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Abstract

We develop a mathematical model for photoreceptors in the retina. We focus on rod

and cone outer segment dynamics and interactions with a nutrient source associated

with the retinal pigment epithelium cells. Rod and cone densities (number per unit

area of retinal surface) are known to have significant spatial dependence in the retina

with cones located primarily near the fovea and the rods located primarily away from

the fovea. Our model accounts for this spatial dependence of the rod and cone photore-

ceptor density as well as for the possibility of nutrient diffusion. We present equilibrium

and dynamic solutions, discuss their relation to existing models, and estimate model

parameters through comparisons with available experimental measurements of both

spatial and temporal photoreceptor characteristics. Our model compares well with

existing data on spatially-dependent regrowth of photoreceptor outer segments in the

macular region of Rhesus Monkeys. Our predictions are also consistent with existing

data on the spatial dependence of photoreceptor outer segment length near the fovea in

healthy human subjects. We focus primarily on the healthy eye but our model could be

the basis for future efforts designed to explore various retinal pathologies, eye-related

injuries, and treatments of these conditions.
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1. Introduction1

The light reflected into your eyes from the colorful, sun-lit plumage of a scarlet2

macaw, or from a fast-moving car in your peripheral view, or from a dimly-lit obstacle3

in your path on a dark, moonless night is processed by your brain in a figurative ‘blink4

of an eye’. The light’s path through this complex optical system – the outermost tear5

film, cornea, anterior chamber, pupil, lens, and vitreous chamber – results in focused6

light into the retina, which is the thin, light-sensitive tissue at the back of the eye7

that converts light into electrochemical signals sent on to the brain via the optic nerve8

resulting in, for healthy eyes, visual recognition. The retina itself has a multitude9

of components and functions (e.g. see Fatt & Weissman [23], Roberts et al. [52]) but10

for the purposes of the present study we view the retina as composed of two types11

of photoreceptors – rods and cones – and an underlying retinal pigment epithelium12

(RPE). Rods are known to be responsible for visual function in low-light (night vision)13

and peripheral vision. Cones are responsible for day vision, color vision, and visual14

acuity. A photoreceptor includes an inner segment (IS) and an outer segment (OS).15

The photoreceptor IS, as the main site of the mitochondria, is the photoreceptor’s16

metabolic center. The photoreceptor’s OS is made up of disc-like lamellae and contain17

photopigments that absorb incident photons and undergo structural alteration in the18

process of creating electrochemical signals. The outer segments (of length on the order19

of 30 µm to 50 µm in human photoreceptors [67]) undergo continuous shedding and20

periodic renewal facilitated by the RPE [6] which acts to recycle the shed parts of the21

OS and serves as an effective nutrient source sustaining the function of the rods and22

cones [3, 62].23

The organization and distribution of rods and cones in the retina – the photore-24

ceptor mosaic [3] – varies across species. For humans the cone density is maximum25
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in the fovea – a small depression in the central, macular region, of the retina – and26

diminishes rapidly away from this region. The rods have effectively zero density near27

the fovea, reach a maximum density at an intermediate distance from the fovea, and28

have a density that diminishes slowly as the ora serrata – the photosensitive limit of29

the retina boundary – is approached. Curcio et al. [21] reported thorough measure-30

ments of the photoreceptor mosaic on whole-mounted human retinas that revealed31

the photoreceptor structure and characteristics described above. More recently, highly32

sophisticated imaging techniques such as Adaptive Optics Scanning Laser Ophthalmo-33

scope (AOSLO) [16, 17, 19, 20, 30, 36, 45, 57, 61, 64, 65, 67], related Adaptive Optics34

(AO)-based methods [33, 39] and other non-AO techniques [40] have been used to ob-35

tain high resolution in vivo measurements of rod and/or cone photoreceptor density36

and structure across the retina. Related techniques have also been used to image the37

RPE mosaic [55] and the photoreceptor inner segment structure [58]. Various studies38

(e.g. Mehri [43]) have explored mathematically fitting the photoreceptor density data39

in various directions from the fovea (e.g. nasal, temporal, superior, inferior). In the40

present study we characterize the rod and cone densities with mathematical functions41

used in Roberts et al. [53] (further details are given in the next section).42

Other specialized imaging methods such as Optical Coherence Tomography (OCT)43

have been used to probe details of retinal layer structure and depth. The study of Wilk44

et al. [67], for example, reported measurements of human photoreceptor OS lengths at45

different positions across the retina especially in the region near the fovea (e.g. see their46

Table 1 and their OCT images in Figures 1, 2, and 3). Other related studies reporting47

measurements of human OS lengths as functions of position in the retina include Cakir48

et al. [9] (see their Figure 2 and Table 2) and Domdei et al. [22] (see their Figures 549

and 6). We shall make direct use of the Wilk et al. data in comparison to our model50

predictions for spatial dependence of OS lengths. Others (e.g. Kafieh et al. [31], Liu51

et al. [38], and Menghini et al. [44]) have reported OS length variation with position52
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in the retina along with thickness information about other retinal layers (inner and53

outer nuclear layers, inner and outer segments, RPE, etc.). Maden et al. [41] reported54

measurements of the human OS length at the fovea center that showed this value to55

be fairly uniform (roughly 50 µm to 60 µm) for a healthy population across a broad56

range of ages up to 60 years and as well as with respect to gender. Recent studies57

by Reumueller et al. [48, 49] have combined AO and OCT techniques to explore the58

three-dimensional structure of photoreceptor densities at different layers in the retina.59

There are a number of retinal diseases, among them macular degeneration and60

retinitis pigmentosa (e.g. [63, 68]), as well as other types of damage or injuries such61

as retinal tear and/or detachment and damage due to radiant exposure (e.g. [42]). In62

the present work we do not focus on issues specific to retinal diseases and injuries, but63

recognize that these have motivated much eye-related research including many efforts64

in mathematical modeling of the retina. Several of these mathematical models have65

inspired our work and we outline these below.66

Mathematical models that have been directed towards an improved understanding67

of retinitis pigmentosa (RP), for example, include those of Camacho and coworkers68

(e.g. [10, 11, 14, 15]). These models have been formulated as systems of ordinary dif-69

ferential equations for dynamic variables representing cumulative photoreceptor popu-70

lations and a nutrient supply. In Camacho et al. [10], for example, coupled ODEs for71

three variables – representing rod, cone, and nutrient quantities in a healthy eye – were72

written down that account for rod and cone shedding and renewal processes, nutrient73

supply, consumption of nutrient by rods and cones, as well as a rod-cone interaction74

known as the rod-derived cone viability factor (RdCVF) which accounts for the pres-75

ence of a rod-generated protein that aids in the survival of cones (e.g. [10, 12, 35]).76

Camacho & coworkers [14, 15] developed and analyzed an extension of the Camacho77

et al. [10] model to account for the presence of two different rod populations – normal78

rods and mutated rods – and to explore the association of RP with the presence of79
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rods with gene mutations. This model was later used to ask questions about optimal80

control and treatment strategies for diseases such as RP [11, 13].81

Other mathematical models have asked different questions about photoreceptor82

dynamics from a pattern formation point of view. Models such as those by Burns et al.83

[8], Shoaf et al. [59], and Conway [18] formulate reaction-diffusion (partial differential84

equation) models. These tend to be in the spirit of biological morphogenesis such as the85

Gierer–Meinhardt system [26] and mathematical and computational analyses thereof86

