
Approximation Algorithms for k-Median
Problems on Complex Networks: Theory

and Practice

Roldan Pozo(B)

National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
pozo@nist.gov

https://www.nist.gov/people/roldan-pozo

Abstract. Finding the k-median in a network involves identifying a sub-
set of k vertices that minimize the total distance to all other vertices in
a graph. While known to be computationally challenging (NP-hard) sev-
eral approximation algorithms have been proposed, most with high-order
polynomial-time complexity. However, the graph topology of complex
networks with heavy-tailed degree distributions present characteristics
that can be exploited to yield custom-tailored algorithms. We compare
eight algorithms specifically designed for complex networks and evaluate
their performance based on accuracy and efficiency for problems of vary-
ing sizes and application areas. Rather than relying on a small number of
problems, we conduct over 16,000 experiments covering a wide range of
network sizes and k-median values. While individual results vary, a few
methods provide consistently good results. We draw general conclusions
about how algorithms perform in practice and provide general guidelines
for solutions.

1 Introduction

The k-median problem is an important and fundamental problem in graph the-
ory, and various application areas. Given a connected network, it seeks to find
k vertices which are the closest (in terms of average distance) to the remaining
vertices in the network graph. This is crucial in the spread of viral messages in
social networks, disease contagion in epidemiological models, operation and dis-
tribution costs for goods and services, marketing and advertising, design layout
of communication networks, and other wide-ranging applications.

Finding such an optimal set of vertices is referred to as the influence max-
imization problem [8] and numerous algorithms have been proposed to address
this issue. Although these algorithms were not explicitly designed for the k-
median problem, they share mathematical similarities, as they attempt to find
influential vertices that are similarly well-connected and can quickly disseminate
information throughout the network. The level of influence can be measured
in various ways, typically employing diffusion models such as independent cas-
cade model [4] or epidemiological models of the Susceptible-Infected (SI) and
c� The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 89–101, 2024.
https://doi.org/10.1007/978-3-031-53472-0_8

90 R. Pozo

Susceptible-Infected-Recovered (SIR) [5] types. Formally, the k-median problem
on network graphs has been shown to be NP-hard (in terms of k) by reduction
to the dominant cover problem [7] and is computationally intractable for large
network graphs.

2 Notation and Definitions

Definition 1. k-median problem: Given an integer k and a connected graph
G = (V,E), find a set of S of k vertices that minimize the summation of distances
from S to the remaining vertices of G.

Using d(v, u) as the distance (length of shortest path) between vertices v and u,
we can define the distance d(v, S) between a single vertex and a vertex set S as
the minimum distance between v and any vertex in S. We can then define the
average distance A(S) as

A(S) .=
�

v ∈ V d(v, S)
|V − S| (1)

In this context, we can restate the k-median problem on a network graph G to
be the identification of a set of k-vertices which minimize the average distance
to the remaining |V | − k vertices:

M∗(k) .= min
|S|=k

A(S) (2)

We refer to M∗(k) as the true optimal value of the k-median problem on a graph
G, and let M(k) denote an approximation to this solution using the methods
described in Sect. 3. When necessary, we use Mmethod(k) to avoid ambiguity.

3 Approximation Algorithms and Related Problems

The field of approximation methods to the k-median problem is quite large.
Resse [17] provides a comprehensive overview of over 100 methods from linear
programming, genetic algorithms, simulated annealing, vertex substitution, and
other approaches. In general, the algorithm with the best guaranteed approxima-
tion ratio is a local search and swap method [1] with provides a bound of 3+2/p
where p is the number of vertices simultaneously swapped. Its computation time
is O(np), where n is the number of vertices. Thus, even for a quadratic-order
complexity O(n2), which is quite limiting for large networks, the best guarantee
we can get is a factor of four from optimal. While these approaches were ade-
quate for small networks, the higher-order polynomial time complexity makes
them unfeasible for networks with thousands or million of vertices [18].

Instead, researchers have turned their attention to algorithms for finding
effective spreaders in connected networks with heavy-tailed degree distributions,
often employing an Susceptible-Infected (SI) or Susceptible-Infected-Recovered

K-Median Algorithms 91

(SIR) model of spread [14,15], where I(t) denotes the number of infected nodes
at time t, and I(0) is the number of initially infected nodes. The k-median can
be thought of a special case of an SI model where the probability of an infected
node transmitting the disease to a susceptible neighbor is 1.0, or an SIR model
with the probability of recovery for each node is 0.0. In which case, the solution
to the k-median problem can be thought of as maximizing the integral of the
number of infected nodes over the propagation steps, starting with k initial
infected vertices.

