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Abstract  21 
 22 
Urban methane emissions estimated using atmospheric observations have been found to exceed 23 
estimates derived using traditional inventory methods in several northeastern US cities. In this 24 
work, we have leveraged a nearly five-year record of observations from a dense tower network 25 
coupled with a newly developed high-resolution emissions map to quantify methane emission 26 
rates in Washington, DC, and Baltimore, Maryland. Annual emissions averaged over 2018-2021 27 
were 80.1 [95% CI: 61.2, 98.9] Gg in the Washington DC urban area and 47.4 [95% CI: 35.9, 28 
58.5] Gg in the Baltimore urban area, with a decreasing trend of approximately 4 % to 5 % per 29 
year in both cities. We also find wintertime emissions 44 % higher than summertime emissions, 30 
correlating with natural gas consumption. We further attribute a large fraction of total methane 31 
emissions to the natural gas sector using a least squares regression on our spatially-resolved 32 
estimates, supporting previous findings that natural gas systems emit the plurality of methane in 33 
both cities. This study contributes to the relatively sparse existing knowledge base of urban 34 
methane emissions sources and variability, adding to our understanding of how these emissions 35 
change in time, and provides evidence to support efforts to mitigate natural gas emissions.  36 
 37 
Keywords: methane, greenhouse gas, urban, emissions 38 
 39 
Synopsis  40 
 41 
Methane emissions from US cities often exceed inventory data. This study confirms this and 42 
further finds that emissions are 44% higher in winter than in summer in Washington DC and 43 
Baltimore, MD. 44 
 45 

1. Introduction 46 
 47 
To mitigate the worst effects of climate change, national governments have launched efforts to 48 
reduce their emission of climate-warming greenhouse gases (GHG), including carbon dioxide 49 
(CO2) and methane (CH4)1, 2. In addition to global and national efforts, state, local, and municipal 50 
governments have also pledged to ambitious GHG emissions reduction goals, often relying on 51 
inventory estimates of their GHG emissions to track progress3. Emissions of CH4 may be less 52 
economically painful for some industries to mitigate than those of CO2, and CH4 emissions 53 
reductions may be able to provide some short-term benefits, reducing atmospheric warming in 54 
the near-term until more complete structural changes can be made to mitigate CO2.  55 
 56 
However, recent studies have indicated that many sources of urban CH4 to the atmosphere are 57 
fugitive (i.e., unintentional) emissions from the natural gas and waste sectors and are under-58 
estimated by traditional accounting methods. For example, Washington, D.C., and Boston, 59 
Massachusetts were two of the first cities whose streets were sampled using a mobile platform to 60 
identify natural gas distribution pipeline leaks4-6, calling attention to the prevalence of this source 61 
of CH4 emissions in cities. Additionally, cities across the US have been the focus of studies 62 
quantifying total CH4 emissions using observations from both airborne and stationary platforms7-63 
15, including several studies in Washington, D.C. and Baltimore, Maryland16-19. These studies 64 
relied on atmospheric observations of CH4, generally integrating the contributions of all 65 
emissions sources together. As such, atmospheric methods are less precise in the spatial 66 



 3 

allocation of emissions sources than traditional accounting methods, but are also less prone to 67 
bias and can provide the means for verification of more traditional methods.  68 
 69 
A few studies have suggested that post-meter emissions from residential and commercial natural 70 
gas consumers may comprise a significant portion of US CH4 emissions20-22. Several of these 71 
measured natural gas leaks and emissions from household appliances, including furnaces, water 72 
heaters, and stoves22-24, or entire single-family homes21. As a result, the US EPA has 73 
incorporated post-meter emissions for the first time in the most recent 2022 Greenhouse Gas 74 
Inventory25. To our knowledge, three top-down studies to date support the hypothesis that post-75 
meter emissions may play an outsized role in US cities by finding higher emissions in winter, 76 
when natural gas consumption for heating is greater due to colder weather8, 9, 26. A recent study 77 
estimated that all natural gas emissions in Los Angeles were related to consumption with a very 78 
large wintertime increase, without attributing them to any specific part of the supply chain (e.g., 79 
pipelines or post-meter)27. 80 
 81 
In this study, we continue this line of atmospheric observation-based analyses to estimate CH4 82 
emissions from Washington, D.C. and Baltimore, Maryland for a nearly five-year period from 83 
May 2017 through December 2021. Our approach uses a dense network of tower-based CH4 84 
observations along with a custom emissions map within a Bayesian inversion framework to 85 
optimize emissions at a spatial resolution of 0.01 degrees. Our posterior results allow for a 86 
comparison of the two cities, as well as an investigation of the seasonal variability and trends in 87 
emissions over these years. 88 