(e.g. [25]).87

A collection of work that addresses various aspects of spatio-temporal dynamics of88

retinal processes also with a view towards improved understanding of retinal diseases89

such as RP is that of Roberts and coworkers [50, 51, 52, 53, 54]. One of these – Roberts90

et al. [52] – provides an excellent and comprehensive review of the state of theoretical91

modeling of the retina and related pathologies.92

Roberts et al. [53] investigated the ‘oxygen toxicity hypothesis’ (one of four main93

hypothesis believed to be important for the understanding of RP – the other three being94

the ‘trophic factor hypothesis’, the ‘toxic substance hypothesis’, and the ‘microglia95

hypothesis’). In their model, Roberts et al. introduced an oxygen concentration variable96

that depended on the spatial position in the retina (an angle measure from the fovea)97

and time. They posed a partial differential equation that accounted for oxygen diffusion98

as well as uptake of oxygen and exchange with the capillary bed of the choroid layer of99

the retina. This reaction diffusion equation was coupled to a photoreceptor dynamics100

equation that involved a regrowth term accounting for the spatial dependence of the101

photoreceptor density (using photoreceptor density measurements of Curcio et al. [21])102

as well as a capillary dynamics equation that also incorporated photoreceptor spatial103

structure. With this model they examined spatio-temporal dynamics of degenerate104

patches of retina as well as the response of the retina to treatment. In a related105

study, Roberts et al. [54] explored these spatio-temporal dynamics in a two-dimensional106
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domain representing the entire retina including the possibility of mutation-induced rod107

and cone degeneration, first explored in their earlier work [53].108

In another study Roberts et al. [51] explored the ‘trophic factor hypothesis’ in the109

context of a retina model for RP. In this model a spatially-dependent diffusible trophic110

substance was modeled by a reaction diffusion equation in which the substance was111

produced in proportion to the local rod density, consumed in proportion to the local112

cone density and was subject to decay and treatment modalities. Various models for113

rod and/or cone degeneration, which would impact the local rod and/or cone densities114

were also incorporated. In the case where cone regeneration was included a model was115

posed also for the local cone OS length. Predictions were given related to the dynamics116

and prevention of cone degeneration driven by the trophic factor mechanisms. These117

spatio-temporal dynamics were further explored in a related context by Roberts [50].118

The models of Roberts et al. [51, 53] have a number of similarities with the model119

we develop in the present work. Specifically, as outlined in more detail below, we also120

incorporate both diffusion – in our case a nutrient consumed by both rods and cones121

– and spatial dependence of rod and cone densities (photoreceptors per unit area of122

retina). As described below, our model will also connect closely with ideas from the123

Camacho & Wirkus [15] model.124

In the present work we derive a model to describe the dynamics of rod OS and125

cone OS lengths as a function of position in the retina. We focus on a one-dimensional126

problem where spatial position in the retina is measured by an angle θ from the fovea127

towards the outer periphery (ora serrata) of the retina. We introduce variables r(θ, t)128

and c(θ, t) to represent the rod and cone OS lengths at location θ and time t while129

the variable T (θ, t) represents the local nutrient concentration (molarity, in M or mol130

per liter). We also introduce functions R(θ) and C(θ) that represent the rod and cone131

densities (i.e. number of rods per unit area and number of cones per unit area) whose132

spatial dependence has been measured for human subjects (e.g. [21]) as well as for133
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primates (e.g. [2, 4, 24, 34, 66]), among other species (e.g. [56]). In our model the134

densities R and C will be assumed given – consistent with experimental measurements135

– and independent of time. In general, the retinal pigment epithelium (RPE) cells also136

have a spatially-dependent density (e.g. see [1, 5, 7, 27, 37, 47, 60]) but we do not137

incorporate that feature of the RPE into our model.138

The nutrient is assumed to be consumed by rods and cones and replenishes itself139

locally by a self-regulating mechanism. Our model has been inspired in part by the140

Camacho & Wirkus [15] model developed for rod, cone, and nutrient dynamics in the141

retina but adapted to include spatial dependence of the rod and cone densities as well142

as the diffusion of nutrient. Specifically, to provide context for our model we revisit the143

Healthy Eye Model by Camacho & Wirkus [15], defined by their equations (1), which144

is given by145

dRCW
n

dt
= RCW

n (aCW
n T CW − µCW

n ), (1)

dCCW

dt
= CCW(aCW

c T CW − µCW
c + dCW

n RCW
n ), (2)

dT CW

dt
= T CW(ΓCW − κCWT CW − βCW

n RCW
n − γCWCCW). (3)

Here RCW
n and CCW represent the number of rod OS and cone OS, respectively, and146

T CW represents the total number of retinal pigment epithelium (RPE) cells. The147

parameters appearing here represent the rate constants associated with consumption148

of the nutrient by the rods (aCW
n ; units: day−1 RPE−1) and by the cones (aCW

c ; units:149

day−1 RPE−1), the rate constants associated with rod OS shedding (µCW
n ; units: day−1)150

and cone OS shedding (µCW
c ; units: day−1), the constant per-cell rate at which rods151

help cones via the RdCVF effect (dCW
n ; units: day−1 Rod OS−1), the total inflow rate152

into the trophic pool (ΓCW; units: day−1), the limiting capacity of trophic factors (κCW;153

units: day−1 RPE−1), and the rate constants associated with removal of nutrients by154

rods (βCW
n ; units: day−1 Rod OS−1) and by cones (γCW; units: day−1 Cone OS−1).155

This model accounts for temporal dynamics of cumulative variables for rods, cones, and156
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nutrient but does not attempt to resolve any spatial dependence of these quantities.157

Camacho & Wirkus point out that their “model does not make the distinction, for158

example, between 10 rods at half their normal height and 5 rods at their normal159

height.” While our model follows in the spirit of theirs, we have the specific objective160

of making the distinction between rod and cone OS lengths and rod and cone densities.161

We emphasize that both photoreceptor OS lengths and photoreceptor densities are162

known to vary considerably across the retina (e.g. Wilk et al. [67] for OS variation163

and Curcio et al. [21] for photoreceptor density variation). Values for the various164

parameters appearing in equations (1)–(3) were identified by Camacho & Wirkus [15]165

(see their Table 1) in their comparison to experimental data by Guérin et al. [28, 29].166

In the context of our model, we shall also make comparisons to the Guérin et al. data.167

Our paper is organized as follows. In Section 2 we present the derivation of our168

model for the spatial–temporal dynamics of rod and cone OS lengths as well as the nu-169

trient concentration. In Section 3 we analyze details of equilibrium solutions of interest.170

In Section 4 we identify connections of our model to the Camacho & Wirkus [15] model.171

In Section 5 we revisit the Rhesus Monkey retinal reattachment and OS growth data172

of Guérin et al. [28, 29] and show how our model compares with their measurements.173

In Section 6 we compare our model predictions to a set of measurements reported by174

Wilk et al. [67] on spatial dependence of healthy human photoreceptor OS lengths. Fi-175

nally, in Section 7 we give conclusions. The appendix includes various data on Rhesus176

Monkey photoreceptor density measurements obtained from Adams et al. [2] as well as177

human photoreceptor OS length data extracted from images in Wilk et al. [67].178

2. Model Derivation179

Consider a small sample, or parcel, of the retina that, in the spirit of a continuum180

mechanics description (e.g. see the discussion in [52]), can be considered both infinites-181

imally small – so that it is associated with a particular location in the retina – and182
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simultaneously contains a sufficiently large number of rods and cones – so that rod and183

cone densities (per unit area of retina) can be defined for that particular location. For184

each such parcel (i.e. at each location in the retina) we also assume that we can define185

average rod and cone OS lengths. Within this basic framework, we shall use conserva-186

tion arguments applied to such a parcel to generate a set of governing equations. We187

formulate the basic equations first in two dimensions corresponding to the surface of188

the retina but later focus our analysis and computations in one-dimensional settings.189

2.1. Rod OS Length Evolution190

The total rod OS length associated with a given location in the retina is the average191

rod OS length r times the local rod density R (units: Rod OS m−2) times an area ∆A192

Total Rod OS Length = rR∆A. (4)

We postulate a basic balance law for rod OS length evolution given by193

∂

∂t
(Total Rod OS Length) = Rate of Rod OS growth stimulated by nutrient

− Rate of Rod OS shedding. (5)

