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As a step toward the full ab initio description of two-photon double ionization processes, we present
a finite-pulse version of the virtual-sequential model for polyelectronic atoms. The model relies on the
ab initio description of the single ionization scattering states of both the neutral and ionized target system.
As a proof of principle and a benchmark, the model is applied to the helium atom using the NEWSTOCK atomic
photoionization code. The results of angularly integrated observables, which are in excellent agreement with
existing time-dependent Schrödinger equation (TDSE) simulations, show how the model is able to capture
the role of electron correlation in the nonsequential regime, and the influence of autoionizing states in the
sequential regime, at a comparatively modest computational cost. The model also reproduces the two-particle
interference with ultrashort pulses, which is within reach of current experimental technologies. Furthermore,
the model shows the modulation of the joint energy distribution in the vicinity of autoionizing states, which
can be probed with extreme-ultraviolet pulses of duration much longer than the characteristic lifetime of the
resonance. The formalism discussed here applies also to polyelectronic atoms and molecules, thus opening a
window on nonsequential and sequential double ionization in these more complex systems.
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I. INTRODUCTION

Our understanding of electron dynamics in atomic and
molecular photoionization processes has drastically improved
over the last two decades, driven by the rapid development of
coherent extreme-ultraviolet (XUV) and x-ray light sources
[1–3]. Thanks to the increase in intensity of ionizing pulses
at x-ray free-electron-laser facilities (XFELs) as well as with
tabletop setups, the use of XUV-pump XUV-probe schemes
to study unperturbed correlated electronic motion in real time
is on the horizon [4–6]. In these studies, double ionization
plays a central role both because of its unique sensitivity to
electronic correlation and because it enables the detection of
correlated electron pairs in coincidence [7–9].

Extensive studies of two-photon double ionization (TPDI)
in helium over the past two decades have substantially con-
tributed to the understanding of correlated electron dynamics
in atomic physics. Different regimes for the TPDI process
contain detailed information on electron correlation-driven
dynamics. In the sequential regime, a first photon ionizes the
system, generating an intermediate ion, which subsequently
absorbs a second photon, thus emitting a second electron.
This mechanism, therefore, consists of two independent single
photoionization events and it is active only if the absorbed
photons are able to ionize the initial target and the resid-
ual ion. The sequential mechanism can be described, in its
qualitative features, by an independent-particle model. In the
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nonsequential regime, the two photons are absorbed in too
short a sequence for the system to settle down in a well-
defined intermediate state. For this reason, this mechanism
can lead to the concerted emission of two electrons even if the
energy of a single photon is insufficient to ionize the parent
ion, provided that the energy of the two photons together
exceeds the double-ionization threshold.

Since the nonsequential mechanism relies on virtual in-
termediate states that can be achieved only through multiple
single-electron excitations from the reference ground-state
configuration, electron correlation plays an essential role in it
and must be taken into account in the initial, intermediate, and
final states. Indeed, several perturbative approaches based on
lowest-order perturbation theory have demonstrated the role
of electron correlation in the nonsequential regime [10–15].
Only direct numerical solutions of the time-dependent
Schrödinger equation (TDSE), however, could settle the resid-
ual disputes on the quantitative aspects of this process even for
a seemingly elementary system like the helium atom [16–23].
The quantitative description of TPDI dynamics entailed by
pump-probe experiments requires expensive numerical simu-
lations [16,18,24–27]. When the atom is doubly ionized with
extreme ultrashort pulses that contain photon energies close
to the sequential TPDI threshold, the distinction between
sequential and nonsequential regimes breaks down [25].
Time-resolved studies further highlighted the rich attosec-
ond dynamics inherent to TPDI process when doubly excited
states (DES) are probed with ultrashort pulses [27–35].

A few decades ago the quantum optics community in-
troduced the idea of two-particle interferometry [36]. Due
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to the presence of two identical particles in the final state,
TPDI is an ideal process to bring two-particle interferometry
to atomic and molecular physics. Palacios et al. used TDSE
simulations to demonstrate quantum interference in the joint
energy distribution of the two photoelectrons generated by
TPDI pump-probe processes [24,26]. Thanks to improved
XFELs capabilities and advancement in coincidence detection
of charged fragments [37], it should soon be possible to ex-
perimentally observe this phenomenon in helium as well as in
larger polyelectronic systems.

While the numerical solution of the TDSE is a reliable way
to obtain quantitative predictions for TPDI process, it is com-
putationally very expensive. It is natural, therefore, to look for
alternatives that can provide semiquantitative data for at least
some observables of interest. In fact, the numerical simula-
tions used to set on firm ground the quantitative aspects of
this process allowed some authors to recognize that a simple
virtual-sequential model (VSM) with only single-ionization
intermediate states and no final-state interaction can already
capture several qualitative aspects of TPDI even below the
sequential threshold [10,13,14,23].

In this work we explore this direction further by extend-
ing to pump-probe setups the VSM using the finite-pulse
formalism [38] in combination with ab initio one-photon
multichannel ionization amplitudes, which can be obtained
with a range of atomic and molecular ionization programs.
The finite-pulse virtual-sequential model (FPVSM) is general
and it is straightforward to extend it to polyelectronic atoms
and molecules. Although the model does not account for one-
photon double-ionization amplitudes from the intermediate
bound and autoionizing states, it does include the contri-
bution of final autoionizing states, finite-pulse effects, and
the interference of multiple ionizing pulses. The total TPDI
cross section predicted by the model is in excellent agreement
with TDSE simulations both below and above the sequential
threshold, reproducing the resonant feature associated to the
sp+

2 intermediate DES. We show that the FPVSM can re-
produce the characteristic features of the joint photoelectron
energy distribution and energy sharing in helium compared
to TDSE simulations at a small computational cost. The
FPVSM also reproduces the continuous transition between
nonsequential and sequential features of the TPDI process
with extreme ultrashort pulses as well as the two-electron
quantum interference. Finally, the FPVSM model is used to
probe the modulation in the joint energy distribution in the
resonant TPDI of helium with XUV pulses of duration larger
than the lifetime of the atom’s brightest DES.