2. Methods 89 
 90 

2.1. Domain, observations, and background 91 
 92 
Our study focuses on the Census-designated urban areas28 of Washington, D.C., and Baltimore, 93 
MD, two adjacent large metropolitan areas in the US Northeast (Fig. 1A). The Washington D.C. 94 
urban area (DC UA), with a population of approximately 4.6 million and land area of 3423 km2, 95 
is significantly larger than the Baltimore urban area (Balt UA), at 2.2 million and 1857 km2 (per 96 
the 2010 Census).  There are nine landfills in the Balt UA (6 of which are closed), including two 97 
large active landfills (Alpha Ridge and Quarantine Road). Within the DC UA, all four landfills 98 
are closed. In both UAs, natural gas is widely used for residential and commercial heating. 99 
Wetlands in the domain are generally found outside the two UAs in the southeast of the 100 
modeling domain in the Eastern Shore area, although there are freshwater reservoirs and rivers 101 
(Potomac, Anacostia) and the Baltimore Harbor within the UAs. 102 
 103 
We use CH4 observations from the Northeast Corridor tower-based atmospheric concentration 104 
observing network from May 2017 to December 2021 in our analysis, with the number of urban 105 
stations varying between 6 and 11 through the time period as the network expanded29, 30. CH4 dry 106 
air mole fractions (presented here as nmol mol-1) are measured continuously by commercial 107 
cavity ring-down analyzers at approximately 0.4 Hz from two different heights on 108 
communications towers through the area. Here we use CH4 observations from the tallest level, 109 
averaged hourly, as documented in detail in Karion et al29. Our network was designed 110 
specifically to maximize coverage of the Baltimore and Washington DC urban regions31 with 111 
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observations from three additional sites near the edges of our modeling domain used to 112 
determine the background conditions32 (Fig. 1 and Supplementary Information (SI) Table S1). 113 
We use hourly-averaged observations during local afternoon hours, defined as between 5 hours 114 
after local sunrise and before sunset (SI Figs. S1 and S2). Our analysis relies on CH4 115 
enhancements caused by emissions within the modeling domain, around the DC and Balt UAs 116 
(Fig. 1A). In order to isolate the urban enhancements, the background mole fraction of CH4 117 
entering the domain must be removed from the total CH4 measured at the urban sites. Here we 118 
use two different background determination methods that were found to be unbiased at monthly 119 
scales in a previous analysis33, with details in SI Section S1.  120 
 121 

 122 
Fig. 1. Spatial representations of domain and results. (A) Map of modeling domain (purple 123 
outline), including highways (brown), the city of Washington, D.C. (red outline, with census-124 
designated urban area (DC UA) in orange shading), the city of Baltimore, Maryland (blue 125 
outline, with urban area (Balt UA) in lighter blue shading), urban tower locations (+), and 126 
background tower locations (triangles). (B) CH4 emissions of our prior flux (version NG15 (SI 127 
Appendix S3 and Table S6)); color scale maximum has been truncated to 200 nmol m-2s-1 for 128 
visibility. (C) Mean posterior emissions difference from the NG15 prior. (D) Mean winter 129 
posterior emissions difference from summer posterior. Balt and DC UAs are outlined in white or 130 
gray in (B-D).  131 

 132 
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2.2. Transport modeling 133 
 134 
We use six different transport model configurations in the analysis. All configurations use the 135 
Stochastic Time-Inverted Lagrangian Model 34 (STILT) to simulate transport and dispersion, 136 
driven by meteorological fields from three models: North American Mesoscale (NAM), 137 
ECMWF Re-Analysis (ERA 5) 35, and the Weather Research and Forecast (WRF) model 36(SI 138 
Table S2). STILT was run with and without a near-field correction for each meteorological 139 
model (SI Section S2). The footprints provide good coverage over the urban areas for each year 140 
(SI Fig. S3), with similar coverage in winter (DJF) and summer (JJA) (SI Fig. S4). Notably, 141 
winter footprints are stronger overall than summer, reflecting generally shallower mixing height 142 
in winter.  143 
 144 