We model the rate of rod OS growth stimulated by the nutrient by194

Rate of Rod OS growth stimulated by nutrient = a∗r(`r − r)TrR∆A, (6)

where a∗r is a rate constant (units: M−1 m−1 s−1) associated with consumption of the195

nutrient by the rods and `r is a length scale. That is, the rate of generation of local196

rod OS length is proportional to the local nutrient concentration, T , and the total (but197

local) rod OS length (rR∆A) with a rod length dependent logistic factor a∗r(`r − r).198

That the growth is proportional to rod length mimics on the local scale the cumulative199

variable formulation of Camacho & Wirkus [15]. Other models for growth are also200

possible (see Roberts [51], equation (4)). The quantity `r has the interpretation that it201

is the maximum attainable rod OS length in the absence of other influences (e.g. such as202
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rod OS shedding). In the next section, we will show how `r is related to the equilibrium203

rod OS length. In principle, the quantity `r could be dependent on location across the204

retina, perhaps in some way related to the overall retinal thickness which is known to205

vary across the retina [32], but in the present work we assume it to be a constant.206

We model the rate of rod OS shedding by207

Rate of Rod OS shedding = µ∗rrR∆A, (7)

where µ∗r is a rate constant (units: s−1) associated with shedding.208

Putting these together gives209

∂

∂t
(rR∆A) = a∗rT (`r − r)rR∆A− µ∗rrR∆A. (8)

With the assumption that the local rod density, R, is independent of time we find that210

the local rod OS length satisfies211

∂r

∂t
= r

[
a∗r(`r − r)T − µ∗r

]
. (9)

Although no spatial derivatives appear in this equation, we note that both r and T212

depend on space and time. We also remark that when `r � r this equation has213

the approximate growth rate factor a∗r`r and would match the result of making the214

substitution RCW
n → Rr∆A and T CW → T in the Camacho & Wirkus equation (1).215

2.2. Cone OS Length Evolution216

Similarly to the rods in (4), the total cone OS length at a given location is the217

average cone OS length c times the local cone density C (units: Cone OS m−2) times218

the area ∆A219

Total Cone OS Length = cC∆A. (10)

We postulate a basic balance law for cone OS length evolution given by220

∂

∂t
(Total Cone OS Length) = Rate of OS growth stimulated by nutrient

+ Rate of Cone OS growth stimulated by Rods

− Rate of Cone OS shedding. (11)
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The rate of cone OS growth stimulated by the nutrient is similar to that for rods221

Rate of Cone OS growth stimulated by nutrient = a∗c(`c − c)TcC∆A, (12)

where a∗c is a rate constant (units: M−1 m−1 s−1) associated with consumption of the222

nutrient by the cones and `c is a cone-related length scale analogous to `r.223

We assume, as in Camacho & Wirkus [15], that the cones benefit from the proximity224

of rods (via RdCVF). We model this by225

Rate of Cone OS growth stimulated by rods = d∗(`c − c)
[
rR∆A

]
cC∆A, (13)

where d∗ is a rate constant (units: Rod OS−1 m−2 s−1) associated with RdCVF. Note226

that this term takes the same form as the cone OS growth via the nutrient except that227

the nutrient factor a∗cT is replaced by the factor d∗rR∆A.228

The rate of cone OS shedding is229

Rate of Cone OS shedding = µ∗ccC∆A, (14)

where µ∗c is a rate constant (units: s−1) associated with shedding.230

Putting these together gives231

∂

∂t
(cC∆A) = a∗cT (`c − c)cC∆A+ d∗(`c − c)

[
rR∆A

][
cC∆A

]
− µ∗ccC∆A. (15)

As was the case for rods, we shall assume that the local cone density C varies with232

position in the retina but is not a function of time. Therefore, cancelling common233

terms gives234

∂c

∂t
= c

[
a∗c(`c − c)T + d∗(`c − c)

(
rR∆A

)
− µ∗c

]
. (16)

We note that the factor d∗∆A appears, which may suggest it to be negligible as a235

direct source of cone growth in this model. That said, to retain the RdCVF term as236

an explicit effect in the cone length evolution equation, we shall for now assume that237

the factor d∗∆A remains O(1) as ∆A→ 0.238
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2.3. Nutrient (Trophic Pool) Evolution239

The total quantity of nutrient available in a representative volume, ∆V , associated240

with the RPE is241

Total Nutrient = T∆V (17)

where T is a nutrient concentration (units: M).242

We postulate a basic balance law for nutrient evolution given by243

∂

∂t
(Total Nutrient) = Self Regulation up to some carrying capacity

− Consumption by Rods− Consumption by Cones

+ Transport by Diffusion. (18)

The self regulation/carrying capacity term is244

T (Γ∗ − κ∗T )∆V, (19)

where Γ∗ (units: s−1) and κ∗ (units: s−1 M−1) are constants. This matches the form for245

cumulative RPE cells in Camacho & Wirkus [15] with a maximum nutrient carrying246

capacity of Γ∗/κ∗. In the absence of consumption by rods and cones this form effectively247

sets the upper limit on the nutrient level.248

The consumption by rods and cones have the forms249

Consumption by Rods = β∗(`r − r)TrR∆V, (20)

Consumption by Cones = γ∗(`c − c)TcC∆V, (21)

where β∗ (units: Rod OS−1 s−1) and γ∗ (units: Cone OS−1 s−1) are constants.250

The transport via diffusive flux out of the control volume ∆V has the form251

Transport by Diffusion = −∇ · (−D∗∇T )∆V, (22)
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where −D∗∇T is the standard form for the Fickian flux with diffusion coefficient D∗252

(units: m2 s−1). We shall later consider diffusion in one dimension measured by angle θ253

across the retina in which case this takes the form examined by Roberts (e.g. [51, 53])254

Transport by Diffusion =
D∗

R2
retina sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
∆V, (23)

where Rretina is the radial position of the retina.255

Putting these together and cancelling the common factor ∆V gives256

∂T

∂t
= T

(
Γ∗ − κ∗T − β∗(`r − r)rR− γ∗(`c − c)cC

)
+∇ · (D∗∇T ). (24)

With or without the diffusion term, this equation has spatial dependence through the257

rod and cone density functions R and C. That is, consumption of nutrient by rods and258

cones comes in proportion to the local rod and cone densities.259

2.4. Model Nondimensionalization260

For a one-dimensional section of the retina along an arc parameterized by θ we have261

∂r

∂t
= r

(
a∗r(`r − r)T − µ∗r

)
, (25)

∂c

∂t
= c

(
a∗c(`c − c)T + d∗

[
rR∆A

]
(`c − c)− µ∗c

)
, (26)

∂T

∂t
= T

(
Γ∗ − κ∗T − β∗(`r − r)rR− γ∗(`c − c)cC

)
+

D∗

R2
retina sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
. (27)

From Roberts et al. [53] we take R and C to have the forms262

R(θ) = B3θ exp(−b3θ), (28)

C(θ) = B1 exp(−b1θ) +B2 exp(−b2θ). (29)

Roberts [53] gave values for the parameters Bi and bi based on photoreceptor density263

data in Curcio et al. [21]. We list those values in Table 1 along with another set that264

we have generated by fitting the same functional forms in equations (28) and (29) to265
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rod and cone density data for Rhesus Monkeys [2]. Equations (28) and (29) apply over266

the range θ ∈ [θfovea, θoraserrata]. Plots of these rod and cone densities for humans and267

for Rhesus Monkeys are shown in Figure 1.268

Human Rhesus Monkey

[21, 53, 67] [2, 29] units

B1 1.73× 105 0.391× 105 (OS mm−2)

B2 0.176× 105 0.121× 105 (OS mm−2)

B3 8.84× 105 7.04× 105 (OS mm−2 radian−1)

b1 54.1 24.6 (radian−1)

b2 2.01 1.82 (radian−1)

b3 2.31 2.71 (radian−1)

Rmax 1.41× 105 0.955× 105 (OS per mm2)

Cmax 1.91× 105 0.512× 105 (OS per mm2)

rnormal 55 [67] 29.2 [29] (µm)

cnormal 55 [67] 19.7 [29] (µm)

θfovea 0 0 (radians)

θoraserrata 1.33 1.02 (radians)

Rretina 11.06 [21] 10.71 [2] (mm)

Aretina 585.29 343.79 (mm2)

Table 1: Fitted parameters used in the rod and cone density functions in equations (28) and (29). The

values for the human retina are those reported in Roberts et al. [53] based on data by Curcio et al. [21].