The paper is organized as follows. In Sec. II, we intro-
duce the FPVSM starting from time-dependent perturbation
theory. By expanding the field-free resolvent in terms of
single-ionization channels, the TPDI amplitude is derived for
the general case of polyelectronic atoms. In Sec. III, we in-
troduce the close-coupling (CC) expansion to compute the
bound-continuum transition matrix elements for the neutral
and intermediate parent-ion states. The model is applied to
the computation of angularly integrated observables, such
as the joint energy distribution and energy sharing. A two-
color pump-probe scheme is proposed to detect two-particle
interference and modulation of the joint energy spectra in
the resonant TPDI process. In Sec. IV, we present our

conclusions. The paper is completed by Appendix A, which
details the full derivation of the FPVSM for arbitrary atoms,
and Appendix B, which summarizes for the readers’ conve-
nience the use of Faddeyeva’s function to evaluate time inte-
grals in two-photon transitions. Atomic units (h̄ = 1, me = 1,
qe = −1) and the Gauss system are used throughout unless
stated otherwise.

II. THEORY

The time evolution of a system under the influence of an
external field is governed by the TDSE, which in the interac-
tion representation is given by

i∂t |�I (t )〉 = H ′
I (t )|�I (t )〉, (1)

where H ′
I (t ) = eiH0t HI (t )e−iH0t , and H0 is the field-free Hamil-

tonian of the system. In general, the interaction Hamiltonian
is the product of a suitable field �F (t ) and operator �O, HI (t ) =
�F (t ) · �O. The interaction is often formulated in either velocity
gauge, HI (t ) = α �A(t ) · �P, or length gauge, HI (t ) = �E (t ) · �R,
where �A(t ) and �E (t ) are the external vector potential and
electric field, respectively, α is the fine-structure constant,
�P = −i

∑Ne
i=1

�∇i, and �R = ∑Ne
i=1 �ri [39]. For a system initially

(t → −∞) in its ground state |g〉, H0|g〉 = ωg|g〉, the TDSE
can be cast in integral form

|�I (t )〉 = |g〉 − i
∫ t

−∞
HI (t ′)|�I (t ′)〉dt ′, (2)

which is the basis for a perturbative expansion in powers
of the external field, |�I (t )〉 = ∑∞

n=0 |� (n)
I (t )〉. The relevant

expression to compute the photoelectron distribution in TPDI
is the second-order perturbative term

∣∣� (2)
I

〉 = −
∫ ∞

−∞
dt2

∫ t2

−∞
dt1HI (t2)HI (t1)|g〉. (3)

Without loss of generality, we can assume that the external
field is a combination of linearly polarized pulses with ampli-
tude Fi(t ) and polarization ε̂i,

�F (t ) =
Np∑
i=1

Fi(t )ε̂i, (4)

where Np indicates the number of Gaussian pulses in the
expansion of the external field. The two-photon transition
amplitude A(2)

f ←g to a final stationary state | f 〉, H0| f 〉 = ω f | f 〉,
then reads

A(2)
f ←g =

∑
i jμν

εν
j ε

μ
i

∫ ∞

−∞
dt2Fj (t2)eiω f t2

∫ t2

−∞
dt1Fi(t1)e−iωgt1

×〈 f |Oν e−iH0 (t2−t1 ) Oμ|g〉, (5)

where we used the spherical tensor notation, ε̂ · �O = εμOμ

[40]. Equivalently, in frequency form

A(2)
f ←g = −i

∑
i jμν

εν
j ε

μ
i

∫ ∞

−∞
dω F̃j (ω f g − ω)F̃i(ω)

×〈 f |Oν G+
0 (ωg + ω)Oμ|g〉, (6)

where F̃ (ω) = (2π )−1/2
∫ +∞
−∞ dtF (t )eiωt , G+

0 (ω) =
(ω − H0 + i0+)−1. For double-ionization final states,
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| f 〉 = |�−
A,�k1σ1�k2σ2

〉, where A is the state of the residual

grandparent ion, and �ki and σi are the asymptotic momentum
and spin projection of electron i = 1, 2. In the present
formalism we use the velocity gauge within the dipole
approximation.

To proceed further, we introduce the three main approxi-
mations that underpin the FPVSM. First, the expansion of the
field-free resolvent is restricted to single-ionization channels,

M(2)
f g; νμ



∑
aσ ′

∫
d3k′

〈
�−

A,�k1σ1�k2σ2

∣∣Oν

∣∣�−
a�k′σ ′

〉 〈
�−

a�k′σ ′

∣∣Oμ|g〉
Eg + ω − Ea − k′2/2 + i0+ ,

(7)

where a identifies the state of the intermediate ion, with
energy Ea. With this approximation, we neglect the
contribution to double ionization from real and virtual
excitations involving both bound and double ionization
intermediate states. Equation (7) contains intermediate
scattering states with incoming boundary conditions [41]
for mere convenience. The dipole transition matrix elements
from the ground state to the continuum, 〈�−

a�k′σ ′ |Oμ|g〉, can
be computed ab initio. Second, we assume that one of the
photoelectrons in the final state retains the same asymptotic
state as the photoelectron in the intermediate single-ionization
state, i.e., the second photon does not affect the first
photoelectron and can only ionize the associated parent ion.
This assumption implies that the ionic state of the intermediate
scattering state is available at any time, which is justified only
if the lifetime of the intermediate autoionizing states is shorter
than the pulse duration. Furthermore, the direct one-photon
double ionization of the localized part of intermediate
autoionizing states is also neglected. Finally, when evaluating
the dipole matrix element between the intermediate single
ionization (SI) state to the final double ionization (DI) state,
we neglect the radiative transitions in the continuum, which
in principle may be followed by an (e, 2e) process.

Despite its clear limitations, this model is nevertheless
useful in reproducing many of the essential features of TPDI
in the nonsequential regime since the energy of the first photon
does not have to match the energy of the intermediate parent
ion plus the asymptotic kinetic energy of one of the photo-
electrons. Indeed, even below the opening of the sequential
threshold, the model predicts a finite value for the double
ionization amplitude. The VSM in the stationary regime was
introduced first by McCurdy et al. [10] and subsequently
rediscovered in a slightly different form [14]. In helium, this
approximation correctly reproduces all the essential features
of the TPDI amplitude of the atom below the sequential
threshold. Above the sequential threshold, of course, the real
sequential mechanism dominates, and hence the model is ex-
pected to become even more accurate.