2.3. Prior emissions map 145 
 146 
As part of our modeling framework, we developed several versions of a custom high-resolution 147 
(0.01°, i.e., gridded at approximately 0.86 km by 1.11 km) emissions map based on methods 148 
developed by Pitt et al. 37 to use as priors (Fig. 1B). This emissions map, which is time-invariant, 149 
provides the Bayesian inversion system the best chance of estimating emissions at high 150 
resolution. The prior covers our geographical modeling domain, bounded by 38.4°N, 39.6°N, 151 
77.8°W, and 76.2°W.  152 
 153 
We have included nine sectors in our prior emissions map. Broadly, these are: natural gas (NG) 154 
distribution, NG transmission, landfills, wastewater, composting, mobile and stationary 155 
combustion, agriculture (manure management and enteric fermentation), and wetlands (including 156 
freshwater features). The NG distribution sector is the largest component of the prior, and itself 157 
has two components which were summed: an estimate of emissions using traditional EPA 158 
methodology38 with some emission factors also from Weller et al. 39, and an estimate of 159 
additional loss on residential and commercial annual consumption (0.5% to 1.5%). Landfill 160 
emissions are the second largest sector, with emissions for most derived from the EPA’s 161 
greenhouse gas reporting program (GHGRP40). Additional detail on all sectors is provided in SI 162 
Section S3, SI Figs. S5-S7, and SI Tables S3-S5. A comparison of our priors with the 2012 163 
gridded EPA inventory41 indicates that our priors are higher than the EPA inventory in the urban 164 
areas, with generally higher NG emissions and lower landfill emissions (SI Fig. S6). 165 
 166 
We use five different versions of this prior for our set of inversions (SI Table S6), all based on 167 
the initial emissions map but altering the magnitudes of some sectors in each to better assess the 168 
impact of plausible choices made and uncertainties in the emission factors. We use three 169 
different options for a natural gas (NG) loss rate, as well as one prior with three times the 170 
emissions from waste and one with tripled wetlands emissions. Since the priors are constant in 171 
time, the seasonality and trend in our posterior are not driven by changes in prior emissions. 172 
 173 

2.4. Inverse model 174 
 175 
CH4 fluxes are estimated with a Bayesian inversion system at 0.01° resolution in the domain 176 
shown in Fig. 1 for the period from May 2017 through December 2021. Inversions are performed 177 
every 10 days with a 5-day overlap between consecutive inversions, with emissions assumed to 178 
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be constant in time over each 10-day inversion period. The following equations are used to solve 179 
for both the posterior fluxes 𝒙" and their corresponding posterior uncertainties, A 42:  180 
 181 
𝒙" = 𝒙𝒃 + 𝑩𝑯𝑻(𝑯𝑩𝑯𝑻 + 𝑹)#𝟏(𝒚 − 𝑯𝒙𝒃) (1) 182 
 183 
𝑨 = 𝑩 − 𝑩𝑯𝑻(𝑯𝑩𝑯𝑻 + 𝑹)#𝟏𝑯𝑩 (2) 184 
 185 
In the formulation above, xb is the prior flux, B represents the prior error covariance matrix, H is 186 
the sensitivity matrix, i.e., the matrix of footprints, R is the model-data mismatch covariance 187 
matrix, and y represents the vector of observed enhancements after the background mole fraction 188 
has been subtracted from the observations. SI Section S4 provides details on the construction of 189 
B and R, inversion metrics, and uncertainties (SI Figs. S8 and S9). Posterior fluxes are 190 
aggregated to the Census-designated urban area (UA) for each of the two cities and averaged 191 
monthly. We explore the sensitivity of our results to the choice of observations in SI Section 192 
S5.1 and SI Fig. S10, and the sensitivity to the model-data mismatch covariance in SI Section 193 
S5.2 and SI Fig. S11. 194 
 195 
As in Huang et al. and Lopez-Coto et al. 18, 19, we adopt the approach of running multiple 196 
inversions with different plausibly correct configurations, i.e., meteorological fields, background 197 
conditions, and priors, and present the spread between them (60 configurations in our case) as an 198 
estimate of uncertainty. Details of the configurations (summarized in SI Table S7) and their 199 
impact are found in SI Section S6 and SI Figs. S12 – S14. Inversions run to test sensitivities to 200 
model-data mismatch or number of observations are not included in the final ensemble. 201 
 202 