3.1 Degree Ordering

Approximating the k-median solution as the top k hubs of the network is perhaps
the most straightforward approach:

Xdegree (k) ← argmax[k]
v∈V

deg(v) (3)

The idea here is that the hubs (high-degree vertices) serve as efficient spread-
ers since they are connected to large number of neighbors. This is countered by
the notion that there may be significant overlap among their aggregate neighbor-
hoods, with other vertices potentially covering the graph more effectively. This
is a common criticism of degree ordering for this problem, but our experimental
results show that this may not be as critical an issue in practice (see Sect. 6).

3.2 Extended Degree Ordering

A more sophisticated approach is the extended degree ordering, which measures
the sum of degrees for neighboring vertices, and uses the top k values as an
approximation of the k-median solution:

Xdegree+ (k) ← argmax[k]
v∈V

�

x∈N(v)

deg(x) (4)

This is a semi-local algorithm, utilizing more information about the network’s
topology by analyzing the second-level neighborhood, i.e. neighbors of neighbors.
The motivation for this centrality measure is that it uses more information about
the graph topology and can lead to an improved metric for identify candidate
vertices for the set S.

3.3 PageRank Ordering

PageRank is a variant of the eigenvalue centrality, which treats the network as
a flow graph and values vertices with high eigenvalues. It is the basis for some
commercial web search engines. [14]. Given a damping factor, 0 ≤ δ ≤ 1, the
PageRank centrality is given as the convergence of the iteration

PageRank(v) = (1 − δ) + δ
�

u∈N(v)

PageRank(u)
deg(u)

(5)

92 R. Pozo

typically a value of δ = 0.85 is used in these calculations [14]. The corresponding
approximation for the k-median solution is

XPRank (k) ← argmax[k]
v∈V

PageRank(v) (6)

3.4 VoteRank Ordering

A method developed by Zhang et al. [18], is the VoteRank algorithm, which uses
an iterative voting methodology to determine the best influencer nodes. Each
vertex i has a pair of values (Si, Ti) denoting the collective (incoming) votes
from neighbors Si and the number of (outgoing) votes to give out in each voting
round, Ti. At each voting round (complete pass through the graph) a vertex with
the maximum (incoming) vote score is selected (i∗) and its (S∗

i , T ∗
i) values are

set to zero, effectively taking it out of future voting in subsequent rounds. The
neighbors of vertex i∗ have their respective Ti votes reduced by a fixed value f ,
and the process is repeated until k vertices are found. In their paper, the authors
use f = 1/�d�, where �d� is the average degree of the graph, and this value is
fixed throughout the algorithm. Typically, one would choose f such that kf � 1
but this implementation does not allow the Ti values to go negative. The VRank
k-median approximation is given by

XVRank (k) ← argmax[k]
v∈V

VoterRank(v) (7)

3.5 Coreness Ordering

Another vertex centrality measure that has been proposed for finding effective
spreaders is based on the degeneracy of network graphs. The i-core of a graph
is collection of connected components that remain after all vertices with degrees
less than n have been removed. (This is often referred to as the k-core of a graph
in the literature, but we use i to avoid conflict with the k used in the k-median
formulation.) To compute the i-core of a graph, we remove all vertices of degree
i − 1 or less. This process is repeated until there are no vertices of the graph
with degrees less than n. The notion here is that vertices in higher value i-cores
represent the inner backbone of the network, as opposed to lower-valued i-cores
which lie at its periphery, and serve as better-connected vertices to efficiently
spread information throughout the network. The core-number of a vertex is the
largest value i which it belongs to the i-core of the graph. Although one could
use this centrality to identify candidate vertices [9], one problem that has been
noted is that the core values of the highest vertices are often the same and hence
are not distinguishable to form a proper ordering [2]. To remedy this, a slightly
extended centrality has been proposed that replaces the i-shell value of a vertex
with the sum of its neighbors’ core-number. That is, if c(v) is the core-number
of v, then the core algorithm is

