMF, (15.8.1)) provides the
other three representations. This completes the proof.

The Jacobi function of the second kind Q(YQ’B):
C\[-1,1] — C has the following integral representa-
tion (Szegd, 1975, (4.61.1))

1
QP (7) =
e 21 (z=1)*(z+ 1)

(=t )P
* L z-1)'"
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provided R(a+7v),RP+v) >-1 Wimp et al,
1997, (2.5)). We will use this integral representation
to derive an alternative integral representation for
the Jacobi function of the second kind.

Theorem 2.3. Llet ke Ny, o,B,v,z€ C such that

z ¢ [-1,1]. Decompose y =08+ k, where &=y —k.
Then, the Jacobi function of the second kind Q(°‘B
C\[-1,1] — C has the following integral representa-
tion

(=1 k!
21K (=) (z=1)* (2 +1)°

—k —k
" r (1 —t)wy (1 + t)BH P(oHry—k, B+y—k)<t) dt
y—k+1 k :

-1 (z—1)

Q- B)( z) =

Y

(25)

Proof. Start with (24) and decompose y such that it
is written as some complex number ¢ added to a
non-negative integer k, v = 6 + k with k € Ny, this
produces

1

QB (7)) = —
Y ( ) 26+k+1(z_1)01(z+1)[3
1 o4k B+-+k
(1-1) (1+1)
X J_1 - t)8+k+1 dt. (26)

Along the lines of the derivation of (Szegd, 1975,
(4.61.4))

1
2z-1)%z+1)P
J1 (1-0*(1+0)°
X s —
-1 z—t
proceed by integrating (26) by parts k-times with the
boundary terms vanishing and utilizing the

Rodrigues-type formula for Jacobi polynomials
(Koekoek, Lesky, & Swarttouw, 2010, (9.8.10))

A ) =

PR (t) dt, 7)

n

k
jtk (1 _ t)a+k(1 + t)b+k (28)

= (=1 211 = )71 + 1)’ (1),
with a=a+9, b=P+35. This completes the
proof. 0

The Jacobi function of the second kind has the
following raising and lowering operators (Ismail &
Mansour, 2014, Theorem 3.1).

Theorem 2.4. Let v,a, € C. Then
d (B-a—2z(a+B))

o Q(Ot B)( 7) = o st B) (2)
2 1) (e18-
B iZir1)OS/+11'B () (29)
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a+pP+y+1
= _%nyﬂ'ﬁhq)(z). (30)

Proof. We extend the proof given in (Ismail &
Mansour, 2014, Theorem 3.1) by replacing integer n
by complex y for the Jacobi functions of the second
kind. O

Theorem 2.5. Let n € Ny, o,B,v,z € C. Then

n

& E- 02

= (=2)"(y + 1),z = 1)*"(1 +2P"Q0 P ().
(31

Proof. Start with the n=1 case. Taking into account
(30) and (29) one obtains

(1- Z)—oc+1(1 +Z)—[3+1 %(1 _Z)ot(-l +Z)BQ§,&’B>(Z)

= (1-2) AP + (B~ (a4 PR (@)

=2(y+1)Q"7 "V (2).

From the above expression, a straightforward calcu-
lation allows us to obtain the general n integral
case. O

Starting from Theorem 2.5 we can obtain a multi-
derivative representation of the Jacobi function of
the second kind.

Corollary 2.6. Let neNy, o,B,v€C such that
a+v,B+v ¢—N. Then
1
QWP (z) =
Y n(_ 1\ p
L),z ) )
% o (Z _ ’I)EHn(Z—i— 1)ﬁ+no§oj7n,[3+n)(z).

Proof. Starting with Theorem 2.5 and mapping
(v, B) = (y—n,0+n,B+n) completes the
proof. O

3. Multi-integral representations for the
Jacobi functions

In this section we derive multi-integral representa-
tions for the Jacobi functions of the first and second
kind. First we will derive a useful lemma.

Lemma 3.1. Let n,r e No,a,x € C, weC, and let
f X be a function such that

PITRY
dz (2) =

where kw € C*. Then the following identity holds:

where 1 = (1,1,...,1)eC.

