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the critical parameters, vapor pressures, saturated liquid and vapor densities,

(p, ρ, T ) behavior, vapor-phase sound speeds, liquid-phase sound speeds, and

ideal-gas isobaric heat capacities. The equation is valid at temperatures from

the triple-point temperature (157.8 K) to 473 K and pressures up to 35 MPa.

In the valid range, expected relative uncertainties (k = 2) of the equation

are 0.04 % for vapor pressures, 0.1 % for saturated liquid densities, 2 % for

saturated vapor densities, 0.05 % for liquid densities, 0.3 % for vapor densi-

ties, 0.02 % for vapor-phase sound speeds, and 0.04 % for liquid-phase sound

speeds, except in the critical region, where more significant uncertainties of

up to 2 % are sometimes observed in densities. The equation exhibits reason-

able behavior in the critical and extrapolated regions; this is demonstrated

by several plots of derived properties over wide ranges of temperature and

pressure.

Keywords Density · Equation of state · Heat capacity · R-1224yd(Z) · Sound

speed · Vapor pressure · Virial coefficient

1 Introduction

The substance cis-1-chloro-2,3,3,3-tetrafluoro-1-propene (CAS No. 111512-60-

8), also known as R-1224yd(Z), is one of the environmentally friendly refrig-

erants with negligible ozone depletion potential (ODP) and ultra-low global

warming potential (GWP), which are 0.00023 and 0.88 (100yr), respectively [1].

This novel refrigerant is classified into the safety group “A1” (no flame prop-

agation and lower toxicity) according to the ANSI/ASHRAE safety classi-
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fication [2]. Its non-flammability and preferable thermodynamic properties

are suitable for a working fluid of large-scale centrifugal chillers or high-

temperature heat pumps as an alternative to 1,1,1,3,3-pentafluoropropane (R-

245fa) or 2,2-dichloro-1,1,1-trifluoroethane (R-123), and analytical and/or ex-

perimental studies were extensively performed [3–8]. In addition, for organic

Rankin cycles (ORC) for the recovery of waste heat, performance analyses

were also attempted from both theoretical and experimental aspects [9–11].

Akasaka et al. [12] developed the first fundamental equation of state for R-

1224yd(Z) in 2017 based on early experimental data for the vapor pressure [13,

14], saturated liquid and vapor densities [13,14], (p, ρ, T ) behavior [13], vapor-

phase sound speed [15], and ideal-gas isobaric heat capacity [15]. Since the

equation of state is available in REFPROP version 10.0 [16], it was often em-

ployed in the studies mentioned above; however, the first equation sometimes

calculates inaccurate values for the vapor pressure and liquid properties be-

cause some of the early experimental data to which the equation was fitted

were obtained with a low-purity sample, and because the data were located at

limited ranges of temperature and pressure.

After the first equation of state was published, precise measurements be-

came available for liquid densities and liquid-phase sound speeds at higher

pressures [17–21]. Vapor pressure data consistent with these liquid-phase data

were also reported [22]. This work formulated a new fundamental equation of

state for R-1224yd(Z) mainly based on these recently published experimen-

tal data. Compared to the first equation, the new equation of state can be
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applied to more extensive ranges of temperature and pressure and calculates

more reasonable values for the vapor pressure, liquid density, and liquid-phase

sound speed. The following sections discuss the fundamental constants of R-

1224yd(Z), ancillary equations for the saturation properties, the functional

form of the new equation of state, and comparisons to experimental data.

Demonstrative plots are also provided to confirm reasonable behavior of the

equation in the critical and extrapolated regions. Finally, expected uncertain-

ties in properties calculated with the equation of state are presented as the

conclusions.

2 Fundamental Constants

Figure 1 shows the molecular structure of R-1224yd(Z). The presence of a

carbon-carbon double bond in the molecule yields a relatively short atmo-

spheric lifetime of 20 days [1]. Table 1 lists the fixed-point constants and other

characteristic properties of R-1224yd(Z), which are values calculated from the

equation of state developed in this work, except the molar mass M , molar gas

constant R, critical temperature Tc, and triple-point temperature Ttp. Sakoda

and Higashi [22] experimentally determined the critical temperature, density,

and pressure as 428.69 ± 0.02 K, 535 ± 5 kg ·m−3 (≈ 3.603 mol · dm−3), and

3.331 ± 3 MPa. This critical temperature was used as the reducing temper-

ature for the equation of state. Generally, experimental critical densities in-

volve larger uncertainties than those in critical temperatures due to the infinite

compressibility at the critical point and the difficulty of reaching thermody-
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namic equilibrium; therefore, this work used the experimental critical density

of Sakoda and Higashi [22] as an initial value for the reducing density, which

was then slightly adjusted within the range of their uncertainty while fitting of

the equation of state. This yields better representations of densities and vapor

pressures near the critical point. The resulting value for the critical density

(reducing density) was 3.632 mol · dm−3. The final equation of state calcu-

lates the critical pressure as 3.334 MPa at 428.69 K and 3.632 mol · dm−3,

which almost agrees with the experimental value of Sakoda and Higashi [22].

Tanaka and Akasaka [23] also reported experimental critical parameters as

428.82± 0.03 K, 540.8± 7 kg ·m−3 (≈ 3.642 mol · dm−3), and 3.327± 7 MPa;

they are similar to the values of Sakoda and Higashi [22]. Tomassetti et al. [24]

measured the melting point of R-1224yd(Z) as 157.8 K, which is regarded in

this work as the triple-point temperature and the lower temperature limit of

the applicable range of the equation of state. The vapor pressure at the triple

point is calculated as 0.00254 kPa from the final equation of state.