We obtained the values for the Rhesus Monkey retinas by fitting data in Figure 2 of the paper by Adams

et al. [2] (see our Table A.7) to equations (28) and (29). Note that in terms of equations (28) and (29),

Rmax = B3/(eb3) and Cmax = B1 +B2. We have assumed that Aretina = 2πR2
retina(1− cos θoraserrata).

Now, define the dimensionless quantities r̄, c̄, T̄ , and t̄ as269

r̄ =
r

rnormal

, c̄ =
c

cnormal

, T̄ =
T

Γ∗/κ∗
, t̄ =

t

(1/Γ∗)
, (30)
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Figure 1: This plot shows the rod and cone densities as a function of θ (distance in radians from the

fovea) for a human retina (solid curves) based on data from Curcio et al. [21] and Roberts et al. [53]

and for a Rhesus Monkey retina (dashed curves) based on data from Adams et al. [2]. The red lines

show the rod densities and the cyan lines show the cone densities. In both cases the curves represent

fits using equations (28) and (29) with coefficients as shown in Table 1. Our corresponding estimates

for total rod and cone photoreceptors are NR = 5.76× 107 and NC = 2.32× 106 for the human retina

and NR = 2.46× 107 and NC = 1.41× 106 for the Rhesus Monkey retina.

where rnormal and cnormal represent normal (healthy) reference values for r and c, re-270

spectively, over the entire retina (see Table 1). We also denote271

R̄ =
R

Rmax

, C̄ =
C

Cmax

, ¯̀
r =

`r
rnormal

, ¯̀
c =

`c
cnormal

, (31)

where Rmax and Cmax are the maximum rod and cone densities defined in Table 1.272

Our dimensionless governing equations are273

∂r̄

∂t̄
= r̄

(
ar(¯̀

r − r̄)T̄ − µr
)
, (32)

∂c̄

∂t̄
= c̄

(
ac(¯̀

c − c̄)T̄ + dr̄R̄(¯̀
c − c̄)− µc

)
, (33)

∂T̄

∂t̄
= T̄

(
1− T̄ − β(¯̀

r − r̄)r̄R̄− γ(¯̀
c − c̄)c̄C̄

)
+

D

sin θ

∂

∂θ

(
sin θ

∂T̄

∂θ

)
, (34)

subject to initial conditions r̄(θ, 0) = r̄0(θ), c̄(θ, 0) = c̄0(θ), and T̄ (θ, 0) = T̄0(θ),274

where r̄0, c̄0, and T̄0 are initial values for rod OS length, cone OS length, and trophic275
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pool relative to the scales rnormal, cnormal, and Γ∗/κ∗, respectively. The dimensionless276

parameters appearing here are277

ar =
a∗rrnormal

κ∗
, µr =

µ∗r
Γ∗
, ac =

a∗ccnormal

κ∗
, µc =

µ∗c
Γ∗
,

d =
d∗rnormalcnormalRmax∆A

Γ∗
, (35)

β =
β∗(rnormal)

2Rmax

Γ∗
, γ =

γ∗(cnormal)
2Cmax

Γ∗
, D =

D∗

Γ∗R2
retina

.

When diffusion is included (D 6= 0) we use no-flux boundary conditions (∂T/∂θ = 0) at278

θ = θfovea and θ = θoraserrata. If diffusion is neglected (D = 0) no boundary conditions279

are needed as the spatial variable θ appears only as a parameter.280

3. Equilibria281

The equilibrium solutions are determined by equations (32)–(34) with time deriva-282

tives set to zero. We denote equilibrium variables, which in general depend on θ, by283

r̄eq, c̄eq, and T̄eq. There are equilibrium solutions of the following forms:284

• Absence of rod OS, cone OS, and nutrient: r̄eq = c̄eq = T̄eq = 0.285

• Absence of rod OS: r̄eq = 0, c̄eq 6= 0, T̄eq 6= 0.286

• Absence of cone OS: r̄eq 6= 0, c̄eq = 0, T̄eq 6= 0.287

• Absence of rod OS and cone OS: r̄eq = c̄eq = 0, T̄eq 6= 0.288

• Presence of rod OS, cone OS, and nutrient: r̄eq 6= 0, c̄eq 6= 0, T̄eq 6= 0.289

As our focus is on a healthy eye state we shall only discuss the last situation.290

Assuming that the equilibrium rod OS length is nonzero everywhere, it follows that291

r̄eq = ¯̀
r −

pr
T̄eq

, (36)

where pr = µr/ar. This shows that the equilibrium rod length is lower than the value292

¯̀
r by a rod OS shedding term inversely proportional to the local nutrient supply T̄eq.293
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Spatial dependence of the rod OS length enters through spatial dependence of the294

nutrient (see below). Similarly, for the cone OS length we find that295

c̄eq = ¯̀
c −

pc
T̄eq + pdr̄eqR̄

, (37)

where pc = µc/ac and pd = d/ac. This cone OS equilibrium length is similar to that296

for rods but is modified by an additional factor related to RdCVF in which the rod297

density appears explicitly. The corresponding equation for T̄eq is given by298

0 = T̄eq(1− T̄eq)− βprr̄eqR̄− γ
pc

1 + pd(r̄eqR̄/T̄eq)
c̄eqC̄ +

D

sin θ

∂

∂θ

(
sin θ

∂T̄eq

∂θ

)
, (38)

where T̄eq is subject to boundary conditions ∂T̄eq/∂θ = 0 at θ = θfovea and at θ =299

θoraserrata when D 6= 0. Both rod and cone densities enter this expression for nutrient300

distribution. In these equations there are eight relevant parameters/parameter groups301

pr ≡
µr
ar
, pc ≡

µc
ac
, pd ≡

d

ac
, β, γ, D, ¯̀

r, ¯̀
c. (39)

As we show later, a further reduced set of parameters in which d = 0, γ = 0,302

and D = 0 (giving a five-parameter system, or four with the condition ¯̀
r = ¯̀

c, or303

three if also pr = pc) allows a good fit to measured photoreceptor OS length data from304

Wilk et al. [67]. If one looks at the equilibrium conditions under the assumption that305

D = 0 (zero diffusion) and if γ is sufficiently small (but also for larger values of γ in306

regions away from the fovea where the cone density C̄(θ) ≈ 0) the trophic nutrient307

concentration satisfies a cubic equation308

0 = T̄eq

[
T̄ 2

eq − T̄eq + prβ ¯̀
rR̄
]
− p2

rβR̄. (40)

In this case only the parameters pr, β, and ¯̀
r (along with R̄) influence the form of T̄eq.309

Here, r̄eq is still given by equation (36). If the term d is also neglected then c̄eq has a310

similar form to that of r̄eq given by311

c̄eq = ¯̀
c −

pc
T̄eq

. (41)
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Under the assumptions outlined, the spatial dependence inherited by T̄eq and, conse-312

quently, r̄eq and c̄eq, comes exclusively from the θ dependence of rod-density function313

R̄(θ). This appears to be the simplest version of our model that allows for photorecep-314

tor OS length spatial dependence in relation to photoreceptor density. The key terms315

in the model from this perspective are the shedding and renewal of rod OS, shed-316

ding and renewal of cone OS, and uptake of nutrient due primarily to consumption317

by rods; influence of RdCVF (d term) and consumption of nutrient by cones (γ term)318

are considered negligible in this context. As we shall show below, the Wilk et al. [67]319

spatially-dependent photoreceptor OS length data is fit well by this reduced model.320