2.5. Sectoral attribution of emissions 203 
 204 
To attribute our emissions totals to different sectors, we first combine the nine sectors from our 205 
prior into three groups: Thermogenic (Mobile and Stationary Combustion, NG Transmission, 206 
NG Distribution), Biogenic-Waste (Landfills, Wastewater, Compost) and Biogenic-207 
Wetlands&Ag (Wetlands, Agriculture). These three groupings provide maps that are spatially 208 
uncorrelated, and we estimate the contribution of each group to our total mean posterior for each 209 
season using a multiple linear regression to the prior maps of the groups, with no offset term. 210 
The regression is performed spatially, i.e., pixel-wise, with the total posterior map being 211 
regressed against the three explanatory variables, i.e., the three different maps (one for each 212 
grouping). We average posterior emissions for each inversion ensemble member for June, July, 213 
and August (JJA) of all years for summer, and for December, January, and February (DJF) for 214 
winter. As with the total posterior emissions, after estimating mean emissions from each group 215 
for each of the 60 inversions, we average them and use their spread to show confidence intervals 216 
with the results. We also calculate the thermogenic fraction as the fraction of total emissions 217 
attributable to the thermogenic group, for each of the 60 inversions (and for summer and winter 218 
seasons). The resulting estimated fractions are averaged with their distribution used to derive the 219 
95% CI on the mean value. SI Section S8 shows additional details of the method, along with the 220 
dependence of the thermogenic fraction on the prior (SI Fig. S16).  221 
 222 

2.6. Analysis of relationship to natural gas consumption 223 
 224 
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To estimate natural gas (NG) use in the two UAs, we spatially downscale NG consumption data 225 
reported by the local distribution companies 43 (LDCs, SI Fig. S5) in the region using gridded 226 
residential and commercial CO2 emissions from Vulcan 3.0 44, 45 assuming that gas use spatially 227 
scales with on-site combustion of natural gas and oil. We downscale temporally to monthly 228 
consumption using reported state-level monthly commercial and residential NG consumption for 229 
Maryland as a proxy 46. We perform an ordinary least squares regression between monthly 230 
posterior emissions and estimated NG usage in each UA for each inversion ensemble member 231 
and report the mean slope and confidence intervals (SI Fig. S13 shows the impact of inversion 232 
configuration on the slope).  233 

3. Results and Discussion 234 
 235 

3.1. Urban area totals and spatial distribution of emissions  236 
 237 
Aggregating the posterior emission rate of CH4 over the Baltimore urban area (Balt UA) and the 238 
Washington DC urban area (DC UA), we report mean emissions for each over the entire period 239 
(Fig. 2; impact of model configuration in SI Fig. S12). Mean posterior estimates are generally 240 
consistent with previous estimates for this region 16, 17, 47, and slightly lower than the City of 241 
Baltimore inventory (SI Section S7 and SI Figs. S15 and S18). The spatial distribution of 242 
posterior emissions and the difference from the NG15 prior indicates an adjustment of emissions 243 
downward in the center of DC UA, but upwards around downtown Baltimore (Fig. 1C). Some 244 
areas to the northwest of both UAs in the farther suburbs are also adjusted downward.  245 
 246 

 247 
Fig. 2. Estimated total emission rate (average over the study period) for each UA (A), 248 
normalized by area (B) or per capita (C). Box plots indicate the spread across priors and 249 
posteriors for the set of inversions. The box edges indicate the quartiles of the dataset while the 250 
whiskers extend to show the rest of the distribution, except for points determined to be outliers 251 
which are shown as diamonds. 252 
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A comparison of total emissions, averaged over the entire study period, between the two UAs 253 
suggests slightly higher posterior emissions in the Balt UA than the DC UA per unit area and 254 
significantly higher emissions per capita (Fig. 2; SI Section S7 for methods). Our priors also 255 
contain larger per capita emissions in the Balt UA, with the difference between the two areas 256 
dominated by landfill emissions; the Balt UA contains more landfills within its boundary than 257 
DC. This example illustrates that emissions comparisons, even after normalizing by area or 258 
population, sometimes come down to a specific domain definition. For example, the Brown 259 
Station Landfill in Prince George’s County, MD, a suburb of Washington DC, lies one grid cell 260 
outside our DC UA, although it serves the DC UA’s population. Thus, a more in-depth 261 
examination or interpretation of the drivers of differences in cities’ emissions should include 262 
Scope 2 and Scope 3 emissions (i.e., including emissions that occur outside the UA due to 263 
activity within the area). Bottom-up inventories conducted by localities and metropolitan areas, 264 
including those of Baltimore and Washington, D.C., generally include Scope 2 and sometimes 265 
Scope 3 out-of-area emissions, and differences in Scope remain one challenge in robustly 266 
comparing bottom-up inventories with top-down analyses 48.  267 
 268 