Fig. 1 Molecular structure of R-1224yd(Z) obtained from the geometry optimization with

Gaussian 09 [25]
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Table 1 Fixed-point constants and other characteristic properties of R-1224yd(Z)a

Property Symbol Value Unit

CAS number 111512-60-8

Chemical formula CF3CF=CHCl (cis)

Molar mass M 148.4867 g ·mol−1

Molar gas constant R 8.314462618 J ·mol−1 ·K−1

Critical temperature Tc 428.69 K

Critical pressure pc 3.334 MPa

Critical density ρc 3.632 mol · dm−3

Triple-point temperature Ttp 157.8 K

Triple-point pressure ptp 0.00254 kPa

Saturated liquid density

at triple point ρ′tp 11.49 mol · dm−3

Saturated vapor density

at triple point ρ′′tp 1.933× 10−6 mol · dm−3

Normal boiling point temperature Tb 288.004 K

Saturated liquid density

at normal boiling point ρ′b 9.344 mol · dm−3

Saturated vapor density

at normal boiling point ρ′′b 0.04450 mol · dm−3

Acentric factor ω 0.3247 –

Reference temperature T0 273.15 K

Reference pressure p0 0.001 MPa

Ideal-gas enthalpy at reference state h◦
0 56255.100000 J ·mol−1

Ideal-gas entropy at reference state s◦0 278.76489776 J ·mol−1 ·K−1

aAll properties in this table were determined in this work except M , R, Tc, and Ttp.

3 Ancillary Equations

Ancillary equations for the vapor pressure and saturated liquid and vapor

densities were formulated based on values calculated from the equation of

state. They provide rapid calculations of the saturation properties and also give

excellent initial guesses for the iterative process to find rigorous solutions from

the equation of state based on the Maxwell criterion. The equations presented

here fulfill the requirements for the ancillary equations stated by Lemmon and

Goodwin [26] and Gao et al. [27]. Coefficients Ni of each equation are given

in Table 2.
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The equation for the vapor pressure ps is

ln

(
ps
pc

)
=

Tc

T

(
N1θ +N2θ

1.5 +N3θ
2.95 +N4θ

5.8
)
, (1)

where pc is the critical pressure (3.334 MPa), Tc is the critical temperature

(428.69 K), and θ = 1 − T/Tc. Equation 1 is valid at temperatures from the

triple point (157.8 K) to the critical temperature, and the average absolute

deviation from the rigorous Maxwell solution is 0.0099 %. The saturated liquid

and vapor densities (ρ′ and ρ′′) are calculated from the equations

ρ′

ρc
= 1 +N1θ

0.293 +N2θ
0.332 +N3θ

1.09 +N4θ
1.55 +N5θ

1.9 (2)

and

ln

(
ρ′′

ρc

)
= N1θ

0.23 +N2θ
0.824 +N3θ

2.72 +N4θ
6 +N5θ

13, (3)

where ρc is the critical density (3.632 mol · dm−3). Equations 2 and 3 are

applicable in the range from the triple-point temperature to the critical point

temperature, and the average absolute deviations from the rigorous Maxwell

solution are 0.0037 % in Eq. 2 and 0.0072 % in Eq. 3. Figure 2 shows relative

deviations in values calculated with Eqs. 1, 2, and 3 versus temperature.

Table 2 Coefficients of Eqs. 1, 2, and 3

Eq. 1 Eq. 2 Eq. 3

N1 −7.5763 3.7298 −1.1894

N2 1.5053 −2.6186 −6.3255

N3 −3.7306 5.9922 −18.408

N4 −2.7425 −10.250 −53.621

N5 6.1004 −135.5
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Fig. 2 Relative deviations in vapor pressures, saturated liquid densities, and saturated

vapor densities calculated with the ancillary equations (χanc) from the Maxwell solution of

the full equation of state (χeos): (black solid line) vapor pressure; (blue dotted line) saturated

liquid density; (red dashed line) saturated vapor density.

4 Equation of State

The equation of state is expressed explicitly in the Helmholtz energy as the

fundamental property with independent variables of temperature and density.

The equation has the form

a(T, ρ)

RT
= α(τ, δ) = α◦(τ, δ) + αr(τ, δ), (4)

where a is the molar Helmholtz energy, α is the dimensionless Helmholtz en-

ergy, R is the molar gas constant, τ = Tc/T is the reciprocal reduced tem-

perature, and δ = ρ/ρc is the reduced density. The value of R used in this

work is 8.314462618 J ·mol−1 ·K−1 [28], which is a concise form of the exact

value. The dimensionless Helmholtz energy α is split into an ideal-gas part α◦

representing ideal-gas properties and a residual part αr corresponding to the

influence of intermolecular forces between molecules.
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The equation of state given by Eq. 4 is one of four fundamental forms in

thermodynamics, and all thermodynamic properties in the single phase are

calculated from derivatives of Eq. 4. Mathematical expressions for thermo-

dynamic properties are presented in the literature [29,30]. The location of

the saturation boundaries requires an iterative solution of the physical con-

straints on saturation (the Maxwell criteria). Kretzschmar et al. [31], Span [29],

and Akasaka [32] discuss robust numerical algorithms to correctly obtain the

Maxwell solutions.