The proof of this result is analogous to the one
given in (Cohl & Costas-Santos, 2020, Lemma 2.3).

3.1. The Jacobi functions of the first kind

Theorem 3.2. let ne Ny, o,B,v€C, such that
oty ¢&—-N Ro, RB > -1, (—-v), #0,

z € C\(—o0, — 1]. Then

[ [ = wra s wen o) cawy

z

(=1) (1 =21+ )PP B (Z) . (34)

Proof. Considering the n=1 case of (35) and then inte-
grating produces the following definite integral

r (1=w)*(1 +w)PP*P (W) dw

z

_ z)ot-H (.I +Z)B+1P,§/d_<f|»1lﬁ+1)(z).

1

2y
Iterating the above expression n-times completes
the proof. O

The Jacobi function of the first kind obeys the fol-
lowing multi-derivative identity.

Theorem3.3. Let n € Ny, 0, B,v € C, z€ C\(-o0, —1].
Then

n

d . .,
o (1-2°0 +2)PPP (2)

= (=2)"(r+1),(1 =2 " (1 42PN 2).

(35)
Proof. Starting with (12), (15), one has
1—-z d d
and from this, we derive
_n N a+b—c a'b. 1-z
dzn(1 2" (1+2) 2F1< o >
— (_z)n(1 _z)c—n—1(1 +z)a+b—c—n (37)

a—-nb-n 1-z
><2F1< c—n ,—2 )

Substituting the Gauss hypergeometric function (15)
into the above expression completes the proof. O



Theorem 3.4. Let neNy, o,B,vy€C, such that
a+y¢-N, Rla+p+vy)<-n Ry>n-1,
z € C\(—o0, — 1]. Then

JOO...JOO (1=w)*(1 + W)BP(Y%B)(W) (dw)"

z z

= (1 =271+ 2)P"Pin B (z). (38)
n

Proof. Considering the n=1 case of (35), taking into
account the constraints considered in the statement and
then integrating produces the following improper inte-
gral:

o0

J (1 =w)*(1 +w)PPP (w) dw

z

1

=5 — 2" (14 2P PP (),

v—

Iterating the above expression n-times completes
the proof. O

Theorem 3.5. Let neNy, o,B,y€C, zeC\(-o0, —1].
Then

dn
dz"

(1-2)PP)(2) = (—a=1),(1-2)" "PE" 0 2),
(39)

Proof. Adopting (37) and utilizing the Gauss hyper-
geometric representation (16) completes the proof.

Theorem 3.6. Let n € Ny, o,B,v € C, with Ro > —1,
z € C\(—o0, — 1]. Then

1 1

J J (1= w)*PPl(w) (dw)"

z z in (40)

_ (1 _Z) i P(a+n,B—n)(z)
(a+vy+1), 7 ’

Proof. Considering the n=1 case of (39) and then
integrating produces the following definite integral

r (1 W)a (a'B)(W) dw = MP(O&LB—T)(Z)
z ! oty +1 7 )

Iterating the above expression n-times completes
the proof. O

Theorem 3.7. Let n €Ny, o,p,veC, with

R(a+7v) <-n R(P+v)>n-12z€C\(~c0, — 1]
Then
JOO . ro (1= w)*P Pl (w) (dw)"
z z atn (41)
_ (=2 inpm (2).
(o+y+1), 7
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Proof. Considering the n=1 case of (39), taking into
account the constraints considered in the statement
and then integrating produces the following
improper integral:

00 1— o+1
J (1 =w)*P>P(w) dw = a-2" P+l B=1)(z),
5 v a+y+1 7

Iterating the above expression n-times completes
the proof. O

Theorem 3.8. Let neNy, o,B,y€C, zeC\(—o0,—1].
Then

n

(1+2)° PP (z)

= (21)(=B=7),(1+2) P 2),

dzn (42)

Proof. Adopting (37) and utilizing the Gauss hyper-
geometric representation (16) completes the proof. O

Theorem 3.9. Let neNy, o,BveC, with
RPBP+7y)<-n, Ro+y)>n-1, z€ C\(-o0, —1].
Then

JOC e JOC (1+w)’ PP (w) (dw)"

~1)"(1 2",
m"i " (2).