3.2. Seasonality of emissions 269 
 270 
The mean emissions from our inversions indicate distinct seasonality in total CH4 emissions in 271 
both cities, with emissions 1.44 times higher in winter than in summer (Fig. 1D). Spatial 272 
differences between the seasons suggest more wintertime emissions in both core downtown areas 273 
with the highest density of population, buildings, and natural gas usage. Higher wintertime 274 
emissions have been found in previous studies in Boston 8 and Los Angeles 9, as well as in the 275 
Washington DC and Baltimore region 18. In those studies, the higher winter emissions were 276 
attributed to NG leakage, possibly post-meter. Here we also find a strong correlation in our 277 
monthly posterior emissions estimates with residential and commercial natural gas use in both 278 
UAs (R2 = 0.52 in the DC UA and R2 = 0.42 in the Balt UA) (Fig. 3). We discuss this 279 
relationship further in Section 3.4. 280 
 281 
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 282 
Fig. 3. (A, C): Urban area posterior mean monthly emission rate across inversions (blue 283 
circles); blue line and shading are the 3-month rolling mean and 3-month rolling mean standard 284 
deviation across inversions. Red line, corresponding with the right axis, indicates commercial 285 
and residential natural gas consumption estimated in each UA (see text for methods). (B ,D): 286 
Monthly mean emission rate colored by year as a function of residential and commercial gas 287 
consumption in each UA. Error bars on monthly emission rates are the standard deviation 288 
across inversions. Line shows mean fit, with slope as indicated in the legend.  289 

 290 
3.3. Sectoral distribution of emissions  291 

 292 
A multivariate linear regression analysis using our customized high-resolution priors separated 293 
by sector groupings (Thermogenic, Biogenic-Waste and Biogenic-Wetlands&Ag) provides some 294 
understanding of the sources of emissions in the two UAs in winter and summer. 295 
 296 
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 297 

 298 
Fig. 4. Estimated sector-grouped emissions for DC (A) and Balt (B) for the mean of the priors, 299 
the posterior mean for winter and summer. (C) Estimated thermogenic fraction of emissions for 300 
the each UA. Legend in (B) applies to all three panels; error bars represent the 95% CI based on 301 
the ensemble of inversions.  302 