Appendix A presents a detailed derivation of the TPDI
amplitude in terms of one-photon transition matrix elements
between bound and single-ionization scattering states of ei-
ther the neutral or the ionized target atom with well-defined
spin and angular-momentum quantum numbers, taking into
account the electron’s exchange symmetry. Here, we report
the result for the amplitude to a DI state. The transition am-
plitude to a state in which the two electrons have well-defined

asymptotic momenta and spin projections, A(2)

A,�k2σ2,�k1σ1←g
, can

be expressed in terms of amplitudes where the photoelectrons
emerge as spherical waves instead, A(2)

A,E2
2m2σ2,E1
1m1σ1←g,

A(2)

A,�k2σ2,�k1σ1←g
= −

∑
{
imi}

ei(σ
1 +σ
2 )

i
1+
2 k1k2
Y
1m1 (k̂1)Y
2m2 (k̂2)

× A(2)
A,E2
2m2σ2,E1
1m1σ1←g, (8)

where σ
 is a Coulomb phase shift and Y
m(�̂) are spherical
harmonics [40]. In the FPVSM, the transition amplitudes to
scattering states with spherical photoelectron waves have the
following expression in terms of reduced bound-continuum
transition matrix elements for the neutral and ionized system
and of the external-field parameters,

A(2)
A,E1
1m1σ1,E2
2m2σ2←g

= 1 − P12

2i
√

3
CSA−�A

1
2 σ2,

1
2 σ1

∑
La


−1
LSA

×
∑

i j

∫ ∞

−∞
dω

F̃j (EA + E1 + E2 − Eg − ω)F̃i(ω)

Eg + ω − Ea − E2 + i0+

×
∑

MMaμν

CLM
LAMA,
1m1

C1μ

LaMa,
2m2
CLM

LaMa,1νε
ν
j ε

μ
i

× 〈
�

2Sa+1Lπ̄a (−)
A
1E1

∥∥O1

∥∥�a
〉 〈

�
1Po(−)
a
2E2

∥∥O1

∥∥g
〉
, (9)

where P12 exchanges all the subsequent indices for photo-
electrons 1 and 2, Ccγ

aα,bβ are Clebsch Gordan coefficients,

and 
a = √
2a + 1. The state �

1Po(−)
a
2E2

represents a single-
ionization multichannel scattering state fulfilling incoming
boundary conditions. The channel is identified by the quantum
numbers of the only open channel with an outgoing spherical
photoelectron component state, namely, the parent-ion label a,
which corresponds to the ionic wave function �a; the asymp-
totic angular momentum and energy of the photoelectron, 
2

and E2, respectively; and the total symmetry and multiplicity
of the system (1Po). The state function �

2Sa+1Pπ̄a (−)
A
1E1

similarly
identifies the scattering state of the ionic system with parity
opposite to the intermediate ion’s (π̄a). It is worth pointing
out two main features of this expression. First, for Gaussian
pulses, the frequency integral can be expressed analytically
in terms of the Faddeyeva function [42–44], which can be
evaluated numerically at a negligible computational cost [38].
See Appendix B for details. Second, thanks to the exchange
term, the model can reproduce the interference characteristic
of the photoemission of two identical particles [24]. The fully
differential photoelectron distribution is

dPA

d3k1d3k2
=

∑
MA�Aσ1σ2

∣∣A(2)

A,�k2σ2,�k1σ1←g

∣∣2
. (10)

After analytically integrating over the solid angles, k̂1 and k̂2,
the joint energy distribution reads

dPA

dE1dE2
=

∑
MA�A

∑
{limiσi}

∣∣A(2)
A,E2l2m2σ2,E1l1m1σ1←g

∣∣2
. (11)
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FIG. 1. XUV-pump XUV-probe scheme for helium. (a) Nonse-
quential (NS) and sequential (S) two-photon double ionization. For
two identical XUV photons with energy 39.5 eV < ω < 54.4 eV,
double ionization occurs only through the nonsequential mechanism.
At energies well above the sequential threshold, ω > 54.4 eV, on the
other hand, the sequential mechanism dominates. For finite pulses,
two different ionization paths (b) and (c) lead to the same final
state, thus giving rise to characteristic interference fringes in the
photoelectron coincidence spectrum.

III. TWO-PHOTON DOUBLE IONIZATION OF HELIUM

Figure 1 illustrates the energy scheme for the TPDI of He
by a sequence of two XUV pulses with relative delay τ . In the
nonsequential and sequential process (online: blue and purple,
respectively), a first XUV photon excites the neutral helium
atom to the single-ionization continuum. The absorption of
another XUV photon ejects the residual electron from the
ionic component of the system. The nonsequential process is
only possible through the participation of the virtual interme-
diate states. For the description of TPDI in helium, we have
considered the following ionization channels:

He(1s2)
hν−→ He+(1s) + e−

εp
hν−→ He2+ + e−

εp + e−
ε′ p

He(1s2)
hν−→ He+(2s) + e−

εp
hν−→ He2+ + e−

εp + e−
ε′ p

He(1s2)
hν−→ He+(2p) + e−

ε s/d
hν−→ He2+ + e−

ε s/d + e−
ε′ s/d .

The single-ionization amplitudes of helium are computed
using the NEWSTOCK atomic ionization code [45]. We describe
the ionization channels through a CC expansion containing
the three ionic states: He+(1s), He+(2s), and He+(2p) cou-
pled to an additional electron with an associated s, p, or d
wave to construct augmented channels with total symmetry
1Se and 1Po. In addition, to improve the short-range description
of the electronic correlation, we included a set of localized
two-electron wave functions computed with a multiconfigu-
ration Hartree-Fock calculation (MCHF) performed using the
ATSP2K package [46]. Both the localized and the continuum
channels are expanded in terms of the B-spline basis [47].
We use a simulation box of 300 a.u. with �r = 0.4 a.u. node

FIG. 2. One-photon total photoionization cross section from the
helium ground state computed with NEWSTOCK in length (blue
dashed line) and velocity gauge (red dashed-dotted line). Results
from McCurdy and Martín [49] (black dotted line) are obtained using
the exterior-complex-scaling technique.

separation to build the B-splines functions of degree 7. With
the basis depicted above we obtained a helium ground-state
energy Egs = −2.8846 a.u., which differs by ∼0.02 a.u. from
the NIST energy [48]. In the figures shown in the rest of the
paper, we will shift the photon energies so that the position
of the ionization thresholds with respect to the ground state
coincide with the experimental ones.