Proof. Considering the n=1 case of (42), taking into
account the constraints considered in the statement
and then integrating produces the following
improper integral:

o —(1+2)
J (1+w)PPP (w) dw = ﬁpy—"ﬁm(z).
z

Iterating the above expression n-times completes
the proof. O

Theorem 3.10. Let
z € C\(—o0, = 1]. Then

neNg, o B, ve€C,

dn
B) oy o B
@Pf/“ 2)=27"(a+B+y+1),P"P (). (44)

Proof. Starting with (9) and using (15), (36) com-
pletes the proof. O

Theorem 3.11. Lett neNpopvyeC with
a+v ¢&—-N, ze C\(—o0, — 1]. Then

J1 J1 psur P (w) (dw)"

z z

2" F(o+y+1)(1-2)""

_ plo=n. p=n) (2) +

(—a—B-y), " (n=1)! o+ B+7)T () (y +2)
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X 3F
32<Y

Tt y+1)(1-2)" (—y,a+B+y+1,1'1 —z)

—n,1—0o, 1 2
AP P 45
+2,1—a—l3—v’1—z) 43)

T T(a+ D)y + ! >?2 at+l,n+1 2
(46)

Proof. Considering the n=1 case of (44) and then inte-
grating using (19) produces the following definite inte-
gral

_ 2 F(OH‘“/“‘”_ (0—1,B-1) )
_a+B+v<F(d)F(v+2) Pra™ @)

Iterating the above expression n-times, reversing the
order of the sum and utilizing standard properties of
rising factorials such as (1)-(3) results in the term
involving the terminating generalized hypergeomet-
ric 3F, series. The term involving the Jacobi function
of the first kind is clear. The second identity is a dir-
ect consequence of Lemma 3.1. This completes the
proof. |

Remark 3.12. Taking into account Lemma 3.1 as
well as the previous result and then setting
(o, B,Y) — (oo+n,B+n,y—n), one obtains the fol-
lowing identity for the Taylor series of the Jacobi
function of the first kind of order n - 7 at z=1:
(z-1)f

k!

n—1 dk (@)

_P«al (Z)‘z:1
k:Odzk Y
CTa+y+1)I(—a—-B-7) (z—1>”"
N C(a+n)(n—1)! 2

1-n1—o-n,1 2
x sF : ’ ). @7
32<y—n+2,1—oc—[3—y—n’1—z> “47)

Theorem 3.13. Letn € Ny, o,,v € C, with Ry < —n,
R(a+P+7v)>n—1, z€ C\(-o0, — 1]. Then

r . r (1+w)P PP (w) (dw)"
- 2" (a=n, B-n) 8)
~pop, @

Proof. Considering the n=1 case of (44), taking into
account the constraints considered in the statement
and then integrating produces the following improper
integral:

o0
-2
PP (1) dy — plo=16-1) )
L T WA=yt @

Iterating the above expression n-times completes
the proof. O

If we consider the different hypergeometric rep-
resentations for the Jacobi function of the first
kind (15)-(18) and applying the derivative relations
(9)-(12) one obtains the following alternative
result.

Theorem 3.14. Let neNg o, B veC, with
a+vy ¢—-N, ze C\(-o0, —1]. Then

{(z —1)? ;ﬂ (z = 1) PPl B (z)

= (@ B+y+1),(z— 1) PR ),

(49)
9] ey = (C Va g
|:(Z 1) dZ:| (Z— —I)Y Py (Z) (Z— .I)y—n Py—n (Z)’
(50)
[(z— 1)2%} (z+1)Pz=1) PR (2)
=2"(y+ 1)n(z + 1)B—n(z _ 1)u+“/+1+npffig—n)(z)l
(51)
-] e 2
n +1 B " o, p—n
=2 (_B_ )n (iz 1)[2_"_” w(/ p )(Z)

Proof. First consider the n=1 case. Start with the
representation (15) multiply it by (z—1)*"*™"" and
apply the derivative relation (9), to obtain
d oa+B+y+1 p(o, B)
(=P )
_ o+B+y po, f+1
=(a+B+y+1)(z-1) PP (z).