4.1 Ideal-gas Helmholtz Energy

The ideal-gas Helmholtz energy a◦ is given by

a◦ = h◦ − pv − Ts◦ = h◦ −RT − Ts◦, (5)

where h◦ and s◦ are the ideal-gas enthalpy and entropy expressed as

h◦(T ) = h◦
0 +

∫ T

T0

c◦p(T ) dT (6)

and

s◦(T, ρ) = s◦0 +

∫ T

T0

c◦p(T )−R

T
dT −R ln

(
ρ

ρ0

)
, (7)

where c◦p is the ideal-gas isobaric heat capacity, T0 is the temperature at the

reference state (273.15 K), ρ0 = p0/(RT0) is the ideal-gas density at the refer-

ence state, p0 is the reference state pressure (0.001 MPa), and h◦
0 and s◦0 are

the ideal-gas enthalpy and entropy at the reference state. Values for h◦
0 and

s◦0 are arbitrary, and this work determined them so that the specific enthalpy
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and entropy of the saturated liquid state at 273.15 K are 200 kJ · kg−1 and

1 kJ · kg−1 ·K−1, corresponding to the common convention of the refrigeration

industry. This was made after establishing the residual part. The final values

for h◦
0 and s◦0 are given in Table 1.

From Eqs. 5, 6, and 7, we obtain

a◦(T, ρ)

RT
=

h◦
0

RT
− s◦0

R
− 1 +

1

RT

∫ T

T0

c◦p(T ) dT

− 1

R

∫ T

T0

c◦p(T )−R

T
dT +R ln

(
ρ

ρ0

)
(8)

or

α◦(τ, δ) =
h◦
0τ

RTc
− s◦0

R
− 1 +

1

R

∫ τ

τ0

c◦p
τ
dτ − τ

R

∫ τ

τ0

c◦p
τ2

dτ + ln

(
δτ0
δ0τ

)
, (9)

where τ0 = Tc/T0 and δ0 = ρ0/ρc. Equation 9 indicates that the dimensionless

ideal-gas Helmholtz energy α◦ can be analytically derived from an equation

for the ideal-gas isobaric heat capacity. The rigid-rotor harmonic-oscillator

(RRHO) approximation [33] is an approach to represent the ideal-gas heat

capacities. For example, the ideal-gas isochoric heat capacity c◦v for nonlinear

polyatomic molecules consisting of n atoms is given by

c◦v = 3R+R

3n−6∑
j=1

(
Θj

T

)2
exp(Θj/T )

[exp(Θj/T )− 1]2
, (10)

where Θj is the vibrational temperatures calculated from fundamental vibra-

tional frequencies. In the right hand side, 3R arises from the translational

and rotational contributions (3/2R+3/2R), and the summation describes the

vibrational contributions. Values of Θj can be estimated from spectroscopic

data or quantum calculations; however, accurate and complete analyses for c◦v
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according to Eq. 10 are generally limited to a few simple molecules such as

diatomic and triatomic molecules. For polyatomic molecules, the RRHO ap-

proximation sometimes yields significant errors due to other additional effects,

including the vibrational anharmonicity or the couplings between nuclear spin

and molecular rotation, electronic and vibrational states, and vibrational and

rotational states. Modifications of the RRHO model were attempted for rel-

atively simple polyatomic molecules. For example, Pennington and Kobe [34]

presented correction terms based on the first-order correction for the vibra-

tional anharmonicity and rotation-vibration interaction. The correction terms

were successfully employed for nitrous oxide. Tillner-Roth and Yokozeki [35]

applied the correction terms of Pennington and Kobe [34] to difluoromethane

(R-32) and formulated the ideal-gas Helmholtz energy of this refrigerant. For

other polyatomic molecules, however, the complexity significantly increases in

the application of the correction term. From a different viewpoint, Demenay et

al. [36] introduced a scaling factor for Θj determined by fitting to experimental

data of the ideal-gas heat capacity; however, this approach can be employed

only for fluids for which experimental ideal-gas heat capacities are available.

In this work, the c◦p equation was empirically formulated based on the ex-

perimental data for the ideal-gas isobaric heat capacity and vapor-phase sound

speed, following the recent fashion in the development of accurate equations of

state. An initial equation consisting of several representative terms for vibra-

tional contributions was roughly fitted to the experimental c◦p data of Kano et

al. [15], and was further adjusted in the fitting of the residual part so that the
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full equation of state represents experimental vapor-phase sound speeds [15]

within their uncertainties. During the fitting, insignificant vibrational terms

were removed, and terms with similar vibrational temperatures were combined

into a single term. They were physically constrained so that the sum of coeffi-

cients would be close to the number of vibrational modes (3n−6) for non-linear

polyatomic molecules. The final c◦p equation for R-1224yd(Z) is given by

c◦p
R

= n◦
0 +

2∑
i=1

n◦
i

(
m◦

i

T

)2
exp(m◦

i /T )

[exp(m◦
i /T )− 1]2

, (11)

where the coefficients n◦
i and exponents m◦

i are shown in Table 3. Figure 3

shows c◦p values calculated from Eq. 11, as well as the experimental data [15].