We make a final note related to a stability property of the equilibria reported in321

the model of Camacho et al. [10]. In their model, which matches equations (1)–(3)322

with the parameter κCW = 0, they point out that equilibria with both RCW
n and CCW323

nonzero (i.e. coexistence of rods and cones) is not possible without a nonzero value324

for dn, the RdCVF term. While we do not explore detailed stability analyses of the325

equilibrium solutions in our model, it does appear, based on our numerical solutions of326

our dynamic model, that nonzero values of r̄eq and c̄eq are possible in our model even327

in the absence of the RdCVF term (d = 0).328

4. Comparison With Camacho & Wirkus ODE Model329

Our model given by equations (9), (16), and (24) accounts for the spatial and330

temporal dependence of the rod and cone OS lengths and nutrient concentration. Using331

the appropriate integration over the retina, however, we can identify averaged variables332

that compare directly with those in the Camacho & Wirkus [15] model in (1)–(3).333

The Camacho & Wirkus variables RCW
n and CCW can be viewed as334

RCW
n =

NCW
R∑
i=1

OS length of rod i

rnormal

, CCW =

NCW
C∑
i=1

OS length of cone i

cnormal

, (42)

where NCW
R is the total number of rods (including full and partial length rods) and335
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NCW
C is the total number of cones (including full and partial length cones). Our analog336

quantities where rod and cone OS lengths and densities are spatially dependent are337

Rn =

∫
Ωretina

r

rnormal

RdA, C =

∫
Ωretina

c

cnormal

CdA, (43)

where Ωretina is the two-dimensional region associated with the retina. We can also338

define analog total numbers of rods and cones for our model by339

NR =

∫
Ωretina

RdA, NC =

∫
Ωretina

CdA. (44)

The Camacho & Wirkus model works with the number of full length rods (or cones) so340

that, for example, RCW
n = NCW

C × rCWmean/rnormal where rCWmean represents the mean rod341

length across the retina and the individual factors are not resolved in their model.342

The Camacho & Wirkus nutrient variable is the total number of RPE cells, T CW .343

Our concentration T integrated over the region Ωnutrient where the nutrient is located344

represents the total amount of available nutrient at a given time. If η is a conversion345

factor for the amount of available nutrient per RPE cell (units: mol RPE−1) then346

ηT =

∫
Ωnutrient

TdV, (45)

where T is a quantity that represents the total number of RPE cells analogous to T CW.347

A direct comparison between the Camacho & Wirkus [15] formulation and ours348

follows by rewriting their variables in terms of rod and cone OS lengths and nutrient349

concentration under the assumption of uniformity of these quantities across the entire350

retina. Specifically, we make the substitutions351

RCW
n → r

rnormal

NCW
R , CCW → c

cnormal

NCW
C , T CW → Vnutrient

η
T, (46)

where Vnutrient is the volume occupied by the nutrient (units: liters). Then, if we in-352

sert (46) into the Camacho & Wirkus equations (1)–(3) and assume that the quantities353

NCW
R /rnormal, NCW

C /cnormal, and Vnutrient/η are independent of time, we obtain354

dr

dt
= r

[(
aCW
n

Vnutrient

η

)
T − µCW

n

]
, (47)

19



dc

dt
= c

[(
aCW
c

Vnutrient

η

)
T +

dCW
n

rnormal
rNCW

R − µCW
c

]
, (48)

dT

dt
= T

[
ΓCW −

(
κCWVnutrient

η

)
T −

(
βCW
n NCW

R

rnormal

)
r −

(
γCWNCW

C

cnormal

)
c
]
. (49)

Comparing these with our equations (9), (16), and (24) suggests relationships between355

our rate coefficients and the ones in Camacho & Wirkus [15] as listed in Table 2. We356

have introduced a reference rod density RCW
ref = NCW

R /Aretina (units: Rod OS m−2)357

and a reference cone density CCW
ref = NCW

C /Aretina (units: Cone OS m−2). We have358

also introduced dimensionless scale factors fr and fc with the recognition that, in our359

work, we include logistic type terms involving factors `r − r and `c − c, which are not360

present in the Camacho & Wirkus formulation. That is, in order to compare Camacho361

& Wirkus parameters with ours we loosely associate fr with (`r − r)/rnormal and fc362

with (`c − c)/cnormal in the relations listed in Table 2. Expressions (`r − r)/rnormal363

and (`c − c)/cnormal are space and time dependent and so the interpretation of fr and364

fc would be as appropriate scales for these quantities. In our calculations presented365

below comparing to the Guérin et al. [28, 29] data we use for simplicity fr = fc = 1.366

We further note that since the quantities `r and `c have no analogs in the Camacho367

& Wirkus model we make not attempt in this context to identify their appropriate368

values. Numerical values for `r and `c will be identified below when we compare our369

model predictions to data from Guérin et al. [28, 29] and to data from Wilk et al. [67].370

Although we have just demonstrated the connections between our model and that371

of Camacho & Wirkus [15] we reiterate the key differences and extensions here:372

• Our model distinguishes between photoreceptor OS length and photoreceptor373

density (for each type of photoreceptor: rods and cones) instead of treating the374

photoreceptor lengths as cumulative variables across the entire retina.375

• Existing measurements of rod and cone density dependence on position across the376

retina are incorporated into our model, which effectively gives spatially-dependent377
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Parameter Relation to Camacho & Wirkus [15] Units

a∗r a∗r = aCW
n Vnutrient/(ηrnormalfr) M−1 m−1 s−1

µ∗r µ∗r = µCW
n s−1

a∗c a∗c = aCW
c Vnutrient/(ηcnormalfc) M−1 m−1 s−1

µ∗c µ∗c = µCW
c s−1

d∗ d∗ = dCW
n Aretina/(rnormalcnormalfc∆A) Rod OS−1 m−2 s−1

Γ∗ Γ∗ = ΓCW s−1

κ∗ κ∗ = κCWVnutrient/η s−1 M−1

β∗ β∗ = βCW
n Aretina/(r

2
normalfr) Rod OS−1 s−1

γ∗ γ∗ = γCWAretina/(c
2
normalfc) Cone OS−1 s−1

Table 2: Dimensional parameter values in our equations (9), (16), and (24) and their relation to

Camacho & Wirkus [15] parameters. Note that Vnutrient and η appear only the combination Vnutrient/η.

We note that the dimensionless parameters appearing in our dimensionless model do not require

specification of either Vnutrient/η or ∆A, which appears in d∗ (see Table 3).

coefficients in our dynamic model. Our working variables – rod OS length, cone378

OS length, and nutrient concentration – are functions of both space and time.379

• Our model can be solved with or without the effects of nutrient diffusion.380

• Rod and cone OS renewal is modeled with logistic terms, which set upper lim-381

its on rod and cone OS lengths at any given location across the retina. The382

corresponding consumption of nutrient is also limited by similar logistic terms.383

If we write the Camacho & Wirkus [15] model in dimensionless form using384

R̄ =
Rn

NCW
R

, C̄ =
C
NCW
C

, T̄ =
T

(ΓCW/κCW)
, t̄ =

t

(1/ΓCW)
, (50)

we arrive at the dimensionless governing equations385

dR̄
dt̄

= R̄
(
arT̄ − µr

)
, (51)
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Dimensionless Relation to

Parameter Camacho & Wirkus [15] Value

frar frar = aCW
n /κCW 0.086 to 0.092

µr µr = µCW
n /ΓCW 0.064 to 0.074

fcac fcac = aCW
c /κCW 0.090 to 0.096

µc µc = µCW
c /ΓCW 0.067 to 0.078

fcd fcd/(AretinaRmax) = dCWn /ΓCW 0.58× 10−11 to 0.99× 10−11

frβ frβ/(AretinaRmax) = βCWn /ΓCW 0.64× 10−9 to 0.70× 10−9

fcγ fcγ/(AretinaCmax) = γCW/ΓCW 2.92× 10−8 to 3.83× 10−8

D D = D∗/(ΓCWR2
retina) O(10−2)