Xcore (k) ← argmax[k]
v∈V

�

u∈N(v)

c(u) (8)

K-Median Algorithms 93

3.6 Extended Coreness Ordering

Extensions to the C(v) centrality have also been proposed [2] as an improved
measure for influence. In a similar manner to deg+, neighborhood coreness, or
core+, uses the values of its neighbor’s core centrality. We refer to this algorithm
as core+

Xcore+ (k) ← argmax[k]
v∈V

�

u∈N(v)

C(u) (9)

3.7 H-Index Ordering

The Hirsch index or H-index [6], originally intended to measure the impact of
authors and journals by way of citations, has also been studied as centrality
to measure ranking of influence and its relation to other centralities [12]. The
original measure for an author or journal was determined as the number of n
publications that have at least n citations. In terms of a network graph, the
Hirsch index of a vertex v, given as H(v), can be represented as the maximal
number of n neighbors that each have at a degree of n or more. That is, if h(v, n)
is the number of neighbors of v with degree at least n,

h(v, n) .= {e | deg(e) ≥ n, e ∈ N(v)} (10)

then
H(v) .= max

n
{|h(v, n)| ≥ n} (11)

The k-median approximation can be then be given as the H-index algorithm:

XH−index (k) ← argmax[k]
v∈V

H(v) (12)

3.8 Expected Value (Random)

The mean average-distance of every k-element vertex set is simply the expected
value of all possible combinations:

E∗(k) .=
1�|V |
k

�
�

|S|=k

A(S) (13)

That is, the average value of a random guess chosen from a uniform distribution
of all

�|V |
k

�
possible sets. This can be computed exactly by brute force for small

networks and small k-values. For larger cases, the expected value is approximated
by sampling a finite subset of these possibilities and use of the Central Limit
Theorem (CTL).

94 R. Pozo

4 Experiments and Methodology

For these experiments, we focused on connected simple graphs that were undi-
rected, unweighted, with no self-loops or multi-edges. This represents the least
common denominator for graph topologies, as not all datasets have edge weights
and other metadata. Directed graphs were represented as undirected by making
each edge bi-directional. For disconnected networks, we used the largest con-
nected component. Additionally, the input networks had their vertices renum-
bered to be contiguous for optimized operations, and therefore did not necessarily
match the vertex numbers in the original sources.

Table 1. Application network topologies used in this study (largest connected compo-
nent of undirected graph). The average degree is �d� and the maximum degree is Δ.

Network Application |V | |E| �d� Δ Δ/�d�
Zebra animal contact network 23 105 9.13 14 1.5