Equation 11 represents the experimental data within their uncertainties. The

ideal-gas Helmholtz energy derived from Eq. 11 is expressed as the form

α◦(τ, δ) = ln δ+n◦
3+n◦

4τ+(n◦
0−1) ln τ+

2∑
i=1

n◦
i ln

[
1− exp

(
−m◦

i τ

Tc

)]
, (12)

where the coefficients n◦
3 and n◦

4 are given in Table 3. The additional digits in

these numbers are required to obtain the enthalpy and entropy values specified

at the reference state.

Table 3 Coefficients and exponents of Eqs. 11 and 12 for R-1224yd(Z)

i n◦
i m◦

i

0 4.0 -

1 9.057 511

2 11.91 1425

3 −17.859290811 -

4 11.052900649 -
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Fig. 3 Ideal-gas isobaric heat capacity c◦p of R-1224yd(Z): (red ◦) Kano et al. [15]; (solid

line) Eq. 11.

4.2 Residual Helmholtz Energy

While the ideal-gas Helmholtz energy can be derived analytically from the

ideal-gas heat capacities, the residual Helmholtz energy must be empirically

determined. This work employed the following functional form for the residual

part:

αr(τ, δ) =
∑

niτ
tiδdi +

∑
niτ

tiδdi exp(−δei)

+
∑

niτ
tiδdi exp

[
−ηi(δ − εi)

2 − βi(τ − γi)
2
]
, (13)

where the first, second, and final summations are called polynomial, expo-

nential, and Gaussian bell-shaped (simply Gaussian) terms, respectively. This

form has often been used in the development of accurate equations of state
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for industrial fluids. The number of terms, coefficients (ni), exponents (ti, di,

and ei), and Gaussian parameters (ηi, εi, βi, and γi) are optimized by non-

linear least-square fitting to experimental data under various thermodynamic

constraints to ensure that the equation of state reasonably behaves in the crit-

ical and extrapolated regions. The algorithm for this procedure was originally

developed by Lemmon and Jacobsen [30] and has been greatly extended by

collaborations between correlators [27,37–42] over the last decade. Lemmon

and Akasaka [43] and Akasaka and Lemmon [44] summarize the most recent

fitting techniques. Akasaka and Lemmon [41] and Romeo and Lemmon [45]

give examples of the thermodynamic constraints. As a starting point of the

fitting, the residual part for R-1234yf [43] was used in this work, as done in

the developments of the equations for R-1123 [42] and R-1132(E) [46]. During

the fitting, two additional terms with higher temperature exponents were in-

troduced to obtain reasonable effective inverse power law exponents (neff) [47]

at temperatures below the critical temperature. The final form of the residual

part for R-1224yd(Z) is given by

αr(τ, δ) =

5∑
1

niτ
tiδdi +

12∑
6

niτ
tiδdi exp(−δei)

+

19∑
13

niτ
tiδdi exp

[
−ηi(δ − εi)

2 − βi(τ − γi)
2
]
, (14)

where the coefficients, exponents, and Gaussian parameters are shown in Ta-

ble 4. The 7th and 12th terms are those newly introduced in this work, and

their effects are illustrated later.
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Table 4 Coefficients and exponents of Eq. 14 for R-1224yd(Z)

i ni ti di ei ηi βi γi εi
1 0.05515868 1.0 4

2 1.9416962 0.226 1

3 −2.2385068 0.661 1

4 −0.84144625 1.128 2

5 0.22459576 0.51 3

6 −1.6513724 1.98 1 2

7 −0.022916841 8.5 1 3

8 −1.588437 2.27 3 2

9 0.56220803 0.89 2 1

10 −0.67885338 2.78 2 2

11 −0.027421084 1.0 7 1

12 −0.021429988 6.36 2 3

13 0.26924542 4.5 2 23.96 1028. 1.06 0.9578

14 −0.33022951 2.84 2 23.81 1014. 1.062 0.9577

15 2.2799188 1.15 1 1.327 1.23 1.296 0.8713

16 −0.42644754 1.25 1 1.941 1.146 1.245 1.183

17 −0.38611218 2.32 1 1.516 0.803 1.0 1.25

18 0.13232403 3.5 1 1.7 0.83 1.45 1.19

19 −0.33124629 1.06 1 2.23 1.21 1.215 0.842

5 Comparison to Experimental Data

Table 5 summarizes the experimental data currently available for R-1224yd(Z).

Figures 4 shows the distribution of the (p, ρ, T ) and sound speed data on a p–T

diagram, as well as the vapor pressure curve calculated from the equation of

state. Although the equation of state was fitted only to selected experimental

data, comparisons were made to all available data in Table 5, including those

not used in the fitting. The quality of the fit is evaluated mainly by comparing

expanded experimental uncertainties at the 95 % confidence interval (coverage

factor k = 2) in experimental data to their average absolute deviations (AAD)

from values calculated with the equation of state; the AAD is given by

AADχ =
100

Nexp

Nexp∑
i=1

∣∣∣∣χi, exp − χi, calc

χi, exp

∣∣∣∣ , (15)
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where Nexp is the number of data points in a dataset, χi, exp is the ith exper-

imental value of a property χ, and χi, calc is the calculated value at the state

conditions for χi, exp. Table 5 gives the AADχ for each dataset. For compari-

son, the values from the first equation [12] are also given. Density deviations

at their given temperatures and pressures are shown for the (p, ρ, T ) data. For

the vapor pressure, absolute differences in experimental data from calculated

values (|χi, exp − χi, calc|) are sometimes evaluated.