Multiplying the expression by (z— 1) and iterating the
identity produces (49). By repeating an analogous pro-
cess for the expressions (16)—(18), the result follows.

As a consequence of this result, we have the fol-
lowing derivative relations.

Corollary 3.15. Let n € Ny, o,,7,z € C. The follow-
ing identities hold:

dl]” Y
|:(Z+ 1)2&] (Z+ 1) +B+Y+1P§a,ﬁ)(z)

— (a+ B"' 'Y+ 1)n(z—|— 1)u+B+Y+1+nPS’,a+n'B)(Z),

{(z +1)° jz] ﬁ pf/u, B (z)

— (1 + B+ Y- n)n P(OH—n,B)(z)’ (54)

PR



[(z +1)° %} (z=1)*(z+1)PTPB (2)

(55)
=2 (v + 1),z = 1) "2+ )R ),
2 d}n Z=1" Jap
|:(Z + 1) dZ (Z + 1)0HFY PY (Z)
n (Z _ —I)O(—n oy ’B
=(-2)"(-a— Y)HWP‘(/ B (7). (56)
Proof. By starting with (12) using
z—1 d (z+1)°d
=, _— = —_—, 7
v z+1 dw 2 dz 57)

and substituting in (15)-(17) and (18) in an as we
did in the Theorem 3.14, one obtains the above
expressions which completes the proof. O

We are also able to obtain some interesting
Rodrigues-type relations for Jacobi polynomials.

Corollary 3.16  (Rodrigues-type  formula). Let
n € Ny, o, B,z € C. The Jacobi polynomial admits the
following Rodrigues-type relation:

1

pB) (2) =
n 2” | _ o B+n+1
ni(z-1) (z—ri)—1) (58)
X [(z+ 1)2£} (z—1)""(z 4 1)F
1 1
Tl _ 1\otn B
ni(z-1) (z+1) (59)

x [(z— 1)2ddz] (z—=1)*z+ 1),

Proof. Setting y — 0 and B +— B+n in (51) the
first identity follows. Setting v — 0 and o — B+n
in (55), the second identity follows. O

Theorem 3.17. Let neNg, oBveC with
a+vy ¢ —N, ze C\(—oc, — 1]. Then one has the fol-
lowing multi-integral representations for the Jacobi
function of the first kind:

JZ - J (w = 1) PR () (w = 1)72 ]

1 1

n

o+B+Hy+1-n
_ (Z — 1) Pfu, B—n)(z),
(a+B+y=n+1), 7

(60)
[ w0 =1y e ) [ = 1) ]

1
_(z+ NP (z — 1) Pl ()

(61)
JZ = J (w =1+ PR () [(w 1) ]

1
+ +y=n-+1
_ (Z— .I)cx "(Z+ 1)[3 y=n Pg(iﬁn,ﬁ)(z),

2n(,y_n+ 1>n
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W=D e 5 n
J] J1 (W_|_-|)OC+‘/PY (W) |:(W—|—'|) dW:|
o+n (63)
= (Z - 1) plo+n. B) (Z),
(Ve y),(z + 1)

where R +P+v+1)>n  Ra+y+1)>n,
R(a+n) > 0,R(a+ n) > O, respectively.

Proof. Consider the n=1 case of (49) and then inte-
grate both sides using the fundamental theorem of
calculus. This produces the following definite inte-
gral

Z
J (w = 1) PTPEB () (W= 1) dw
1
o+B+y+1
— (Z_ 1) P(oc, B_U(Z).
a+B+y 7
Iterating the above expression n-times completes
the proof. The process for the remaining cases, i.e.,
for the cases starting with (51), (55), and (56), is simi-
lar and we will omit their proofs. This completes the
proof. O

Theorem 3.18. Let ne€ Ny, o,B,v € C, such that
a+vy ¢—N, ze C\(—oo, —1]. Then one has the fol-
lowing multi-integral representations for the Jacobi
function of the first kind:

rrw {(W_ 1)—2 dw}n

1 p (w=1)"

(64)
I G D T &
(oY, (z-1)
z z (W—‘,—1)B @p) 5 n
L...mey (w)|(w=1)2 dw]
(65)

B G D S A o
2By +1), z—1)F Y

(2),

where Ry < —n, R(y + B) < 0, respectively.