Table 3: Dimensionless parameter in equations (32)–(34) and their relation to Camacho & Wirkus

[15] parameters (see their Table 1). For D∗ we use the value 1.73 × 10−11m2 s−1 quoted in Roberts

[51] as an estimate. In our calculations we shall consider a range of values for D from zero up to the

value listed here. The dimensionless scale factors fr and fc can be introduced to account presence of

the logistic terms in our model as different from those in Camacho & Wirkus.

dC̄
dt̄

= C̄
(
acT̄ − µc + dR̄

)
, (52)

dT̄
dt

= T̄
(

1− T̄ − βR̄ − γC̄
)
. (53)

With the exception of the diffusion coefficient, the coefficients appearing in (51)–(53)386

match those appearing in our dimensionless model in (32)–(34).387

5. Comparison With Guérin et al. Retinal Reattachment Data388

Guérin et al. [28, 29] reported experimental measurements of time-dependent389

growth of rod and cone OS in Rhesus Monkeys after retinal detachment/reattachment.390

In their studies, the retinal detachment occurred in the macula, which is the region391

in the functional center of the eye surrounding the fovea. Guérin et al. [28] indicated392

that in most of the cases the entire macula was detached and in no case was less than393

22



50% of the macula detached. The retina was detached from the RPE for seven days394

and significant loss of rod and cone OS length in the macular region was observed over395

that time period, while the rod and cone inner segments remained intact. After seven396

days the retina was reattached and measurement of rod and cone OS length regrowth397

was observed for up to 150 days. The Guérin et al. [29] data on this photoreceptor398

regrowth, along with their control data, is reproduced here in Table 4.399

OS Length

7 day 14 day 30 day 150 day Control

Photoreceptor (µm) (µm) (µm) (µm) (µm)

Rod (mean) 8.7 9.9 13.0 32.2 29.2

(sd) 2.4∗ 2.3∗ 4.3 2.3 3.2

(min) 2 6 2 26 20

(max) 16 16 24 36 36

Cone (mean) 6.5 7.2 9.6 15.8 19.7

(sd) 2.2∗ 2.7∗ 2.9 2.9 2.3

(min) 2 2 1 8 12

(max) 14 14 20 22 28

Table 4: Photoreceptor OS recovery data from Guérin et al. [29], showing the mean length, standard

deviation (sd), minimum length (min), and maximum length (max) measured over the macular region

of the retina. Note: the standard deviation values for 7 and 14 days appear to have typographical

errors in the Guérin et al. Figure 1 as 0.24, 0.23 (for rods) and 0.22, 0.27 (for cones), which we have

corrected in our table.

Guérin et al. [28, 29] do not specifically report size information (diameter or area)400

for the macular regions in their study. However, other studies using Rhesus Monkeys401

[70] and humans [46, 69] have, for example, performed OCT scans to measure features402

of the macular region along circles of diameter ranging from 1 mm up to 6 mm centered403

at the fovea. Based on this, for our purposes we shall approximate the macular region as404
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a circular region of diameter 5 mm around the fovea, which in our model corresponds405

to angle θ in the range [θfovea, θ2.5mm]. Here we interpret θ2.5mm = 2.5/Rretina where406

Rretina is given in units of mm. The initial conditions used to start simulations with407

our model will be a ‘patch’ of low rod and cone OS lengths in this region of the retina,408

with normal values of the initial nutrient T . Outside of this patch the rod and cone409

OS lengths and nutrient level will be assumed to be in a normal range. In particular,410

in our computations shown below, we solve equations (32)–(34) on θ ∈ [θfovea, θoraserrata]411

subject to the initial conditions that T̄ (θ, t̄ = 0) = 1 along with412

r̄(θ, t̄ = 0) =

 r̄amp
detached θfovea ≤ θ ≤ θ2.5mm

r̄eq θ2.5mm < θ ≤ θoraserrata

, (54)

c̄(θ, t̄ = 0) =

 c̄amp
detached θfovea ≤ θ ≤ θ2.5mm

c̄eq θ2.5mm < θ ≤ θoraserrata

, (55)

where r̄amp
detached and c̄amp

detached are dimensionless initial rod and cone OS lengths in the413

detached region whose values will be chosen as part of a parameter estimation procedure414

outlined below. The quantities r̄eq and c̄eq are equilibrium rod and cone OS lengths415

from equations (36) and (41) assuming T̄eq = 1.416

We will use the rod and cone density functions for Rhesus Monkeys from Adams417

et al. [2] as shown in Table 1. Additionally, we take rnormal = 29.2 µm and cnormal =418

19.7 µm, which correspond to the ‘control’ group reported by Guérin et al. [29]. In419

the sections below we show results of an optimization procedure that we use to select420

parameter values in our model, accounting for the connections to the Camacho &421

Wirkus [15] ODE model parameter estimates. In particular, we aim to minimize the422

function423

JG =
4∑
i=1

[
(rimean − rmean(ti))

2 + (cimean − cmean(ti))
2
]
, (56)

where rimean and cimean for i = 1, 2, 3, 4 are the four measurements of mean rod OS424

length and cone OS length at times ti (7, 14, 30, 150 days) from Guérin et al. listed425
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in Table 4 and rmean(ti) and cmean(ti) are our numerically-computed mean rod and426

cone OS lengths over the region [θfovea, θ2.5mm]. We show predictions for cases with and427

without nutrient diffusion. The optimization problem was solved numerically using428

Matlab’s fmincon with the interior-point method used for the search (although we429

have also tested sqp and found similar results).1430

5.1. Zero Diffusion431

For the zero diffusion case we use values of ar, µr, ac, µc, d, β, and γ based on the432

Camacho & Wirkus [15] paper consistent with those listed in Table 3 (with fr = fc = 1).433

Values for these seven quantities are shown in Table 5 as ‘Fixed Parameters’. The values434

for Cmax, Rmax, and Aretina are as listed for the Rhesus Monkey data in Table 1.435

Other parameters that appear in our model relate to the logistic terms in the rod436

OS and cone OS evolution equations, ¯̀
r and ¯̀

c. We additionally allow 1/Γ∗, the437

dimensional time scale, to be fit. As noted above, the dimensionless values of the rod438

OS and cone OS length at time zero, denoted by r̄amp
detached and c̄amp

detached, are also fit.439

Optimal parameter values for ¯̀
r, ¯̀

c, Γ∗, r̄amp
detached, and c̄amp

detached are shown in Table 5 for440

both zero and nonzero values of the diffusion coefficient, D.441

Our predictions for mean rod and cone OS lengths are shown in Figure 2. Here442

we also plot the predicted maximum and minimum values of rod and cone OS lengths443

over the regrowth region and indicate the corresponding measured values from Guérin444

et al. [29]. The comparison of the mean lengths is excellent. The range given by the445

predicted maximum and minimum values of the rod and cone OS lengths is partially446

consistent with the observations as well; our computed spread increases over time and447

is a bit larger (smaller) compared to experiments for the rods (cones). The spatial448

1Certain commercial products are identified here and elsewhere in this paper in order to specify the

computational procedure adequately. Such identification is not intended to imply recommendation or

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that

the materials or equipment identified are necessarily the best available for the purpose.