Fig. 4 Distribution of the experimental (p, ρ, T ) and sound speed data of R-1224yd(Z).

(p, ρ, T ) data: (black ×) Fukushima et al. [13]; (red •) Sakoda and Higashi [22];

(black ∗) Romeo et al. [18]; (orange □) Fedele et al. [19]. Sound speed: (blue ▽) Lago

et al. [17]; (green +) Kano et al. [15]; (black ⊚) Nishiyama et al. [20].
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Table 5 Available experimental data for the thermodynamic properties of R-1224yd(Z)

Purity Range AAD (%)

Author Year N (mass%) T/K p/MPa First EOS [12] This work

Vapor pressure

Fukushima et al. [13] 2016 37 98.4 313–428 0.18 0.40

Higashi and Akasaka [14] 2016 24 99.5 310–425 0.31 0.46

Sakoda and Higashi [22] 2019 15 99.25a 310–410 0.35 0.02

Raabe [48]b 2020 9 – 300–400 3.70 3.33

Bobbo et al. [49] 2020 31 99.25 293–353 0.41 0.88

Beltramino et al. [50] 2023 66 n.a. 274–338 0.45 0.26

Saturated liquid density

Fukushima et al. [13] 2016 9c 98.4 286–423 0.14 0.32

Higashi and Akasaka [14] 2016 5 99.5 409–428 1.60 1.75

Fedele et al. [19] 2020 9 99.25 283–363 0.04 0.03

Raabe [48]b 2020 9 – 300–400 1.07 1.05

Saturated vapor density

Fukushima et al. [13] 2016 5c 98.4 358–428 1.44 2.28

Higashi and Akasaka [14] 2016 6 99.5 424–428 3.29 1.50

Raabe [48]b 2020 9 – 300–400 7.94 7.42

(p, ρ, T ) data

Fukushima et al. [13] 2016 85 98.4 358–473 0.82–9.50 1.83 3.24

Sakoda and Higashi [22] 2019 46 99.25a 330–420 0.36–6.41 0.15 0.17

Romeo et al. [18] 2019 80 99.25 273–353 0.99–35.1 0.03 0.07

Fedele et al. [19] 2020 94 99.25 283–363 1.00–35.0 0.05 0.02

Speed of sound

Lago et al. [17] 2018 67 99.25 263–353 0.20–35.2 0.59 0.02

Kano et al. [15] 2020 36 99.85 303–353 0.04–0.20 0.01 0.01

Nishiyama et al. [20] 2021 11 n.a. 303–333 0.21–10.0 0.41 0.08

Isobaric heat capacity

Fujiwara et al. [51] 2016 32 n.a. 278–323 0.48–0.51 0.81 1.59

Ideal-gas isobaric heat capacity

Kano et al. [15] 2020 6 99.85 303–353 0.39 1.05
aMole fraction
bMolecular simulation
cData in the vicinity of the critical point are excluded.

5.1 Saturation Properties

Five datasets are available for experimental vapor pressures of R-1224yd(Z).

Figure 5 shows relative deviations and differences in these data from values

calculated with the equation of state. The data of Sakoda and Higashi [22],

which are most consist with the (p, ρ, T ) and sound speed data, are less scat-

tered and accurately represented. The AAD in the data are 0.022 %, and all
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data points are represented within their experimental uncertainty (1 kPa).

The datasets of Higashi and Akasaka [14], Fukushima et al. [13], and Bobbo et

al. [49] are less consistent with other experimental data, and they often show

deviations larger than their experimental uncertainties. Although the data of

Higashi and Akasaka [14] are reasonably represented at temperatures above

390 K, the deviations become gradually significant as temperature decreases.

The deviation and difference at the lowest temperature (310 K) are 1.8 % and

4.0 kPa. Both the data of Fukushima et al. [13] and Bobbo et al. [49] show

systematic positive deviations. The data of Fukushima et al. [13] always show

deviations of around 0.5 %, and at temperatures above 400 K the differences

exceed 10 kPa, which are off-scale in the figure. The data of Bobbo et al. [49]

show more significant deviations than those of Fukushima et al., and the max-

imum difference is 5.3 kPa. The data of Beltramino et al. [50], published after

the equation of state was established, are located at the lowest temperatures.

They are consistent with the data of Sakoda and Higashi [22] at temperatures

above 310 K. Deviations become larger at lower temperatures, but differences

are always within 0.6 kPa, which is comparable to the experimental uncertain-

ties.

Figure 6 shows the saturation boundary calculated from the equation of

state on a T -ρ diagram, along with the experimental data for the saturated

liquid and vapor densities [13,14,19]. The calculated saturation boundary rea-

sonably expresses the experimental data. The rectilinear diameter (the mean

value of the saturated liquid and vapor densities) is straight up to the critical
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Fig. 5 Relative deviations (top panel) and differences (bottom panel) in the experimen-

tal vapor pressures of R-1224yd(Z) from values calculated with the equation of state:

(black ×) Fukushima et al. [13]; (blue △) Higashi and Akasaka [14]; (red •) Sakoda and Hi-

gashi [22]; (orange □) Bobbo et al. [49]; (green ◀) Beltramino et al. [50]; (solid line) Akasaka

et al. [12] (first equation of state).

point, which is the physically correct behavior. Figure 7 shows relative devi-

ations in the experimental data for the saturated liquid density. The data of

Fedele et al. [19] are accurately represented; the AAD is 0.03 %, which is less

than the experimental uncertainty in the density measurement (about 0.06 %).