Our results suggest that thermogenic emissions from fossil-fuel combustion and NG losses are 303 
higher in winter than in summer, supporting the hypothesis that overall emissions seasonality is 304 
driven by the NG sector. Interestingly, waste emissions are also higher in winter than in summer 305 
in both UAs. This result follows from the spatial allocation of the winter-summer difference (Fig. 306 
1D) along with the spatial allocation of NG distribution and landfill emissions in the priors. In 307 
this analysis, it is likely that the spatial overlap of large landfills within the same areas with large 308 
NG emissions does not allow for this methodology to adequately distinguish between these two 309 
sources, and results in both NG emissions and landfill emissions being higher in winter. Possible 310 
seasonality in landfill emissions is discussed further in Section 3.4. Wetlands and agriculture are 311 
slightly higher in summer than in winter in DC, although not significantly so (Fig. 4).  312 
 313 
We note that these results are necessarily dependent on the spatial allocation and relative 314 
magnitudes of these sector groups in the prior, both because of the general posterior dependence 315 
on the spatial map of the prior, but also because we are using a linear regression to scale each 316 
group, which does not account for posterior changes in the spatial distribution of emissions 317 
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within a group. Therefore, we emphasize that a high-quality emissions map is crucial for using 318 
this method to attribute emissions to sectors.  319 
 320 
Given the estimates of sectoral distribution of posterior emissions, we can determine the 321 
thermogenic fraction: the fraction of emissions from thermogenic sectors (NG distribution, NG 322 
transmission, mobile combustion, and stationary combustion) (Fig. 4C). In the Balt UA, the 323 
thermogenic fraction is 0.68 [95% CI: 0.59, 0.79] and 0.69 [95% CI: 0.59, 0.78] in summer and 324 
winter, respectively; in DC it is 0.73 [95% CI: 0.64, 0.81] and 0.82 [95% CI: 0.76, 0.88]. 325 
Baltimore’s fraction is lower than DC’s because there are more landfills within the Balt UA. 326 
When calculating this fraction for the entire model domain, the fractions fall to 0.50 [95% CI: 327 
0.40, 0.62] in summer and 0.58 [95% CI: 0.48, 0.70] in winter, as would be expected since in our 328 
model most thermogenic emissions occur within the urban centers. We note that although our 329 
posterior sectoral distribution is closely correlated with the prior, the thermogenic fraction does 330 
change slightly from the prior value (Fig. 4C and SI Fig. S16), and varies marginally by season, 331 
indicating that our observations are able to inform this analysis beyond our prior attribution.  332 
 333 
We did not expressly include emissions from either sewer leaks or wood burning in our prior – 334 
both sectors are likely to be spatially allocated similarly to NG distribution or post-meter 335 
emissions and would thus not be able to be distinguished using our methods. Using literature-336 
based estimates of annual emissions from these two sources (SI Sections 3.3 and 3.5), we 337 
calculate that if they were both attributed to biogenic rather than thermogenic sectors, the 338 
thermogenic fractions would decrease to 0.68/0.79 (summer/winter) in the DC UA and 0.64/0.66 339 
in the Balt UA, values that are within our uncertainty estimates. 340 
 341 
Our estimated thermogenic fractions are generally consistent with previous measurements for 342 
these UAs based on ethane to methane ratios, although direct comparisons are difficult given the 343 
spatial disparity between the different studies. This suggests that our analysis using a 344 
combination of a custom prior and atmospheric observations may inform sectoral attribution 345 
without using a co-tracer, although not as definitively. Floerchinger et al. 26 estimated fractions 346 
of 0.26-0.30 and 0.63-0.69 in summer and winter, respectively, over the DC/Balt domain. The 347 
winter values correspond well with ours while their summer estimates are significantly lower 348 
than our values, even when we consider the entire domain. We suspect that their summer flight 349 
may have had significant river and wetland influence, and it could be that our tower network is 350 
not sensitive enough to fluxes outside the urban areas, minimizing our estimate of those biogenic 351 
emissions (either agricultural or natural). Plant et al. 17 also estimated the thermogenic fraction 352 
for the Balt UA (0.92) and DC UA (0.80) in spring 2018, values better aligned with our winter 353 
estimates for the UAs. In general, direct comparisons of the thermogenic fraction are subject to 354 
difficulties from spatial misalignment. The balance of sources differs between the denser urban 355 
areas and the surrounding regions, so that the mix of sources observed varies depending on the 356 
specific area sampled by an observation.  357 
 358 