The scattering states corresponding to the single-ionization
channels |�−

α�k′ 〉 are obtained by solving the Lippmann-
Schwinger equation with incoming boundary condition [41].
To test the quality of the intermediate scattering channels
defined for the TPDI study, we compare the one-photon total
photoionization cross section with an independent exterior
complex scaling (ECS) calculation [49]. Figure 2 compares
our results in the length gauge with the benchmark and pro-
vides the NEWSTOCK velocity gauge as well. The agreement
is excellent, with only a few meV difference in the autoioniz-
ing state’s position. The photoionization amplitudes for He+

are computed with a dedicated numerical one-electron code,
which also uses B-splines to represent the radial part of the
bound and continuum wave functions. We use a B-spline basis
defined in a uniform grid with degree 7 and node spacing of
0.4 a.u. with a box size of 300 a.u. With these choices, the
one-electron code is able to reproduce the analytical results
for the bound-bound and bound-continuum dipolar transi-
tion amplitudes to machine precision. Figure 3(a) compares
several accurate predictions of the TPDI cross section of he-
lium below the sequential threshold, computed by numerically
integrating the TDSE using finite-duration pulses with the
analytical predictions of the present FPVSM and with the
analytical model from Ref. [23]. To compute the TPDI cross
section, we use Eq. (13) from Ref. [16], which estimates
the TPDI by integrating the total probability over the two
photoelectron energies and dividing the result by a form fac-
tor proportional to the time integral of the fourth power of
the external field. Figure 3(a) shows our model results with
a pulse duration of 20 fs and intensity of 4 × 1012 W/cm2.
Along with the theoretical results [16,23,26] previous
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FIG. 3. Two-photon double-ionization total cross section from
the helium ground state. (a) Our model results (black circles) with a
pulse of duration 20 fs and intensity 4 × 1012 W/cm2 are compared
with previous works. (b) Model results with a pulse duration 4 fs and
intensity 4 × 1012 W/cm2 compared with the results of TDSE and
TDPT models of Ref. [23]. See text for details.

experimental results [50,51] are also shown, which can only
confirm the cross-section order of magnitude far from the
sequential threshold. The cross section in Ref. [16] (down
triangles, cyan online) is obtained by solving TDSE with a
pulse of duration 4 fs and intensity 1012 W/cm2. Reference
[26] (up triangle, magenta online) reports the total TPDI cross
section computed by solving TDSE with a pulse duration of 3
fs. The TDSE calculation from Ref. [23] reported in Fig. 3(a)
(box, yellow online) corresponds to a pulse duration of 11 fs.
The agreement of the model with the numerical simulation is
impressive and confirms similar findings based on the virtual
sequential model in the stationary regime. In particular, the
model reproduces the rapid increase in the cross section as the
photon energy approaches the sequential threshold already ev-
idenced in Ref. [23]. This rapid increase is due to the enhanced
role of the virtual intermediate states when they are close to
the resonance condition.

Figure 3(b) compares the TPDI cross section across the
sequential threshold with the original TDSE ab initio calcu-
lations and the analytical model from Ref. [23] with duration
4 fs and intensity of 4 × 1012 W/cm2 with different cen-
tral photon energies. Notice that while the time-dependent
perturbation theory (TDPT) model from Ref. [23] coincides

FIG. 4. (a) TPDI scheme in the nonsequential regime. δ is the
energy difference from the sequential threshold (ST). Joint energy
distribution of two photoelectrons in the nonsequential regime with
a fixed pulse duration of 500 as and intensity of 4 × 1010 W/cm2 for
different central photon energies: (b) 39.5 eV, (c) 42 eV, (d) 51 eV,
and (e) 54.4 eV. The joint energy distributions are normalized by the
same factor. In the conditions of the present calculation, a peak signal
of 1 corresponds to a TPDI cross section of 6 × 10−54 cm4 s eV−2.

with ours below the sequential threshold, above the sequential
threshold only our model reproduces the resonance profile
due to the excitation of the sp+

2 state, and is in much better
agreement with the result from the TDSE simulation.

In our calculations we use pulses with the Gaussian profile,
whereas the TDSE simulations in Fig. 3 and the analytical
model in Ref. [23] use sin2 envelopes. As long as the width
at half maximum of the two field envelopes coincide, we do
not discern appreciable differences due to the pulse shape.
Furthermore, our model can use a linear combination of an
arbitrary number of Gaussian pulses, and hence it can repro-
duce any pulse shape with any desired precision. For example,
a linear combination of as few as five Gaussian functions can
fit a sin2 profile with an error within 0.001 of the field peak
value. Since a single Gaussian function already gives results
in line with those with a sin2 profile, however, a calculation
with such a tailored pulse was not necessary.

A. TPDI joint energy distribution with single pulses

This section presents the predictions of the FPVSM
in the nonsequential regime as well as across the sequential
threshold. To illustrate the transition from the nonsequen-
tial threshold, at ω = 39.5 eV, to the sequential threshold,
at ω = 54.4 eV, we look at the joint energy distribution of
the two photoelectrons obtained using 500 as XUV Gaussian
pulses with peak intensity of 4 × 1010 W/cm2 and variable
carrier frequency ω0. Figure 4(a) shows the TPDI scheme used
in the present calculation where δ is the energy dif-
ference from the sequential threshold. Figure 4(b) with
δ = 14.8 eV shows the signal appears at the opening
threshold of 39.5 eV. As we increase the central pho-
ton energy to 42 eV, with δ = 12.4 eV [Fig. 4(c)],
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FIG. 5. Channel-specific contributions to the photoelectron joint
energy distribution for TPDI processes promoted by a 500-as 4 ×
1010 W/cm2 pulse with central energy of 54 eV: (a) 1sεp, (b) 2pεs,
(c) 2pεd, (d) 2sεp. The contribution from the 1sεp intermediate chan-
nel dominates. The joint energy distributions are normalized by the
same factor. In the conditions of the present calculation, a peak signal
of 1 corresponds to a TPDI cross section of 9 × 10−52 cm4 s eV−2.

the strongly correlated joint energy distribution becomes
prominently visible. As shown in Fig. 4(d), as we
increase the central photon energy to 51 eV, a two-peak
structure emerges, which is the hallmark of the sequential
mechanism. At the sequential threshold of 54.4 eV the joint
energy distribution shows the two photoelectrons emitted se-
quentially with energies of 30 eV, respectively.

To disentangle the contribution from different intermedi-
ate ionic states, an independent calculation is performed for
each CC channel. Figures 5(a)–5(d) show the joint energy
distribution for each of the intermediate states, 1sεp, 2sεp,
2pεs, and 2pεd, respectively. With the central photon energy
close to the sequential threshold but still well below the N = 2
shakeup threshold, virtually all the contribution comes from
the dominant 1sεp intermediate state.

Figure 5 shows the contribution of individual intermediate
channels to the joint energy distribution at ω = 54 eV, close
to the sequential threshold. At this energy, the distribution
resembles that of the sequential mechanism and is dominated
by the 1sεp intermediate channel. At this energy, the 2
ε
′

shakeup channels are still closed and hence they contribute
only as virtual excitations, which explains the broad distribu-
tion of their energy sharing. Indeed, for closed channels, the
pole in the denominator of (7) does not play any fundamental
role, thus leading to a continuum distribution for the energy of
the first photoelectron.