Dolphin animal contact network 62 159 5.13 12 2.3

Terrorist network social network 64 243 7.59 29 3.8

High School social network 70 274 7.83 19 2.4

MIT students mobile social network 96 2,539 52.90 92 1.7

Hypertext 2009 social interaction 113 2,196 38.9 98 2.5

Florida ecosystem wet food network 128 2,075 32.42 110 3.4

PDZBase metabolic network 161 209 2.59 21 8.1

Jazz collaboration network 198 2,742 27.79 100 3.6

GE 200 top-level web graph 200 1,202 12,02 124 10.3

Chevron 200 top-level web graph 200 5.450 54.50 189 3.5

Abilene218 computer network 218 226 2.07 10 4.8

Bethesda top-level web graph 255 422 3.31 81 24.5

C. Elegans neural network 297 2,148 14.46 134 9.3

NetScience co-authorship 379 914 4.82 34 7.0

Arenas-email email communications 1,133 5,451 9.62 71 7.4

FAA air traffic infrastructure 1,226 2,408 3.9 34 8.6

Human protein protein interaction 2,217 6,418 8.94 314 26.5

ca-GrQc co-authorship 4,158 13,422 6.46 81 12.5

ca-HepTh co-autorship 8,638 24,806 5.74 65 11.3

ca-HepPh co-authorship 11,204 117,619 23.38 491 21.0

ca-CondMat co-authorship 21,363 91,286 8.54 279 32.6

email-Enron email communications 33,696 180,811 10.73 1,383 128.9

cit-HepPh citation network 34,401 420,784 24.46 846 34.6

flickrEdges online social network 105,722 2,316,668 43.83 5,425 123.8

email-EuAll email communications 224,832 339,925 3.02 7,636 2,525.3

com-YouTube online social network 1,134,890 2,987,624 5.27 28,754 5,631.3

soc-Pokec online social network 1,632,803 22,301,964 27.32 14,854 543.8

soc-LiveJournal online social network 4,846,609 42,851,237 17.68 20,333 1,149.9

K-Median Algorithms 95

The dataset comprised a wide range of application areas, including social,
mobile, metabolic, neural, email, biological, and collaboration networks listed
in Table 1. Examples were collected from network databases Konect [10],
SNAP [11], and UC Irvine [3], as well as several webgraphs generated by exam-
ining public websites. Network sizes ranged from less than 100 vertices (for exact
verification of k-median problems) to networks with over 1 million vertices, with
most networks containing several thousand vertices. This study focused on 32 of
these networks, comparing the eight algorithms from Sect. 3 for k-values from 1
to 100, resulting in roughly 16,000 experiments of graph, algorithm, and k-value
combinations. This provided a clearer view of the performance landscape and
algorithm behavior.

Table 2. Average error (%) to true-optimal for small graphs (1 ≤ k ≤ 5)

Network random degree degree+ VRank PRank core core+ H-index

Abilene218 68.9 11.1 3.4 10.2 54.0 4.4 3.4 8.4

USAir87 60.0 2.6 2.7 2.6 3.1 2.7 2.7 10.7

ca-HepTh 46.4 4.7 5.8 4.7 4.7 26.2 26.2 34.9

ca-netscience 68.6 32.7 65.3 18.0 17.0 56.0 67.0 66.8

celegans 50.2 1.8 2.1 1.8 3.3 1.8 2.1 25.9

faa 48.4 10.7 5.0 10.7 8.9 4.8 5.3 12.6

foodweb florida wet 53.8 5.6 5.6 5.6 5.6 5.6 5.6 5.0

hypertext 2009 38.8 3.3 0.6 3.0 3.3 0.6 0.6 7.5

jazz 43.7 7.7 10.1 7.7 5.8 10.1 10.1 15.0

pdzbase 64.3 10.7 22.9 10.7 10.7 20.0 14.2 32.6

Computational experiments were conducted on a desktop workstation, run-
ning Ubuntu Linux 5.15.0-46, with an AMD Ryzen 7 1700x (8-core) proces-
sor running at 3.4 GHz, and outfitted with 32 MB of RAM1. The algorithms
were coded in C++, and compiled under GNU g++ 11.1.0 with the following
optimization and standardization flags: [-O3 -funroll-loops -march=native
-std="c++11"]. Modules were used from the NGraph C++ library and Network
Tookit [16], as well as optimized C++ implementations of algorithms noted in
the paper.

5 Results

The results of the computational experiments on real networks showed significant
variations. Despite claims made for any particular approach, we did not see a
1 Certain commercial products or company names are identified here to describe our

study adequately. Such identification does not imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that
the products or names identified are necessarily the best available for the purpose.

96 R. Pozo

single method consistently producing a winner in every case. Instead, we were
presented with trade-offs for varying network topologies. Nevertheless, we were
able to form general observations about the expected behavior on classes of
networks and provide some guidelines for choosing appropriate methods.

5.1 Comparisons with Optimal k-median solutions

For small networks, we compared the accuracy of the approximation algorithms
by running them for various values, up to k = 5, except where limited by the
computation effort. The results reveal several interesting patterns: (1) guessing
a solution (random) performs, on average, within a factor of 2 from optimal, (2)
for k > 2 some approximation methods (degree+, core, core+, H-index) can
perform worse than random guessing, (3) most methods (excluding random)
stay within a 1.5 factor of optimal, (4) VRank and PRank seem to be perform
best, staying within 1.2 of optimal for 1 ≤ k ≤ 5, and (5) core, core+, and
H-index, typically perform worse, underperformed only by random.

The C. Elegans network, for example, shows extremely good approximations
(relative error less than 5%) for all methods, except for random and H-index. In
the Abilene218 network, we encounter quite different behavior: the PRank method
performs substantially worse than every other one, except random guessing. This
is in sharp contrast to other examples, where VRank and PRank methods perform
similarly and are often outperformed other algorithms. Finally, the USAir87
network illustrates that the approximation algorithms are capable of calculating
good-quality solutions (even H-index) that are significantly better than random
guessing.