The proof is analogous to those carried out previ-
ously, and we leave this to the reader.

Theorem 3.19. Let n€e Ny, o,B,v€ C, such that
a+v ¢ —N, ze C\(—oco, —1]. Then one has the fol-
lowing muilti-integral representations for the Jacobi
function of the first kind:

n

(z+ 1) PP )
(a+B+y+1-n),

2o¢+ﬁ+y+1—nl—~(a+y) -1\
“(a+B+v)(oy +1,n) <z+1)
-n+1,1-o0,1

z+1
X3F; i— |
T-oa—-y,1-0-Pf-vy z-1

(66)
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Y4 Z -I _ n
L ---LWP§°"B)(W) (w+1)7? dw}
P @)

B+y+1),z+1)""

T(a+y+1) z—=1\""
27" B+ y+ 1) (o,y+2,n) \z+1

-n+1,1-0,1 z4+1
X 3F3 ; .
2+v2+B+y z-1

(67)

Proof. Considering the n=1 case of (54) and then
integrating produces the definite integral

z dw
w+ 1) Rl gy 2
(w+ 1)&+B+“/P£/u—1rﬁ) (2) - 2a+B+“/pS/“—1rﬁ)(1)
B+vy+1

’

which is due to (19). Iterating the above expression
n-times completes the proof of the first identity.
Using (1), (2), (19), taking into account

r <w— 1>k dw 1 (z— 1)”1

r w1, w12 2k+N)\z+1)
where k =0, 1, ..., and reversing the finite series,
i.e., for any non-negative integer m,

zm:(m,...,a,H)kZ_k:(ch,...,a,H)mi
o (b],...,br)k k' (b],...,b,)m m'
- —m,1—m—b1,...,1—m—b,,1‘l
2l T—-m-a,...,1—=m—=a,4 'z}’
the result follows. O

3.2. The Jacobi functions of the second kind

In this section we derive multi-integral representa-
tions for the Jacobi function of the second kind.
Since both the Jacobi function of the first kind and
the Jacobi function of the second kind are strongly
connected (27), we expect to obtain similar multi-
integrals to those obtained in the previous section.

Theorem 3.20. Let n € Ny, o, B,y € C, z€ C\[-1,1],
with Ra, RP > —1,Ry > n. Then

JOO » Jm (W= 1)1+ w)P Q=P (w) (dw)"
C(Z=1)" (1 )P (68)

(o4n, B+n)
Ply=nt1), 2" (@)

Proof. Considering the n=1 case of (31) and then
integrating produces the following definite integral

JOO (w=1)"(1+w)’Q*P (w)dw

z

1T o1 B+1 A(ot1, B+1)
=5 dm (@102 )

—~(w—1)"""(1+ w)ﬁ“oﬁt”‘“)(w))

(z- N* (1 —i—z)BH Q(u+1,ﬁ+1)(z)
- 2y s '

Iterating the above expression n-times completes
the proof. O
Theorem 3.21. Let n € Ny, o,B,v, z € C. Then

dn
dz"

(z=1)"Q0P(2) = (=a=7),(z = 1)""QP 7 (2).
(69)

Proof. First we prove the n=1 case. Consider (22),
multiply this expression by (z—1)* and differentiate
with respect to z. This obtains

d o a,
L=

_d2 P (a4 y+ DIB+y+1)
- dz (z+ 1)PrH

Y+1L.B+y+1 2
x 2F4 T
a+p+2y+2 142

22T (o +y + DI+ 7 +2)
(o + B+ 2y +2)(z+ 12

Xi F+1B+y+2), (2
hﬂa+B+2y+@J!1+z

2P a4+ y+ 1)I(B+ 7 +2)
- (Z+1)B+y+1

Yy+1,B+7v+2 2
x oF; ;

at+Br2y+2 1+2

=@+ BE-1"or ).