For ultrashort pulses with central energy above the sequen-
tial threshold, the sequential and nonsequential regimes can
no longer be separated [25]. Figures 6(a) and 6(b) show the

FIG. 6. Photoelectron joint energy distribution for TPDI pro-
cesses promoted by pulses with central energy of 70 eV, peak
intensity of 4 × 1010 W/cm2, and duration of 120 as (a) and 720 as
(b). The joint energy distributions are normalized by the same fac-
tor. In the conditions of the present calculation, a peak signal of 1
corresponds to a TPDI cross section of 0.5 × 10−52 cm4 s eV−2.

predictions of the FPVSM for a pulse with central energy of
70 eV and duration of either 120 as or 720 as. These plots
qualitatively reproduce the results obtained for similar pulses
in Ref. [25]. In the case of the shorter pulse, in Fig. 6(a),
the parent ion does not have the time to relax and hence the
joint energy distribution shows a single peak with a strongly
correlated distribution. When the longer pulse is employed,
on the other hand, the two-peak structure characteristic of
the dominant sequential mechanism clearly emerges. Notice
that, in the case of the pulse with short duration, the joint
energy distribution exhibits also several sharp features. These
features are the imprint of the autoionizing states close to the
N = 2 threshold, which should not be observed and indeed are
not reproduced in fully ab initio simulations. As commented
in Sec. II, the presence of resonant profiles is inherent to the
FPVSM, since the ion product of an autoionizing state decay
is assumed to be immediately available for ionization. This
assumption, however, is obviously not satisfied when the du-
ration of the ionizing pulse is much shorter than the lifetime of
the autoionizing states in question, which is the case here. For
pulses with duration much longer than an autoionizing state
lifetime, on the other hand, the model does capture the con-
tribution of the autoionizing state to the two-photon double
ionization due to the resonant enhancement (or suppression)
of the bound-continuum ionization amplitude, as discussed in
Sec. III B. Figure 7 shows the photoelectron-pair distribution
as a function of the energy sharing α = E1/(E1 + E2), gen-
erated by 500-as pulses with central energy ω0 ranging from
45 eV to 70 eV and with peak intensity of 4 × 1010 W/cm2.
In each case, the distribution is evaluated at the nominal peak
of the total energy, E1 + E2 = 2ω0 − IP, where IP is the
double-ionization potential. In the nonsequential regime, the
distribution is almost flat. For energies above the sequential
threshold, close to the shake-up threshold, the resonant struc-
ture of the autoionizing states emerges. The sharp peak visible
for ω0 = 58 eV corresponds to the sp+

2 DES. As mentioned
earlier, for short pulses, such resonant features are artifacts of
the FPVSM. As we approach the double-ionization threshold,
the sequential two-peak structure with total energy of 61 eV
dominates.
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FIG. 7. Joint energy distribution as a function of the photo-
electron energy sharing, at different photon energies, from the
nonsequential up to the sequential regime. The joint energy distri-
butions are normalized by the same factor so that the peak signal
correspond to 1.0 × 10−52 cm4 s eV−2.

B. Pump-probe TPDI

Two-particle quantum interference can be used to probe the
entanglement between two identical particles [36]. In the con-
text of photoionization studies, McCurdy and collaborators
have shown the two-particle interference in the joint energy
distribution of the TPDI process in helium [24,26]. For the
present case, we consider a pump-probe scheme of the TPDI
of helium with two XUV pulses with a controllable delay τ ,

�E (t ) = �EXUV1 (t ) + �EXUV2 (t − τ ), (12)

where �EXUV1/2 (t ) indicate the transverse electric fields of the
two pulses. In the present calculation, the two pulses have cen-
tral energies ω1 = 30 eV and ω2 = 60 eV and duration of 1 fs.
At negative time delays, when the 60-eV XUV pulse comes
first, the 30-eV XUV pulse is unable to ionize the residual
He+(1s) ion, which has ionization potential of 54.4 eV, lead-
ing to no TPDI signal around E1 + E2 
 11 eV. If the more
energetic pulse exceeded the 2s/2p shake-up threshold, one
could have observed a signal, since the ionization potential of
the excited He+ ion is below 30 eV. At positive time delays,
the 30-eV pump pulse ionizes the neutral helium atom and,
at some later time τ , the probe pulse ionizes the He+ ion,
leading to He2+ and two photoelectrons with energies E1 and
E2, as illustrated in Fig. 8(a). Thanks to the finite spectral
width of the two pulses, the final state can be reached through
two distinct paths. In one path (blue arrows in the figure), the
first ionization event generates a photoelectron with energy
E1 through the absorption of a photon on the lower-frequency
edge of the pump-pulse spectrum, whereas in the second
ionization event the ion absorbs a photon with frequency on
the upper end of the probe-pulse spectrum. In the other path
(red arrows in the figure), the order with which the two pho-
toelectrons are generated is reversed. In the interval between
the two pulses, the energy of the system along the two path
differs by �E = E2 − E1, and hence the two paths acquire
a phase difference �φ = (E2 − E1)τ . Since the final state is

FIG. 8. (a) Two-electron quantum interferometric scheme: At
time t = 0, a first XUV photon ionizes the neutral helium atom. After
a delay τ , a second XUV photon ionizes He+, creating the He2+

ion and two photoelectrons with energies E1 and E2. Two alternative
paths (red and blue, online) contribute to this process, leading to
interference fringes in the joint energy distribution. (b) Joint energy
distribution as a function of the photoelectron energy sharing and the
pump-probe delay. (c) Joint energy distribution as a function of two
photoelectron energies for a specific time delay, τ = 2 fs.

the same for the two paths, the associated amplitudes interfere
constructively or destructively if �φ is an even or odd integer
multiple of π , respectively. From the energetic point of view,
this interference scheme is analogous to the Ramsey inter-
ference observed in attosecond pump-probe single-ionization
processes [52,53], where the first step excites the system to
different bound metastable states. Here, both events eject a
particle and the interference occurs because the two particles
being ejected are identical. Constructive interference is real-
ized for �φ = 2nπ ,

E2 = E1 + 2 n π

τ
, n ∈ Z. (13)

In the photoelectron joint energy distribution, therefore, the
interference fringes appear as straight lines parallel to the
E2 = E1 diagonal, and separated by a distance d = √

2π/τ

as shown in Fig. 8(c), as it was already highlighted in
Refs. [24,26]. Interference fringes are visible also in the
energy-sharing spectrum, at a fixed total photoelectron energy
Etot = E1 + E2, as a function of the delay, in which case the
condition for constructive interference becomes

α = 1

2
+ n π

Etot τ
, n ∈ Z. (14)

In this case, therefore, the fringes have hyperbolic profiles, as
shown in Fig. 8(b), reminiscent of those observed in single-
ionization attosecond photoelectron spectra [52]. As the time
delay between the pulses increases, of course, the interference
fringes become difficult to resolve experimentally, and the
total signal converges to the incoherent sum of those for the
two alternative paths.