The data of Fukushima et al. [13] below 325 K agree with the equation, but

data points above 420 K, probably including higher uncertainties, show larger

deviations, which were excluded from the statistical analysis given in Table 5.
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The data of Higashi and Akasaka [14] also include data points in the critical

region, but they are represented reasonably.

Fig. 6 Saturation boundary calculated from the equation of state (solid line) and experi-

mental data for the saturated densities. Saturated liquid density: (black ×) Fukushima et

al. [13]; (blue △) Higashi and Akasaka [14]; (orange □) Fedele et al. [19] Saturated vapor

density: (red ×) Fukushima et al. [13]; (black ▽) Higashi and Akasaka [14]. The dashed line

(RD) indicates the rectilinear diameter (ρ′ + ρ′′)/2.

5.2 (p, ρ, T ) Data

Four datasets have been published for the (p, ρ, T ) behavior of R-1224yd(Z).

Density deviations in these datasets from values calculated with the equation

of state are shown in Fig. 8. The data of Fukushima et al. [13] are located in the

vapor and supercritical regions. Deviations in the data are scattered due to low
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Fig. 7 Relative deviations in the experimental data for the saturated liquid density of R-

1224yd(Z) from calculated values with the equation of state: (black ×) Fukushima et al. [13];

(blue △) Higashi and Akasaka [14]; (orange □) Fedele et al. [19].

sample purity, and some data points near the critical point show a significant

deviation of over 10 %. The data of Sakoda and Higashi [22] include data points

both in the vapor and liquid phases. The authors state that the experimental

uncertainty in the density measurement is 0.15 %. Although the vapor data are

slightly scattered, no systematic deviations are observed. The vapor, liquid,

and overall AADs are 0.19 %, 0.12 %, and 0.17 %, respectively; they are similar

to the experimental uncertainties. Figure 9 shows the second virial coefficient

B derived from the vapor phase data of Sakoda and Higashi [22], as well as

those calculated from the equation of state. The second virial coefficients from

the equation are almost in accord with those from the experimental data.

The datasets of Romeo et al. [18] and Fedele et al. [19] are located in the

liquid region at pressures up to 30 MPa, and they are accurately represented

with the equation of state. Romeo et al. [18] first evaluated the experimental

uncertainty in their density measurements as 0.05 %, and then it was revised

to 0.044 % in their recent work [21]; this is sufficiently comparable to their
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AAD (0.07 %). The experimental uncertainties in the data of Fedele et al. [19]

are estimated to be between 0.01 % and 0.11 %, depending on temperature and

pressure. The AAD in the data is 0.02 %, and all data points are represented

within their uncertainties.

Fig. 8 Relative density deviations in the experimental (p, ρ, T ) data from values calculated

with the equation of state: (black ×) Fukushima et al. [13]; (red •) Sakoda and Higashi [22];

(black ∗) Romeo et al. [18]; (orange □) Fedele et al. [19].
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Fig. 9 Second virial coefficient B: (red •) Derived from experimental vapor phase (p, ρ, T )

data of Sakoda and Higashi [22]; (solid line) Calculated from the equation of state.

5.3 Caloric Data

For the sound speed of R-1224yd(Z), three datasets are available; one for the

vapor phase and the others for the liquid phase. Deviations in these data

are shown in Fig. 10. Overall, all datasets are mostly consistent with each

other and are reasonably represented by the equation of state. Kano et al. [15]

claim that a typical standard uncertainty in their vapor-phase sound speed

data is 0.01 m · s−1; this corresponds approximately to a relative expanded

uncertainty (k = 2) of 0.015 %, and a similar AAD (0.014 %.) is observed in

these data. All data points are represented within 0.08 %. The data of Lago

et al. [17] for the liquid phase excellently agree with values calculated from

the equation of state. The AAD in the data (0.02 %) is less than the relative

expanded uncertainty (0.07 %) claimed by the authors, which was revised

to 0.055 % in their recent work [21], and 93 % out of all data points are

represented within this revised uncertainty. The data of Nishiyama et al. [20]
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for the liquid phase are also represented well. Although Nishiyama et al. do not

clearly mention the uncertainties in their data, the AAD (0.08 %) indicates a

sufficient agreement. If two data points with deviations larger than 0.1 % are

excluded, the AAD reduces to 0.05 %.

Fig. 10 Relative deviations in the experimental sound speed data from values calculated

with the equation of state: (blue ▽) Lago et al. [17]; (green +) Kano et al. [15]; (black

⊚) Nishiyama et al. [20].

Fujiwara et al. [51] measured liquid-phase isobaric heat capacities at 0.5 MPa.

Figure 11 shows a plot of these heat capacity data on a cp-T diagram along

with the isobar calculated from the equation of state. The data show system-

atic negative deviations down to −3 %. The AAD in the data is 1.59 %, which

exceeds the experimental uncertainties (0.35 % to 0.85 %); whether this is due

to an experimental problem or is an artifact of the equation of state cannot

be determined at this time.



25

Fig. 11 Liquid-phase isobaric heat capacity at 0.5 MPa: (red ▲) Fujiwara et al. [51]; (solid

line) Isobar calculated with the equation of state.