Table 3. Ranking of methods by actual error (%) in small graphs: average relative
errors for each method in Table 2

method error (%)

VRank 7.5

degree 9.1

PRank 11.6

degree+ 12.3

core 13.2

core+ 13.7

H-index 21.9

random 54.3

Table 2 provides a tabular form of similar results from a larger study of 10 net-
works. From this data we see that the behavior of these methods on real networks
can vary significantly. Ignoring random and H-index momentarily, the remain-
ing competitive methods can be quite accurate for these networks. For example,

K-Median Algorithms 97

C Elegans, hypertext 2009, USAir87 and foodweb florida wet all exhibit approxi-
mations that are within 5% of optimal. The ca-netscience network was the sole
outlier, with the best methods of the group exhibiting roughly a 20% error.

Taking the average error for each method across the networks we arrive at
(Table 3) illustrating that VRank performed the best overall, with the other meth-
ods not too far behind. In this experiment, degree+, core, and core+ did not per-
form as badly, while H-index and random fared significantly worse. This table rep-
resents the analysis for small network comparisons with exact solutions. It illus-
trates that the top methods generally work quite well, typically within 10% to 20%
of optimal and seem reasonable candidates for testing on larger networks.

5.2 Case Studies: Million-Node Networks

Here we focus on three larger examples with millions of vertices and edges used in
the study of large social networks [13]. For the YouTube network (V = 1,134,890
E = 2,987,624), the various heuristics perform about the same: roughly 35% better
than a random guess. In this case, all methods yield nearly identical values, and
one can simply use the fastest one (degree) to generate competitive results.

Table 4 lists the how each method ranked in the top 1%, 10%, and 100% of
solutions. For example, degree scored in the top 10% solutions about 3/4 of
the time, while random guessing always remained within a factor 2 of the best
solution. Using the fastest method (degree) as a reference, we see that VRank
and PRank provided the best solutions, but at a computational cost of nearly
three orders of magnitude.

Similar results are seen for the soc-pokec social network (V=1,632,803,
E=22,301,964). From these two examples, one may be tempted to conclude that
the algorithms perform equally well for large networks. However, computations
for the LiveJournal social network (V=4,846,609 E= 42,851,237) show a signif-
icant difference between various methods, with PRank, VRank, and degree per-
forming better than most other heuristics and roughly 30% better than random.

Table 4. Percentage of cases where each method scored within x% of best solution
(k = 1, . . . , 100) for million-vertex network (YouTube). Nearly all methods are within
a factor of two of best solution.

method 0% (best) 1% 10% 100%

degree 12.5 24.0 75.7 100.0

degree+ 8.5 11.5 42.7 99.9

VRank 20.4 44.2 91.9 100.0

PRank 18.5 33.7 91.6 100.0

core 9.1 15.5 50.1 99.0

core+ 6.3 8.7 41.0 97.8

H-index 3.9 6.0 39.7 95.5

random 0.6 3.1 12.3 99.4

98 R. Pozo

5.3 Overall Results

Table 5 describes the overall performance of approximation algorithms on the 32
networks under consideration. The values are described as relative error to the
best solution for each method. For example, a value of 10 signifies that particular
method performed on average within 10% above the best possible heuristic for
each k from one to one hundred. From here we see that VRank and PRank come
in first and second position, respectively, for the majority of cases while degree
comes in a close third position.

Table 5. Quality of methods for large graphs (k = 1, 2, . . . 100). Relative performance
(%) from best solution. A value of 10 signifies that on average that method performed
10% above best possible value from all heuristics.