As a final example, we examine the FPVSM predic-
tions for the resonant TPDI of helium enhanced by an
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FIG. 9. Two-color TPDI: joint energy distribution, as a function
of two photoelectron energies, generated by the absorption of two
XUV photon from 40-fs pulses with central energies ω1 = 60.15 eV
and ω2 = 60.9 eV, and zero relative delay. The lower frequency ω1

is in resonance with the sp+
2 bright doubly excited state, which is

5.04 eV below the N = 2 threshold and has a lifetime of 17.6 fs.
In each panel, the pathway corresponding to the associated signal is
shown. The joint energy distributions are normalized by the same
factor. In the conditions of the present calculation, a peak signal of
1 corresponds to a TPDI cross section of 1.5 × 10−51 cm4 s eV−2.

intermediate DES, using a two-color XUV pump-probe
scheme with duration longer than the lifetime of the DES.
In all the cases considered in the following, the two pulses
have zero relative delay. In the past, the role of DES in TPDI
of He has been studied by solving the TDSE with ultrashort
pulses [27]. So far, however, TDSE-based approaches have
considered only intense XUV pulses with attosecond or few
femtosecond duration, which are difficult to realize experi-
mentally. Here we probe these resonances with longer pulses,
which are more easily produced at XFELs facilities. As a case
study, we select the sp+

2 DES intermediate state, which has
a lifetime of 17.6 fs [54]. We study the effect of this state
on the joint photoelectron energy distribution in the TPDI of
helium with a pair of XUV pulses, each with 40 fs duration
and intensity I = 1010 W/cm2.

Figure 9 shows the joint energy distribution when the two
pulses have central energy of 60.15 eV and 60.90 eV. The first
pulse is resonant with the 1s2 − sp+

2 transition, Esp+
2

− Eg =
60.15 eV. The distribution exhibits four distinct peaks in the
E2 > E1 portion of the spectrum, corresponding to whether
both photons are provided from the first pulse [Fig. 9(c)],
from the second pulse [Fig. 9(b)], or one from each pulse
[Figs. 9(a) and 9(d)]. These signals correspond to two resonant
(c and d) and two nonresonant (a and b) transitions. Since
the peaks are narrow compared with their energy distance
in the two-dimensional (2D) spectrum, we show them mag-
nified in four separate panels for clarity. The peaks for the

FIG. 10. (a) Schematic of the resonant TPDI process, which
strongly depends on the detuning δ. (b)–(e) Joint energy distribution
for four different calculations of the resonant TPDI process with
fixed ω2 = 60.9 eV and variable ω1 = Esp+

2
− Eg + δ, where the

detuning is indicated in the panels in units of the resonance width
�r = 0.037 eV. Both pulses have a duration of 40 fs, intensity of
1010 W/cm2, and zero relative delay. The joint energy distributions
are normalized by the same factor. In the conditions of the present
calculation, a peak signal of 1 corresponds to a TPDI cross section of
1.5 × 10−51 cm4 s eV−2.

nonresonant transitions are symmetric relative to the equal
total energy axis, as observed already in the previous section,
with ultrashort pulses. Remarkably, the energy distribution
is not symmetric anymore in the two resonant cases, which
is to be expected given the strong modulation of the first
resonant one-photon transition amplitude. In the FPVSM, the
resonant modulation of the signal follows the Fano profile
of the resonance. Indeed, according to (9), the total ioniza-
tion amplitude is a linear combination of products of dipole
transition amplitudes. With well-separated signals in the joint
spectrum, one of these products dominates, owing to the field
factor. In the resonant case, therefore, the amplitude factorizes
into the product of a structureless field form factor times a
structureless hydrogenic ionization amplitude of the residual
ion and a resonant ionization amplitude from the ground state
to the two-electron continuum. Figures 10(b)–10(e) show the
resonant peak for the transition in Fig. 10(a), for four different
values of the detuning δ of the pump-pulse central energy
from the sp+

2 resonance. The probe photon has a fixed central
frequency ω2 = 60.9 eV. The sp+

2 has a Fano profile with a
negative q parameter, i.e., the transition amplitude increases
monotonically with energy, peaks, and drops to zero at an
energy above the resonant peak, before slowly returning to the
background value. This is reflected in the shape of the profile
in the four panels: at negative detuning, the signal is stretched
below the resonant peak [tail, Figs. 10(b) and 10(c)]. At pos-
itive detuning, the peak and adjacent zero are illuminated,
leading to a signal with energy breath considerably narrower
than the pump pulse’s and comparable to the resonant width.
Even if the resonant profiles of these results are predictable,
they are a valuable starting point to assess the deviation of the
signal, in the exact resonant double ionization case, due to the
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partial decay of a resonance, or the contribution of its direct
double ionization by the probe pulse, for helium as well as for
more complex atoms.

IV. CONCLUSION

In this work, we introduced a FPVSM, based on ab initio
multichannel one-photon transition amplitudes, to describe
the two-photon double ionization process in polyelectronic
atoms and, as a proof of principle, we used it to reproduce
several features of results for the TPDI of atomic helium,
obtained with TDSE simulations. We have calculated the joint
energy distribution of the two photoelectrons and the energy
sharing from the nonsequential to the sequential regime. The
FPVSM allows us to compute the strongly correlated photo-
electron joint energy distribution in the nonsequential regime,
and the uncorrelated counterpart in the sequential regime,
more efficiently than a full TDSE simulation. Unlike previ-
ous TDSE simulations, the CC approach in FPVSM allows
us to quantify the contribution from different channels and
highlights the features associated with each intermediate state
under consideration. Furthermore, the model captures how
the transition from the nonsequential to sequential blurs as
one considers extreme ultrashort pulses with energies near the
double ionization threshold. We demonstrate that the energy
sharing between the photoelectrons significantly changes as
we approach the double ionization threshold and how the two-
peak structure emerges in the sequential regime. The model
is capable of reproducing the salient features of two-particle
interference, already observed in TDSE simulations, which
highlight its explanatory power. We have also applied the
model to study the asymmetry of the resonant TPDI photo-
electron joint energy distribution close to the optically allowed
sp+