6 Behavior in the Critical and Extrapolated Regions

Derived properties calculated from higher-order derivatives of the Helmholtz

energy are generally sensitive to underlying problems in equations of state, and

therefore their plots on various thermodynamic coordinates are often used to

verify the behavior of the equations in the critical and extrapolated regions;

this is particularly essential for equations formulated from limited experimen-

tal data. The expected trends of derived properties, including virial coefficients,

heat capacities, sound speeds, and ideal curves, were explained in other pub-

lications, for example, the work for R-125 [30] or propane [37]. Several plots

generated from the equation of state for R-1224yd(Z) are demonstrated here.

6.1 Virial Coefficients

Virial coefficients are the most fundamental properties representing inter-

molecular forces between molecules in the vapor phase. Equations of state
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must reasonably reproduce their correct behavior over a wide range of tem-

peratures, even if no experimental data for the virial coefficients are available.

In this work, the second, third, and fourth virial coefficients, which are related

to the first, second, and third derivatives of the residual Helmholtz energy with

respect to density, were consistently controlled during the fitting. Figure 12

shows trends in the virial coefficients obtained from the equation of state.

These trends qualitatively correspond to those of the equation of state for the

Lennard-Jones fluid [52]; B and C go to negative infinity at zero temperature,

pass through zero at a moderate temperature, increase to a maximum, and

asymptotically approach zero at extremely high temperatures. The theoretical

trend in D is similar to those in B and C, except that a second maximum with

a smaller magnitude appears at a higher temperature.

6.2 Heat Capacities and Sound Speeds

Derived properties related to the second partial derivatives of the Helmholtz

energy are always monitored during the fitting and controlled so that they

exhibit reasonable slope and curvature along isotherms, isobars, isochores, and

the saturation lines.

The isochoric and isobaric heat capacities drastically change in the crit-

ical region and diverge to infinity at the critical point. Figure 13 shows the

residual isochoric heat capacities crv (= cv − c◦v) versus temperature along the

saturation lines, isobars, and the critical isochore. This figure demonstrates

reasonable behavior of the equation of state both in the critical and extrapo-
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Fig. 12 Second, third, and fourth virial coefficients (B, C, and D) obtained from the

equation of state.

lated regions. The critical isochore monotonically decreases from the critical

point to higher temperatures, which means that temperature derivatives of

the residual Helmholtz energy are properly formulated at δ = 1 because the

isochoric heat capacity is calculated only from the second partial derivative of

the Helmholtz energy with respect to temperature.

In Fig. 14, sound speeds w are plotted versus temperature along isobars

and saturation boundaries. There is no physically incorrect behavior in the

isobars over wide temperature and pressure ranges. The saturated liquid line
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should be a smooth arc when it is displayed on a logarithmic temperature

scale; this can be confirmed in this figure.

Fig. 13 Residual isochoric heat capacity (crv) versus temperature along isobars at 0.5 MPa,

1 MPa, 1.5 MPa, 2 MPa, 3 MPa, 4 MPa, 5 MPa, 10 MPa, 20 MPa, 50 MPa, 100 MPa,

500 MPa, 1000 MPa, the saturation boundaries (blue and red lines), and the critical isochore

(ρ = ρc) (dashed orange line).

Fig. 14 Sound speed (w) versus temperature along isobars at 0.5 MPa, 1 MPa, 1.5 MPa,

2 MPa, 3 MPa, 4 MPa, 5 MPa, 10 MPa, 20 MPa, 50 MPa, 100 MPa, 500 MPa, 1000 MPa,

and the saturation boundaries (blue and red lines).
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6.3 Ideal Curves

Four characteristic curves (ideal curve, Boyle curve, Joule-Thomson inversion

curve, and Joule inversion curve) are obtained from derivatives of the com-

pressibility factor Z = p/(ρRT ), as given in Table 6. Plots of these curves

on a p-T diagram are often used to confirm the (p, ρ, T ) behavior in extrap-

olated regions. The fitting process in this work verified the shapes of these

curves, and if a physically incorrect bump was found along a curve, then the

fitting process attempted to fix it by directly controlling its various derivatives.

Figure 15 shows the four characteristic curves obtained from the equation of

state. All curves exhibit smooth shapes in general, and no unnatural bumps

are observed; this indicates that the equation of state would provide reasonable

extrapolation of the (p, ρ, T ) behavior.

Fig. 15 Four characteristic curves and the vapor pressure curve (PV). ID: ideal curve; BL:

Boyle curve; JT: Joule-Thomson inversion curve; JI: Joule inversion curve.
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Table 6 Four characteristic curves.

Designation Definition

Ideal curve Z = 1

Boyle curve

(
∂Z

∂ρ

)
T

= 0

Joule-Thomson inversion curve

(
∂Z

∂T

)
p

= 0

Joule inversion curve

(
∂Z

∂T

)
ρ

= 0

6.4 Phase Identification Parameter

The phase identification parameter (PIP), which is used to distinguish the

location of a state point as being in the vapor phase or the liquid phase,

highlights underlying problems in equations of states. The PIP is defined as

PIP = v


∂2p

∂v∂T(
∂p

∂T

)
v

−

(
∂2p

∂v2

)
T(

∂p

∂v

)
T

 = 2− ρ


∂2p

∂ρ∂T(
∂p

∂T

)
ρ

−

(
∂2p

∂ρ2

)
T(

∂p

∂ρ

)
T

 . (16)

If the PIP at a given condition is greater than 1, the state is the liquid phase,

and if the PIP is less than 1, the state is the vapor phase. Figure 16 shows the

PIP versus temperature along isobars from 0.1 to 1000 MPa, and Figure 17

displays the PIP versus density along isotherms from 100 to 5000 K. The

isobars, isotherms, and saturation lines in these figures are smooth over wide

ranges of temperature and density, and no unrealistic behavior is observed. In

a PIP versus temperature plot, the saturated liquid line should have positive

derivatives from low temperatures to the critical temperature and come up
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to a very high value at the critical temperature; this can be observed from

Fig. 16.