25



Fixed Parameters

ar µr ac d µc β γ

0.090 0.071 0.094 0.00029 0.075 0.022 0.58

Fit Parameters

D ¯̀∗
r

¯̀∗
c Γ∗ r̄amp

detached c̄amp
detached JG

(day−1)

0 2.16 1.85 0.26 0.29 0.34 0.63

10−4 2.15 1.84 0.26 0.29 0.34 0.64

10−3 2.12 1.81 0.26 0.29 0.34 0.65

10−2 2.07 1.77 0.27 0.29 0.34 0.68

Table 5: Fixed parameter values and fitted parameter values related to our comparisons with the

photoreceptor regeneration data from Guérin et al. [29]. The values listed in the upper table were

chosen based on the listed values in Camacho & Wirkus [15]. In the lower table, the predictions of the

mean rod OS length and cone OS lengths were fit to the corresponding measurements from Guérin

et al. over the macular region. For each listed value of the diffusion coefficient, D, the other five

parameters were chosen to minimize the objective function defined in equation (56).

forms of the variation of our minimum and maximum values can be observed in space–449

time plots in Figure 3. Spatial variation of rod and/or cone OS lengths could be one450

source of variation reported in the experimental measurements but certainly a range of451

different regrowth rates (in time), as well as variation across different Rhesus Monkey452

subjects could also contribute to the experimentally-observed variations in photorecep-453

tor OS lengths. An observation that can be made from the rod and cone OS lengths454

plotted versus space and time in Figure 3 is that the recovery of the photoreceptor OS455

length appears slowest at the centermost portion of the retina where the cone photore-456

ceptor density is its largest. The same can be said about the rod OS lengths but this457

observation has less significance for rods as the rod density, in contrast to the cone458
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density, is minimal at the fovea.459
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Figure 2: Rod OS and cone OS length predictions in the macula (θ ∈ [θfovea, θ2.5mm]) versus time.

These results use the parameter values shown in Table 5 with D = 0. The solid lines show our

computed mean OS lengths on this interval and the light dashed lines indicate the computed maximum

and minimum values of the OS lengths over this same region of the retina. The data from Guérin et

al. [29] is shown by the large circles (mean OS lengths), medium squares (mean ± standard deviation),

and small stars (maximum and minimum). The corresponding dimensionless rod OS and cone OS

lengths over space and time for the whole retina, including both the macula where the retina was

detached and the healthy portion of the retina are shown in the next figure.

5.2. Nonzero Diffusion460

The predictions for nonzero diffusion require the application of boundary condi-461

tions at θ = θfovea and θ = θoraserrata. We use ∂T/∂θ = 0 at both boundaries and462

note a particular detail for implementing this condition numerically at θ = 0 in the463

Appendix. Solutions are computed numerically using a method of lines approach and464

a finite difference approximation of the spatial derivative terms with the domain in465

θ ∈ [θfovea, θoraserrata] divided into Nθ equal intervals. We have used Nθ = 200 primar-466

ily but have also observed that results with Nθ = 400, 800, and 1600 show almost467

imperceptible differences in these graphical predictions.468

Example results with nonzero diffusion coefficient are shown in Figures 4 and 5 (for469

D = 10−3). The corresponding numerical values for the fit parameters are shown in470
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Figure 3: Dimensionless rod and cone OS lengths and nutrient concentrations for the zero-diffusion

solutions shown in the previous figure comparing with the Guérin et al. [29] retina reattachment data.

Table 5 along with results for other values of D. We can observe that, as expected,471

the diffusion of nutrient reduces the spatial variation of nutrient concentration and,472

consequently, reduces the spatial variation of the rod OS and cone OS lengths. Specif-473

ically this can be observed in the predicted maximum and minimum OS length curves474

in Figure 4. From Table 5 we can also observe that the fitted parameters appear to475

depend weakly on the diffusion coefficient in this setting.476

Note that in this particular case the parameters that also appear in Camacho &477

Wirkus [15] are, with one exception, taken to have the same value here as there. The478

exception to this is the value of Γ∗ here ranges from 0.26 day−1 to 0.27 day−1 which479

differs from the value of ΓCW ≈ 1.5 day−1 estimated by Camacho & Wirkus [15] (see480
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their Table 1). Also, note that a typical dimensionless value for ¯̀
r is slightly larger481

than 2 indicating that the dimensional `r is a little more than twice the normal rod482

OS length rnormal. Similarly, `c is slightly less than twice the normal cone OS length483

cnormal.484
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Figure 4: Rod OS and Cone OS length predictions in the macula (θ ∈ [0, θ2.5mm]) versus time. These

results use the parameter values shown in Table 5 with D = 10−3. The line and symbol formats match

the description listed in Figure 2.

6. Comparison With Wilk et al. Spatially-Dependent OS Length Data485

Wilk et al. [67] reported various measurements of OS lengths in the region near the486

fovea for the human retina. For example, their Table 1 shows maximum and minimum487

values of OS lengths over a 500 µm range near the fovea as well as measurements at488

the 2 mm distance. Additionally, several of their OCT images show variation of the489

OS lengths over a range that extends out to approximately 2.5 mm from the fovea.490

Wilk et al. reported measurements for both normal subjects as well as for subjects491

with albinism. In keeping with our focus on the healthy eye, we use only their data492

for normal subjects. We assume that these data correspond to equilibrium, or steady493

state, configurations of the retinal photoreceptors.494

More specifically, in addition to the three columns of data for normal subjects in495

Table 1 of Wilk et al. [67], we also have extracted approximate OS length data from496
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Figure 5: Dimensionless rod and cone OS lengths and nutrient concentrations for the solutions shown

in the previous figure comparing with the Guérin et al. [29] retina reattachment data.

images in their Figures 1 and 2. These were obtained by loading the images into Matlab497

and using the grabit.m software to approximate the OS length at different distances498

from the fovea (see our Appendix, Tables B.8 and B.9). While this data acquisition499

methodology is not as accurate as their very careful measurements, it does provide us500

considerably more lower resolution data that we can use to help inform our model.501

The data we collected in this way gave us a set of OS length data from their Figure 1502

of the form503

~P
(1)
i = (θ

(1)
i , OSL

(1)
i ), (57)

for i = 1, . . . , N1 where N1 = 19 (see our Table B.8). From their Figure 2 we extracted504
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similar results for their two chosen subjects in the left and right plots and obtained505

two sets of points of the form506

~P
(2`)
i = (θ

(2`)
i , OSL

(2`)
i ), ~P

(2r)
i = (θ

(2r)
i , OSL

(2r)
i ), (58)

for i = 1, . . . , N2` and i = 1, . . . , N2r, respectively, where N2` = 24 and N2r = 25 (see507

our Table B.9).508

We then defined the following optimization problem. Minimize509

JW = JC + JR, (59)

where JC and JR are evaluated at some sufficiently large time tF (in the dynamic510

model) or using our equilibrium solutions as511

JC =

N1∑
i=1

C̄(θ
(1)
i ) ∗ (c(θ

(1)
i , t = tF )−OSL(1)

i )2, (60)

JR =

N1∑
i=1

R̄(θ
(1)
i ) ∗ (r(θ

(1)
i , t = tF )−OSL(1)

i )2, (61)

subject to the constraints that512

OSLmin
0 ≤ c(0, t = tF ), r(0, t = tF ) ≤ OSLmax

0 , (62)

OSLmin
0 ≤ c(θ0.5mm, t = tF ), r(θ0.5mm, t = tF ) ≤ OSLmax

0 , (63)

OSLmin
2mm ≤ c(θ2.0mm, t = tF ), r(θ2.0mm, t = tF ) ≤ OSLmax

2mm, (64)

where OSLmin
0 is the minimum of the ‘minimum’ OS length values reported for normal513

subjects, OSLmax
0 is the maximum of the ‘maximum’ OS length values reported for514

normal subjects, and OSLmin
2mm and OSLmax

2mm are the minimum and maximum values of515

the normal subject OS length values reported for normal subjects for 2 mm (see Wilk et516

al. Table 1). Our computational procedure to find r and c does not necessarily return517

values at the indicated values such as θ
(1)
i but we compute the solution estimates at such518

points by linear interpolation between the neighboring points on the computational grid519
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for θ. In the objective function JW we have introduced weighting factors based on the520

rod and cone densities, R̄(θ) and C̄(θ), that depend on the location θ. For example,521

at the fovea (θ = 0) the weight for the rod contribution is zero. Similarly, the weight522

on the cone OS lengths as θ moves away from the fovea region decreases in proportion523

to the cone density. We do require that in the nonlinear inequality constraints (62)–524