2 doubly excited state with long XUV pulses, which is a
regime not explored by TDSE simulations. The model admits
a natural extension to polyelectronic atoms, which present the
additional interesting feature of multiple grandparent ions. An
application of this model to complex atoms such as neon and
argon is ongoing and will be the subject of future work.
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APPENDIX A: TWO-PHOTON DOUBLE IONIZATION
MATRIX ELEMENT

This Appendix details the derivation of the TPDI matrix
element (9). Grandparent-ion wave functions (N − 2 elec-
trons) are denoted by the symbol �A, and parent-ion wave
functions (N − 1 electrons) by the symbol �a. The N-electron
states we will consider here are either bound, |�n〉, single-
ionization, or double ionization states. In the calculation of the
〈A �k1σ1�k2σ2|Oν |�−

α�k′ 〉, the single-ionization wave functions
are approximated using the single-channel functions,

�−
α�k′ 


√
NÂN ��

α (x1 — xN−1; r̂N , ζN ) φ� −
α,
αε (rN ), (A1)

where in ��
α (x1 — xN−1; r̂N , ζN ) the parent ion is coupled to

the angular and spin part of the N th electron to give rise to a
well-defined angular momentum and spin, which are specified
in the collective total-symmetry index � = (S, L,
; �, M ),

��
α (x1 — xN−1; r̂N , ζN )

= [[
�aα

(x1 — xN−1) ⊗ Y
α
(r̂N )

]
LM ⊗ 2χ (ζN )

]
S�

=
∑
Mam

∑
�aσ

CLM
LaMa,
αmCS�

Sa�a,
1
2 σ

×�aα,Ma�a (x1 — xN−1)Y
αm(r̂N )2χσ (ζN ). (A2)

In (A1), the radial photoelectron wave function φ� −
α,
αε (r) is

normalized in such a way that its outgoing component is

[
φ� −

α,
αε (r)
]

out
= 1√

2πkα

eiθα (r)

r
, r → ∞, (A3)

with kα = √
2ε and θα (r) = kαr + Z

kα
ln 2kαr − 
π/2 +

σ
α
(kα ) is the Coulomb phase factor. Finally, AN is

the idempotent antisymmetrizer,

AN = 1

N!

∑
P∈SN

(−1)sgnPP, A2
N = AN = A†

N . (A4)

To define a double-ionization channel, we need to specify,
beyond the total quantum numbers � = (S, L,
; �, M ), the
state of the grandparent ion, �A(x1 — xN−2), and the nonen-
ergy quantum numbers of the two free electrons, namely, their
orbital angular momenta, 
1 and 
2, and the angular coupling
scheme. Asymptotically

�−
A,E1
1m1σ1,E2
2m2σ2

=
√

N (N − 1)ÂN × �A(x1 — xN−2)

⊗2φ−
E1
1m1σ1

(xN−1) ⊗ 2φ−
E2
2m2σ2

(xN ). (A5)

This expression can be cast in a symmetrized combination in
which either electron 1 or 2 is recoupled with the grandparent
ion A to give rise to a scattering state for the system with the
N − 1 electron. Once the transition amplitudes to the states in
(A5) are known, the fully differential TPDI amplitude is read-
ily reconstructed using the expansion of energy-normalized
Coulomb plane waves,

ψ−
E�̂

(�r) =
√

2k

π

∑

m

i
e−iσ
F
(kr)Y ∗

m(k̂)Y
m(r̂)

=
∑

m

i
−1e−iσ
Y ∗

m(k̂)φ−


mE (�r). (A6)

As the next step in the application of the FPVSM,
one of the two photoelectron is angularly and spin and
permutationally coupled to the grandparent ion, using
the well-known identities δαα′δββ ′ = ∑

cγ Ccγ
aα,bβCcγ

aα′,bβ ′ and

ÂN = 1
N [1 − (N − 1)PN−1,N ]ÂN−1. Finally, the recoupled

grandparent/photoelectron state is identified with the scatter-
ing state of the singly ionized system that satisfies the same
outgoing boundary conditions. Since this identification is in
itself an approximation, it breaks the symmetry between the
two photoelectrons. To avoid such bias in the result, there-
fore, it is convenient to symmetrically split (A5) first and,
in each of the two resulting identical components, couple the

013114-9



SIDDHARTHA CHATTOPADHYAY et al. PHYSICAL REVIEW A 108, 013114 (2023)

grandparent ion to either the first or the second photoelectron. The result of this tedious but straightforward process is

�−
A,E1
1m1σ1,E2
2m2σ2

= 1 − (N − 1)PN−1,N

2
√

N

∑
�ℵ

CLℵMℵ
LAMA,
1m1

CSℵ�ℵ
SA�A, 1

2 σ1
�−

ℵE1
(x1 — xN−1) ⊗ 2φ−

E2
2m2σ2
(xN )

− 1 − (N − 1)PN−1,N

2
√

N

∑
��

CL�M�

LAMA,
2m2
CS���

SA�A, 1
2 σ2

�−
�E2

(x1 — xN−1) ⊗ 2φ−
E1
1m1σ1

(xN ), (A7)

where the summations are constrained so that 
ℵ = 
1, 
� = 
2, and we have introduced

�−
ℵE1

(x1 — xN−1) = √
N − 1 ÂN−1

∑
M ′

Am′
1�

′
Aσ ′

1

CLℵMℵ
LAM ′

A,
1m′
1
CSℵ�ℵ

SA�′
A, 1

2 σ ′
1
�A,�′

A,M ′
A
(x1 — xN−2) ⊗ 2φ−

E1
1m′
1σ

′
1
(xN−1). (A8)

To evaluate the dipole matrix element between a double-ionization and a single-ionization continuum, we further assume that
the unbound electron in the latter does not participate in the transition and plays the role of a spectator instead.