3.4. Relationship between emissions and natural gas use 359 
 360 
Analyzing the monthly posterior emission rate and NG consumption in each UA, we estimate the 361 
slope of their relationship, i.e., the emission rate per unit NG consumed (Fig. 3B and Fig. 3D). 362 
The slope is slightly greater in the Balt UA (0.9 [95% CI: 0.6, 1.3] %) than it is in DC UA (0.6  363 
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[95% CI: 0.4, 0.9] %), indicating a slightly higher rate of emission in Balt than in DC per unit 364 
gas consumed, although the overlapping uncertainties on each indicate that this difference is not 365 
significant at the 95% CI. For comparison, Sargent et al. 8  reported a relationship of 2.1 % 366 
between NG emissions in Boston and NG use in the state of Massachusetts on a per unit area 367 
basis. This rate is not directly comparable to our finding because we have scaled NG use 368 
specifically for our UAs, and using state average NG use per unit area would yield a higher 369 
percentage. He et al. 9 found a slope of 1.4 % ± 0.1 % total CH4 emissions per unit of residential 370 
and commercial NG use in the LA basin, while Zeng et al. 27 recently reported 2.8 % ± 0.18 %  371 
using the same methods over a longer time frame. These values are significantly larger than 372 
those we find in the DC and Balt UAs. Further investigation of emissions in both cities would be 373 
required to determine the source of these large differences, along with an analysis of the 374 
differences in infrastructure, both at the LDC and building and appliance level. 375 
 376 
We note that the emission rate of 0.6 % and 0.9 % of NG use does not represent the overall loss 377 
rate of NG in the UAs; it represents only the component of emissions that varies according to 378 
NG consumption. The intercepts in the relationship between emissions and NG use represent 78 379 
% to 79 % of total emissions in each UA, and only 21 % to 22 % vary with NG consumption. 380 
Given the thermogenic fractions measured by other studies17, 26, additional NG losses that do not 381 
directly vary with NG use (e.g., system leaks that exist regardless of usage) also contribute to 382 
total emissions. Conversely, it is possible that some other emissions source is also higher in 383 
winter than in summer and contributes to the seasonal variability, as discussed below.  384 
 385 
The second largest contributor to urban emissions in our priors is the landfill sector, and 386 
therefore it is the most likely (after NG distribution) to affect the seasonal variation in overall 387 
emissions at such a large scale. While landfill emissions can be seasonal, due to the dependence 388 
of CH4 production, diffusion rates, and oxidation rates on soil temperature and moisture 49, 50, 389 
most inventory methods generally do not assign any seasonality to landfill emissions 41. 390 
Variability in landfill emissions to the atmosphere has been found to depend largely on specific 391 
practices and operations (such as type of cover material or changes in landfill infrastructure) in 392 
addition to local climate and weather, including barometric pressure 51, 52. The various emissions 393 
drivers compete and the overall dependence of net emissions on season depends on the specific 394 
location and practices at a given landfill. We would advocate for future work to focus on 395 
understanding of waste sector emissions, but accurate emissions estimates will likely require 396 
specific information on the individual landfills in question in order to model emissions and their 397 
variability properly.  398 
 399 
Other biogenic sectors, such as wastewater (including from sewers) and wetlands, are unlikely to 400 
drive higher wintertime emissions. Wastewater and wetland emissions are generally higher in 401 
summer, due to greater methanogenic activity at warmer temperatures 53-55; any seasonality 402 
would show higher summer emissions, so we do not expect these sectors to be contributing to the 403 
higher wintertime emissions observed.  404 
 405 
We conclude that the most likely source of the higher winter emissions in the DC and Balt UAs 406 
is NG-related leakage from the distribution network and related infrastructure and/or post-meter 407 
emissions (these could include both leakage within buildings and incomplete combustion). 408 
Distribution networks may emit more in winter if pipes are maintained at higher pressures in 409 
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winter to meet demand, but such pressure data is not publicly available and we do not have any 410 
other evidence of this. While Fischer et al. 21 found significant post-meter leakage from quiescent 411 
sources (i.e. not directly related to usage), they suggest that transient emissions may also play a 412 
large role, as has been found in other studies, leading to higher losses with more frequent usage 413 
22, 24. Therefore, we cannot determine definitively to what extent either distribution network or 414 
post-meter losses cause the seasonal variability found here.  415 
 416 

3.5. Inter-annual variability and trend of emissions 417 
 418 
An analysis of the annual average posterior emissions over time indicates a declining trend in 419 
both UAs from 2018 to 2021 (Fig. 5). We exclude the partial 2017 year from this analysis, as the 420 
average from May to December is not representative of an annual mean given the strong 421 
seasonality we have observed. We calculate the trend for each inversion configuration separately, 422 
to understand the influence of the configuration on the result (SI Fig. S14) and characterize the 423 
uncertainties using the spread across the inversion configurations. Our estimates of the decline in 424 
each UA are -3.6 [95% CI: -5.2, -1.8] Gg a-1 in DC and -2.8 [95% CI: -3.5, -2.2] Gg a-1 in Balt. 425 
These declines represent approximately 4.2 [95% CI: 6.1, 2.1] % and 5.4 [95% CI: 6.8, 4.3] % of 426 
2018 average annual emissions per year in DC and Balt, respectively. In addition, we note here 427 
that contrary to emissions of CO2 56, CH4 emissions do not show any observable anomaly during 428 
2020, when the COVID-19 pandemic-induced slowdown in economic activity occurred, 429 
although such a signal may have been obscured by other sources of variability.  430 
 431 