Network degree degree+ VRank PRank core core+ H-index random

Abilene218 8.2 11.1 3.2 10.1 8.6 12.8 13.4 79.7

USAir87 10.0 18.1 0.4 1.8 18.0 18.9 19.7 43.7

amazon0302 0.5 3.0 0.3 0.4 0.8 3.0 3.9 48.0

areans email 3.3 9.4 0.0 0.8 7.3 11.1 10.9 30.9

as20000102 1.4 12.5 0.0 0.5 4.5 11.4 7.0 76.1

bethesda 3.6 10.9 0.8 1.5 17.4 11.5 40.7 76.8

ca-CondMat 4.3 11.3 1.3 0.0 11.6 13.9 12.6 40.0

ca-GrQc 40.1 51.3 1.3 1.4 51.7 51.7 56.2 37.9

ca-HepPh 11.7 13.1 1.4 1.1 14.1 14.7 16.6 20.2

ca-HepTh 4.8 21.1 0.2 0.9 61.5 63.0 47.4 34.4

ca-netscience 12.6 34.9 0.3 3.2 35.6 59.5 48.0 50.9

celegans 0.9 6.9 0.1 0.9 1.6 6.6 7.8 25.0

chevron top200 0.0 0.5 0.0 0.0 0.5 1.1 1.1 7.8

cit-HepPh 3.2 11.3 2.3 0.0 8.8 15.2 18.8 38.6

com-youtube 0.8 2.7 0.1 0.4 2.5 3.2 3.6 51.3

dlmf 3.1 7.6 0.0 2.0 8.5 7.5 8.3 67.2

email-Enron 2.7 11.6 0.7 0.4 9.0 12.1 13.3 59.1

email-EuAll 2.4 11.8 2.4 3.2 5.0 10.5 12.5 66.9

faa 8.6 31.0 0.7 1.8 18.0 41.1 30.8 40.3

flickrEdges 8.2 79.4 2.3 0.5 88.8 89.2 89.5 35.6

foodweb florida wet 0.1 0.6 0.1 0.1 0.4 0.7 1.5 8.7

ge top200 3.0 14.3 0.3 0.3 9.4 17.4 22.8 36.0

human protein gcc 2.7 30.4 0.1 1.3 6.2 30.0 20.6 58.4

hypertext 2009 0.3 0.0 0.3 0.3 0.0 0.0 0.8 8.5

jazz 5.1 12.4 1.2 0.1 14.2 14.8 13.6 11.2

p2p-Gnuetalla31 0.3 1.5 0.0 1.5 0.6 2.6 5.5 32.3

pdzbase 7.1 69.6 0.1 3.7 19.3 70.9 55.2 71.1

roadNet-PA 8.8 17.5 8.7 1.2 19.1 32.1 351.3 3.5

soc-Epinions 1.2 4.0 0.1 0.2 3.3 4.4 5.0 48.8

soc-Slashdot0922 0.8 1.8 0.2 0.5 1.1 2.8 3.6 45.8

web-Stanford 2.2 21.3 0.8 0.7 12.4 20.9 26.5 37.0

wiki-Vote 1.6 2.0 0.6 0.1 2.8 2.0 2.2 38.5

K-Median Algorithms 99

Table 6. Efficiency of k-median approximations on large networks: computation time
(secs)

Network degree degree+ VRank PRank core core+ H-index random

soc-LiveJournal 0.01 0.8 50.8 35.2 5.4 11.5 5.6 166.9

soc-pokec 0.01 0.5 24.4 20.0 2.2 4.7 3.28 62.5

com-youtube 0.01 0.04 2.1 1.4 0.1 0.32 0.75 7.0

Table 7. Ranked performance of k-median approximations. A value of x signifies that
Mmethod (k), on average, was within x% of the best solution for each graph and k-value
combination from Table 5.

method performance (%)

VRank 0.9

PRank 1.3

degree 5.1

core 14.4

degree+ 16.7

core+ 20.5

H-index 30.3

random 41.6

Table 7 summarizes these results, where we compute the overall error
of each method from the best solution for each k-value. For example, degree is
typically about 5% greater than the best solution, while random produced, on
average, a solution that was less than 50% greater than the best algorithm.

6 Conclusion

We have compared eight k-median approximation methods for various k-values
(typically 1 to 100) on 32 networks over a diverse range of application areas. After
conducting thousands of experiments, we have observed patterns and formulated
guidance for solving the k-median problem on a broad range of application net-
work problems. Overall, these approximation algorithms are efficient and some
can produce good-quality solutions on complex networks. However, they do not
replace traditional methods[17] for general graphs without heavy-tailed degree
distributions.

We have demonstrated that the algorithms in this study can indeed yield
high-quality results on smaller networks where we can compute the optimal
solution explicitly (Sect. 5.1, Table 3) with degree, VRank, and PRank achieving
roughly a 1.1 factor of the true solution. By contrast, the best algorithms for
general graphs provide a guaranteed factor of 3 or higher.