Using Wigner-Eckart theorem and the orthogonality of the continuum wave functions, we get〈
�−

A,E1
1m1σ1,E2
2m2σ2

∣∣Oν

∣∣��(−)
αE

〉
= 1

2

∑
�ℵ

CSa�ℵ
SA�A, 1

2 σ1
CS�

Sa�ℵ, 1
2 σ2

∑
Lℵ

1


Lℵ

〈
�−

ℵE1

∥∥O1

∥∥�aα

〉
δ
2
α

δ(E − Ea − E2)
∑

MℵMa

CLℵMℵ
LAMA,
1m1

CLM
LaMa,
2m2

CLℵMℵ
LaMa,1ν

− 1

2

∑
��

CSa��

SA�A, 1
2 σ2

CS�

Sa��, 1
2 σ1

∑
L�

1


L�

〈
�−

�E2

∥∥O1

∥∥�aα

〉
δ
1
α

δ(E − Ea − E1)
∑

M�Ma

CL�M�

LAMA,
2m2
CLM

LaMa,
1m1
CL�M�

LaMa,1ν (A9)

Now, we can evaluate the two-photon matrix element

〈
�−

A,E1
1m1σ1,E2
2m2σ2

∣∣OνG+
0 (Eg + ω)Oμ|g〉 =

∑
�α

∫
dE

〈
�−

A,E1
1m1σ1,E2
2m2σ2

∣∣Oν

∣∣��(−)
αE

〉 〈
�

�(−)
αE

∣∣Oμ|g〉
Eg + ω − E + i0+ . (A10)

In the relevant special case of an initial states with 1S symmetry,〈
�−

A,E1
1m1σ1,E2
2m2σ2

∣∣OνG+
0 (Eg + ω)Oμ|g〉

= 1 − P12

2
√

3

CSA−�A
1
2 σ2,

1
2 σ1


SA

∑
aL

1


L

〈
�

2Sa+1Lπ̄a (−)
A
1E1

∥∥O1

∥∥�a
〉 〈

�
1Po(−)
a
2E2

∥∥O1

∥∥g
〉

Eg + ω − Ea − E2 + i0+
∑
MMa

CLM
LAMA,
1m1

C1μ

LaMa,
2m2
CLM

LaMa,1ν, (A11)

where ē = o and vice versa. Convolution with the external field (6) readily yields (9).

APPENDIX B: TWO-PHOTON FREQUENCY INTEGRAL

In this Appendix, we derive the general formula for the
two-photon frequency integral that appears in Eq. (9) in terms
of Faddeyeva function,

I21 =
∫

dω
Ã2(En − ω)Ã1(ω)

Ep + ω + i0+ , (B1)

where the numerator frequency detuning En and the pole
shift Ep are known functions of the final energy of the two
photoelectrons as well as of the energy of the intermedi-
ate and final ion, whereas Ãi(ω) (i = 1, 2) are the spectra
of two unchirped Gaussian pulses. Here, the vector poten-
tials of the two linearly polarized pulses in the time domain
(notice that since we are considering arbitrary sequences of
linearly polarized pulses, we are also automatically including
the case of arbitrarily polarized pulses as well), �Ai(t ), are
defined as �Ai(t ) = ε̂iAie−σ 2

i (t−ti )2/2 cos[(ω − ωi )t + ϕi], where
ε̂i is the light polarization, Ai the vector potential amplitude,
ϕi the carrier-envelope phase, ωi the central frequency, and
σi the standard deviation of the vector-potential spectrum.

The temporal duration of the pulse, normally identified with
the full width at half maximum (FWHM) of the pulse in-
tensity, is then FWHM = 2

√
ln 2σ−1

i . In the following it is
useful to split each pulse �Ai(t ) in its positive- and negative-
central-frequency components �A±

i (t ), �Ai(t ) = �A+
i (t ) + �A−

i (t ),
�A±

i (t ) = ε̂i
Ai
2 e−σ 2

i (t−ti )2/2e±i[(ω−ωi )t+ϕi]. The pulse spectrum,
defined as

Ãi(ω) ≡ (2π )−1/2
∫

dt ε̂∗
i · Ai(t )eiωt , (B2)

also separates in the sum of a positive- and a negative-central-
frequency component, Ãi(ω) = Ã+

i (ω) + Ã−
i (ω),

Ã±
i (ω) = Ai

2σi
exp

[
i(ωti ∓ ϕi ) − (ω ∓ ωi )

2/2σ 2
i

]
. (B3)

In the case of the absorption of two photons,

I21 =
∫

dω
Ã+

2 (En − ω)Ã+
1 (ω)

Ep + ω + i0+ . (B4)
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Let us introduce the delay τ between the two pulses, τ = t2 −
t1. The numerator in (B4) then reads

Ã+
2 (En − ω)Ã+

1 (ω)

= A1A2

4σ1σ2
e−i(ϕ1+ϕ2 ) eiEnt2

× exp

[
− (ω − ω1)2

2σ 2
1

− (ω − En + ω2)2

2σ 2
2

− iωτ

]

(B5)

and the frequency integral I21 can be rewritten as

I21 = A1A2

4σ1σ2
e−i(ϕ1+ϕ2−Ent2 )

× e−ω2
1/2σ 2

1 −(En−ω2 )2/2σ 2
2 +σ 2

t (ω̃−Ep)2/2

×
∫ ∞

−∞
dω

exp
[−σ 2

t (ω − ω̃)2/2
]

ω + i0+ , (B6)

where we have introduced the new parameters

σt =
√

1/σ 2
1 + 1/σ 2

2 , (B7)

ω̃ = Ep +
(

ω1

σ 2
1

+ En − ω2

σ 2
2

− iτ

)/
σ 2

t . (B8)

The residual integral in (B6) can be expressed in closed form
in terms of the Faddeyeva function of complex argument
W (z), which, in the upper complex semiplane, admits the

following integral representation (see Ref. [44, Eq. 7.7.2]),

W (z) ≡ i

π

∫ ∞

−∞

e−t2
dt

z − t
, �z > 0. (B9)

The Faddeyeva function can be extended analytically to the
remainder of the complex plane, W (z) = 2/ez2 − W (−z). To
compute the frequency integral, let us change the integration
variable from ω to y = σt (ω − ω̃)/

√
2,∫ ∞

−∞
dω

exp
[−σ 2

t (ω − ω̃)2/2
]

ω + i0+ =
∫ ∞+i �z

−∞+i �z

e−y2
dy

z − i0+ − y
,

where z = −σt ω̃/
√

2.
If �z > 0, the pole z − i0+ is below the integration path,∫ ∞+i �z

−∞+i �z

e−y2
dy

z − i0+ − y

=
∫ ∞

−∞

e−y2
dy

z − y
− 2 e−z2

= −iπW (z) + 2iπ e−z2 = iπW (−z). (B10)

The same result is obtained for �z < 0, and hence

I21 = −iπ
A1A2

4σ1σ2
e−i(ϕ1+ϕ2−Ent2 )

× e−ω2
1/2σ 2

1 −(En−ω2 )2/2σ 2
2 +σ 2

t (ω̃−Ep)2/2 W
(

σt ω̃√
2

)
. (B11)
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