Fig. 16 Phase identification parameter (PIP) versus temperature along isobars at 0.5 MPa,

1 MPa, 1.5 MPa, 2 MPa, 3 MPa, 4 MPa, 5 MPa, 10 MPa, 20 MPa, 50 MPa, 100 MPa,

500 MPa, 1000 MPa, and the saturation boundaries (blue and red lines).

Fig. 17 Phase identification parameter (PIP) versus density along isotherms at 100 K,

150 K, 200 K, 250 K, 300 K, 350 K, 400 K, 450 K, 500 K, 600 K, 700 K, 1000 K, 2000 K,

5000 K, and the saturation boundaries (blue and red lines).
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6.5 Effective Inverse Power Law Exponent

The effective inverse power law (IPL) exponent neff [47] expresses the relation

between temperature and density along a constant residual entropy line. The

definition of neff is

neff = 3

[
∂ ln(T )

∂ ln(ρ)

]
sr

=
3ρ

T

(
∂T

∂ρ

)
sr

= −3ρ

T

(
∂sr

∂ρ

)
T

/(
∂sr

∂T

)
ρ

, (17)

where sr is the residual entropy given by

sr

R
= τ

(
∂αr

∂τ

)
δ

− αr. (18)

From Eqs. 17 and 18, we have

neff =
3δ(ταr

τδ − αr
δ)

τ2αr
ττ

, (19)

where

αr
δ =

(
∂αr

∂δ

)
τ

, (20)

αr
ττ =

(
∂2αr

∂τ2

)
δ

, (21)

and

αr
τδ =

∂2αr

∂τ∂δ
. (22)

Bell [47] theoretically obtained the behavior of neff from the analysis of

the second virial coefficients of the Lennard-Jones fluid; neff becomes zero ap-

proaching zero temperature, and after passing through a maximum, if asymp-

totically approaches approximately 12 at extremely high temperatures. Bell [47]

also mentioned that a similar behavior is observed in fluids with the Stock-

mayer pair potential. In Fig. 18, neff values of dilute gases of R-1224yd(Z) and
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R-1234yf are plotted versus temperature. For R-1224yd(Z), the equation of

state developed in this work was used, and for R-1234yf, the equation devel-

oped by Lemmon and Akasaka [43] was employed. At temperatures higher than

the critical temperatures, the trends in neff obtained from both equations are

generally in accord with the expected behavior. At lower temperatures, how-

ever, a physically incorrect bump appears in the neff of R-1234yf. This bump

is not observed in R-1224yd(Z), approaching asymptotically to zero; this is

due to two additional terms introduced in the residual part of this work.

Fig. 18 Effective inverse power law exponent (neff) for dilute gases of R-1224yd(Z) and

R-1234yf calculated with the equations of state.

7 Conclusions: Estimated Uncertainties of Calculated Properties

The fundamental equation of state expressed explicitly in Helmholtz energy

was developed for R-1224yd(Z) from the consistent experimental datasets for

the critical parameters, vapor pressure, saturated liquid and vapor densities,
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(p, ρ, T ) behavior, vapor-phase sound speed, liquid-phase sound speed, and

ideal-gas isobaric heat capacity. The equation of state is valid at temperatures

from the triple-point temperature (157.8 K) to 473 K and pressures up to

35.2 MPa. In the valid range, expected relative uncertainties (k = 2) of the

equation are estimated as 0.04 % for vapor pressures, 0.1 % for saturated liq-

uid densities, 2 % for saturated vapor densities, 0.05 % for liquid densities,

0.3 % for vapor densities, 0.02 % for vapor-phase sound speeds, and 0.04 % for

liquid-phase sound speeds; they are almost double the average absolute devi-

ations in the most consistent datasets. In the critical region, more significant

uncertainties of up to 2 % are sometimes observed in densities. Plots of various

derived properties show that the equation exhibits reasonable behavior in the

critical and extrapolated regions.

As an aid in computer implementation, calculated property values from the

equation of state are given in Table 7. Supporting Information provides a fluid

file (R1224YDZ.FLD) for use in REFPROP [16] and TREND [53], a fluid file

(R1224YDZ.json) for use in CoolProp [54], and Python code (R1224YDZ.py)

to display the values in Table 7.

Table 7 Calculated property values from the equation of state for R-1224yd(Z) to verify

computer code.†

T ρ p cv cp w

(K) (mol · dm−3) (MPa) (J ·mol−1 ·K−1) (J ·mol−1 ·K−1) (m · s−1)

300 0 0 104.075 112.389 134.686

300 10 55.03325 122.878 160.984 892.196

300 0.05 0.1187058 108.960 120.269 129.430

400 8 21.17909 139.592 185.184 489.479

400 0.9 1.927264 145.150 212.723 103.907

430 4 3.418541 172.715 5047.06 67.4779
†All values were calculated with REFPROP DLL 10.0.0.98.
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