100 R. Pozo

For larger networks, the exact optimal solution is not computationally
tractable and we can only compare the approximation methods against them-
selves, and one may reach an incomplete or premature conclusions by examining
only a small number of networks. Exploring a larger and more diverse dataset,
however, reveals certain patterns that aid in algorithm choices.

Like many approximation heuristics, the practical question comes down to a
trade-off between performance (computational cost) and quality of solution. If
one is willing to accept a factor of 2 from the best methods, then simply choosing
k random vertices from an uniform distribution may suffice. (This may come as a
unexpected result, as hard problems typically do not behave in this manner.) If a
higher quality solution is need, then we can consult Table 7 which summarizes the
results of over 16,000 experiments. Here we see that VRank and PRank perform,
on average, within about a 1.01 factor of the best method in every k-value in the
[1:100] range. The simple degree method yields results on average within about
1.05 factor of the best method while exhibiting a performance speedup of three
orders of magnitude over VRank and PRank.

Thus, we can form a general best-practices guide for choosing the appropriate
algorithms:

– if a quality factor of 2 is sufficient, choose k random vertices from uniform
distribution (random)

– if a better quality solution is needed, choose the top k hubs (degree)
– if quality still not sufficient, use VRank or PRank for slight improvement (at a

102 to 104x computational cost)

In practice, these approximation algorithms remain efficient, even for networks
containing millions of elements. The more expensive algorithms (VRank, PRank)
require about a minute to approximate k-median solutions for up to k = 100 on a
personal computer (Table 6). Thus, one possible approach would create an amal-
gamate super-algorithm which would run the seven methods (degree, degree+,
VRank, PRank, core, core+, H-index) concurrently and choose the best one for
each k-value. A final step could compare this to the expected value (random)
to give an indication how well the approximation methods have improved the
solution.

In summary, the methods presented here do a reasonable job at estimating
the k-median problem on complex networks. Despite the challenges of this fun-
damental problem, these methods provide a reasonable approximation and can
be used efficiently to formulate approximations to this important problem, pro-
viding researchers with practical tools in studying large-scale complex networks.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristic for k-median and facility location problems. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 21–29 (2001)

K-Median Algorithms 101

2. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks
by neighborhood coreness. Physica A: Stat. Mech. Appl. 395, 549–559 (2014).
https://doi.org/10.1016/j.physa.2013.10.047

3. DuBois, C.L.: UCI Network Data Repository. University of California, School of
Information and Computer Sciences, Irvine, CA (2008). http://networkdata.ics.
uci.edu

4. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6),
1420–1443 (1978)

5. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–
653 (2000)

6. Hirsch, J.E.: An index to quantify an individual’s scientific research output that
takes into account the effect of multiple coauthorship. Scientometrics 85(3), 741–
754 (2010). https://doi.org/10.1007/s11192-010-0193-9

7. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. i:
The p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

9. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat.
Phys. 6(11), 888–893 (2010)

10. Kunegis, J.: Konect - The koblenz network collection. In: Proceedings of the Inter-
national Web Observatory Workshop, pp. 1343–1350. Boston, MA (2013). http://
konect.uni-koblenz.de/networks

11. Leskovec, J., Krevl, A.: Snap datasets: stanford large network dataset collection
(2014). http://snap.stanford.edu/data

12. Lü, L., Zhou, T., Zhang, Q.M., Stanley, H.E.: The h-index of a network node and
its relation to degree and coreness. Nature Communications 7(1), 10, 168 (2016).
https://doi.org/10.1038/ncomms10168

13. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 5th
ACM/Usenix Internet Measurement Conference (IMC’07). San Diego, CA (2007)

14. Newman, M.: Networks. Oxford University Press, Oxford (2018)
15. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks. FADSRT, vol. 4.

Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26641-1
16. Pozo, R.: NGraph Network Toolkit (2019). https://math.nist.gov/∼RPozo/ngraph
17. Reese, J.: Solution methods for the p-median problem: an annotated bibliography.

Networks 48(3), 125–142 (2006). https://doi.org/10.1002/net.20128
18. Zhang, J.X., Chen, D.B., Dong, Q., Zhao, Z.D.: Identifying a set of influential

spreaders in complex networks. Sci. Rep. 6(1), 27, 823 (2016). https://doi.org/10.
1038/srep27823