The nth derivative case is obtained by iterating the
above procedure. O

Theorem 3.22. Let n € Ny, o, B,y € C, z€ C\[-1,1],
with Ro. > =1, R>n—-1, R(PB+v+1) > n. Then

[ 7] =) @wr

z z

z-1 e a+n, B—n
:ﬁ%” @) (70)

Proof. Considering the n=1 case of (69) and then
integrating produces the following definite integral

Jw (w— 1)“Q(Y°" P(w) dw

z



1

— P (Z— 1)u+1Q§a+1,B—1)(z).

Iterating the above expression n-times completes
the proof. O

Theorem 3.23. Let n € Ny, o, B,v,z € C. Then

dn -n o+n, n
7 @ V@ =7 (@ By + 1,01 ().
(71)

Proof. The n=1 case follows from (30) and for n > 1, the
result is obtained by iterating the above procedure. O

Theorem 3.24. Let n € Ny, 0, B,y € C, z€ C\[-1,1],
with Ro>n—-1,RE>n—-1,Ra+PB+y+1)>n
Then

J:O e J:o di, B)(W) (dw)"

(72)

2 (a=n, B=n)
Q.. z).
(a+B+y—n+1), " ®

Proof. Considering the n=1 case of (71) and then
integrating produces the following definite integral

> 2 ~1,B-1)
Q*P(w) dw= —= Q7" z).
Jz Y ( ) a_’_B_’_,Y v+1 ( )
Iterating the above expression n-times completes
the proof. 0

If we consider, as we did in the case of the
Jacobi functions of the first kind, the different
hypergeometric representations for the Jacobi
function of the second kind (20)-(23) and applying
the derivative relations (9)-(12) one obtains the
following result.

Theorem 3.25. Let neNgopyeC with
a+7vy ¢—-N, ze C\[-1,1]. Then

n

[(Z _ 1)2 %] (Z— 1)&+B+y+1osla, B)(Z)

= (@ Bty + 1),z = 1) PR ),

(73)
e d]t T @B) (o _ (T8 V)n ~(a,pen)
-] e - e,
(74)
dl” y .
[(2—1)2&] (z+1)Pz=1) QP (z)
=2"(y + 1),z + )Pz = 1) (),
(75)
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i} ’ ﬂ (4B (z)

2
|:(Z—1) dz (Z—1)B+y Y
B—n
=2"(-B-7), m Q(Yot, B=n)(z). (76)

Proof. The proof of these results are analogous to
the proof of Theorem 3.14 and we will leave this to
the reader. O

Corollary 3.26. Let n € Ny, o, B, v,z € C. Then

dz v

_ (O(‘f‘ B+ v+ 1)n(Z—|— 1>a+ﬁ+y+1+nos/u+n,ﬁ)(z),

2] i)

(77)

A

[(z+1)2%]n !

T+P+ty—-n o+n
e e, 79

{(24_ 1)2%]”(2_ 1%z + 1)B+Y+1Q§Q,B)(2)

=2"(y+1),(z=1)*"(z+ 1) QP (2),
Zd]n ((Z— 1)& Q(:x,B)(z)

=17 oy, (80)

= (=2)" (o~ Y)"W Y

Proof. The proof is analogous to the proof of
Corollary 3.15 and we leave this to the reader. O

Remark 3.27. One should note the interesting work
by Loyal Durand which was recently presented in
(Durand, 2022). In that paper, the author derives
many of the multi-integral representations appearing
in (Cohl & Costas-Santos, 2020) for associated
Legendre and Ferrers functions from more general
relations involving non-integer changes in the order
obtained using fractional Lie group operator meth-
ods developed earlier for SO(1,2), E(1,2), and its con-
formal extension SO(3). It is therefore probable that
similar Lie group theoretic methods could be used
to derive the multi-integral representations con-
tained within the present paper for Jacobi functions
of the first and second kind. This could potentially
shed some interesting light on the Lie groups which
are associated with general Jacobi functions of the
first and second kind, as well as these functions.
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