 432 
Fig. 5. Trend in annual mean CH4 emissions. Circles are mean monthly emissions for the DC UA 433 
(A) and Balt UA (B), with the 3-month smoothed emissions indicated by solid lines, and squares 434 
indicating the annual means beginning with the first whole calendar year, 2018. Shading and 435 
error bars indicate the standard deviation across inversions. Slope indicated in the legend is the 436 
mean of the slopes across inversions.  437 
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Given our results correlating emissions to NG use, we also investigate the trend in NG 438 
consumption in our two UAs, to determine whether reductions in gas use could explain the 439 
decrease in emissions. Considering 2018-2021, residential and commercial NG consumption in 440 
the DC and Balt UAs declined by approximately 3 %  and 6 % per year on average, respectively, 441 
according to data reported by local distribution companies 43. In Section 3.4 we determined that 442 
for every additional unit of CH4 consumed from residential and commercial NG use above the 443 
minimum value, total emissions increased by 0.006 and 0.009 (in DC and Baltimore, 444 
respectively). Therefore, we would expect that a decrease in NG use would result in a 445 
corresponding decline in emissions. Other losses from NG systems that are not seasonally 446 
varying (such as distribution pipeline leaks, for example) are not directly proportional to 447 
consumption rates so would not decline when consumption drops. Given the proportionality of 448 
emissions to NG use found in Section 3.4, the reductions in NG use would lead to CH4 emissions 449 
declines of 0.31 Gg a-1 to 0.69 Gg a-1 in DC and 0.42 Gg a-1 to 0.90 Gg a-1 in Baltimore (ranges 450 
consider the 95% CI on the relationship between NG use and emissions). Therefore, while 451 
reductions in NG use likely contributed to some of the observed decrease in emissions (6 % to 38 452 
% in DC and 12 % to 41 % in Baltimore), other factors also played a large role. These findings 453 
are further supported by an analysis calculating separate trends from warmer months and cooler 454 
months (SI Section S9). This analysis indicates that while wintertime emissions showed larger 455 
relative declines than summer, emissions from both declined over time (SI Fig. S17). 456 
 457 

3.6. Discussion of main findings 458 
 459 
In this study we determine average CH4 emission rates of 80.1 [95% CI: 61.2, 98.9] Gg a-1 in the 460 
Washington DC urban area and 47.4 [95% CI: 35.9, 58.5] Gg a-1 in the Baltimore urban area 461 
(mean of annual averages from 2018-2021). We also find emission rates that are 44 % higher in 462 
winter and correlated with NG consumption, with emissions of 0.6 [95% CI: 0.4, 0.9] % and 0.9 463 
[95% CI: 0.6, 1.3] % of NG use in DC and Baltimore, respectively, over a baseline seasonally-464 
invariant emission rate. Spatial patterns in our posterior estimates suggest that NG loss drives the 465 
seasonal variability, with wintertime emissions higher in the city centers.  466 
 467 
Normalizing emissions by either area or population indicates a slightly higher emissions intensity 468 
in Balt relative to DC, consistent with the larger rate of emissions per unit of gas use. While our 469 
results point to a four-year declining emissions trend of approximately 4 % to 5 % per year in 470 
both cities, we are unable to attribute this entire trend to decreasing NG use. Future work will 471 
focus on extending the period of analysis to better examine both the relationship to gas use and 472 
trends over time. We expect that additional years of analysis will allow for a more robust trend 473 
detection by reducing the uncertainties associated with the observed trends. Additional 474 
measurements of other trace gas species that are emitted by NG leaks (e.g., ethane) and isotopes 475 
of CH4 are also needed to better disentangle the various urban sources of CH4 to the atmosphere. 476 
 477 
Overall, our study contributes to the sparse existing knowledge base of CH4 emissions in cities, 478 
adding valuable understanding of how these emissions change in time. Understanding the urban 479 
sources of CH4 may enable policymakers from local to national levels better target mitigation 480 
efforts. Several municipalities have already passed legislation to limit new natural gas hookups, 481 
including Montgomery County, Maryland, which lies in our study area 57. Some LDCs, including 482 
Baltimore Gas and Electric, have invested in repairing and upgrading NG distribution 483 
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infrastructure (https://marylandstride.com/) to improve reliability and avoid critical failures while 484 
also reducing the GHG footprint of NG use, and it is possible that these improvements 485 
contributed to the observed emissions declines. This study provides evidence to support 486 
mitigation efforts aimed at reducing the loss of NG in urban areas, but additional information 487 
that could more specifically point to the source of NG emissions and their variability is needed to 488 
further guide investments and regulation. Specifically, future studies should be designed to 489 
provide even more granularity in emissions sector understanding to better inform inventory 490 
methods and track mitigation effort success. 491 

4. Data availability and supporting information 492 
 493 
Atmospheric methane observations used in this study are available at Karion et al. 30, 494 
https://doi.org/10.18434/mds2-3012. 495 
 496 
Supporting Information: Additional details on methods for observations, transport, high-497 
resolution prior map construction (including maps for each sector), inversion system setup, and 498 
sectoral attribution of emissions; results of sensitivity tests, impact of model choices, additional 499 
analysis of long-term trend, and comparison to the City of Baltimore inventory. (PDF) 500 
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