(64) all rod and cone lengths still fall within the expected photoreceptor OS length525

‘goalposts’. In this particular context, the Wilk et al. data represents photoreceptor526

OS lengths and so our rod OS and cone OS predictions are fit to the same data (i.e. rod527

OS and cone OS lengths are effectively equivalent).528

The Wilk et al. photoreceptor OS length data are shown in Figure 6 as small red529

circles (our goalposts), red crosses (actual OS length data used in the fitting), and530

large blue circles (not used for fitting and just shown for visual reference). We see that531

the photoreceptor OS lengths decrease monotonically at least out to approximately532

2.5 mm from the fovea (θ ≈ 0.25 radians). In the context of our equilibrium model this533

suggests that dr̄eq/dθ < 0 and dc̄eq/dθ < 0 over this region. Several of our numerical534

comparisons to these data are also shown and these solutions are described in more535

detail later in this section.536

Solutions of our full dynamic model require specification of the ten parameters537

ar, µr, ac, d, µc, β, γ, D, ¯̀
r, ¯̀

c. (65)

Comparison with dimensional OS length data requires specification of cnormal and538

rnormal. We assume that cnormal = rnormal = 55 µm, which are representative of typical539

photoreceptor lengths near the fovea as reported in Wilk et al. [67]. Since our com-540

parison to experimental data will be made under equilibrium conditions as noted in541

the section on equilibria a reduced set of parameters is relevant. With the additional542

assumption that ¯̀
r = ¯̀

c = ¯̀ and that D will be specified as a fixed parameter rather543

than treated as an adjustable (fitted) parameter this leads us to the reduced set of six544
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Figure 6: Dimensional photoreceptor OS length (left plot) and a zoomed-in version (right plot) as

a function of angle measured from the fovea for several different values of the diffusion coefficient.

Various data from Wilk et al. are also shown. The small red circles at θ = 0 are the ‘maximum’

OS lengths reported in Wilk et al. Table 1. The small red circles at θ = θ0.5mm are the ‘minimum’

OS lengths reported in Wilk et al. Table 1. The small red circles at θ = θ2.0mm are the 2 mm OS

lengths reported in Wilk et al. Table 1. The red crosses are the points ~P
(1)
i used in the objective

function. The large blue circles are collectively the points ~P
(2`)
i (normal Wilk et al. subject with low

peak density) and ~P
(2r)
i (normal Wilk et al. subject with highest peak density) shown for reference

but otherwise not used in the optimization problem. Several cases from the results in Table 6 with

P3 6= 0 are shown (solid curves: D = 0), (dashed curves: D = 10−4), (dash-dotted curves: D = 10−3),

and (dotted curves: D = 10−2). The dashed magenta curve is the analytical approximation given by

equation (75). The corresponding nutrient concentration is shown in Figure 7.

parameters545

pr =
µr
ar
, pc =

µc
ac
, pd =

d

ac
, β, γ, ¯̀, (66)

to be used in the optimization problem. Our solutions reported below are those ob-546

tained by solving the equilibrium problem numerically but we have also verified that547

the equilibrium solution reached using our dynamic model is in agreement with these548

equilibrium solutions.549

As a first step to explore the predictions of our model in the context of the Wilk550

et al. [67] data, we solved numerically – again using Matlab’s fmincon with either the551

interior-point method or sqp – the optimization problem to minimize the objective552
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function JW subject to the nonlinear constraints in (62)–(64) over the parameters553

defined in equations (66). We used a range of values Nθ ∈ [200, 1600]. For cases554

with D = 0 a value of Nθ = 200 was sufficient but when D 6= 0 typically we used555

Nθ = 800 although these results were consistent with runs withNθ = 400 and 1600. The556

outcomes of these numerical calculations with D ∈ [0, 10−2] revealed several important557

results with respect to parameter estimation of our model with respect to the Wilk et558

al. data:559

• The values of parameters pd and γ appear to be near zero numerically (pd ≈560

O(10−7) to O(10−8) and γ ≈ O(10−8) to O(10−10) were typically observed). We561

have verified that setting pd = 0 and γ = 0 provided the same numerical outcomes562

to within reasonable tolerances.563

– A consequence of γ = 0 is that the cone OS length variable c̄eq decouples564

from equation (38) that determines the nutrient concentration.565

– A consequence of pd = 0, along with the assumption that ¯̀
c = ¯̀

r and that566

we fit both rod and cone OS lengths to the same photoreceptor data, is that567

the values of pr and pc appear to be effectively the same. Therefore, we568

define p ≡ pr = pc.569

• The value of ¯̀ remains close to, but larger than, p. This suggests a relationship570

¯̀= p(1 + ε) where 0 < ε� 1. We explore this further below.571

• Predictions for r̄eq and c̄eq match well with the Wilk et al. data for the values572

of θ available. The nutrient concentration satisfies 0 < 1 − T̄eq(θ) � 1. Further573

details and plots are outlined below.574

• Even with the reduced set of parameters assuming pd = 0, γ = 0, ¯̀
r = ¯̀

c = ¯̀
575

and pr = pc = p, individual values of p, β, and ¯̀ are not uniquely determined576

by this minimization algorithm and in general depend on the initial guess as well577
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as the minimization scheme (e.g. interior point vs. sqp). This suggests the578

minimization solution we seek resides on a solution manifold within the param-579

eter search space. We give analytical arguments and show numerical evidence580

that the minimization procedure determines a one-parameter family of solutions581

characterized by fixed values of the two parameter groups P1 ≡ ¯̀− p, P2 = βp2,582

with a third parameter group P3 = γ/β apparently near zero.583

We now investigate our equilibrium model in more detail. In the Wilk et al. context584

we fit r̄eq and c̄eq to the same data so it makes sense, in light of the observations just585

noted, to assume that pd = 0 and that ¯̀
r = ¯̀

c = ¯̀ and pr = pc = p. We retain γ 6= 0586

for now and find that the nutrient concentration T̄eq and rod OS length r̄eq (and cone587

OS length c̄eq) satisfy588

0 = T̄eq(1− T̄eq)− βpr̄eqR̄− γpc̄eqC̄ +
D

sin θ

∂

∂θ

(
sin θ

∂T̄eq

∂θ

)
, (67)

r̄eq = c̄eq = ¯̀− p

T̄eq

. (68)

If we write ¯̀= p(1 + ε) and also introduce T̄−1
eq = 1 + εūeq we find that equations (67)589

and (68) become590

0 =
ūeq

(1 + εūeq)2
− βp2(1− ūeq)

(
R̄(θ) + (γ/β)C̄(θ)

)
− D

sin θ

d

dθ

[
sin θ

(1 + εūeq)2

dūeq

dθ

]
, (69)

r̄eq = c̄eq = εp (1− ūeq) . (70)

When ε� 1 and ūeq = O(1) as ε→ 0 the leading-order contributions of (69) and (70)591

give the approximations592

0 ≈ ūeq − P2(1− ūeq)
(
R̄(θ) + P3C̄(θ)

)
− D

sin θ

d

dθ

[
sin θ

dūeq

dθ

]
, (71)

r̄eq = c̄eq ≈ P1 (1− ūeq) , (72)

where we have introduced the three parameter groups as593

P1 = εp = ¯̀− p, P2 = βp2, P3 =
γ

β
, (73)
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involving the four parameters ¯̀, p, β, and γ. Since the Wilk et al. [67] data give594

photoreceptor OS lengths versus position in the retina, we can expect our optimization595

procedure to inform us about the values for P1, P2, and P3. That is, for each specified596

value ofD we anticipate finding a one-parameter family of solutions to our minimization597

problem. Below we report more details specific to cases with either D = 0 or D 6= 0.598

6.1. Zero Diffusion599

As written, the equilibrium problem with D = 0 amounts to a system of algebraic600

equations (36), (37), and (38) for r̄eq, c̄eq, and T̄eq that can be solved at as few or as601

many values of θ as desired. While in general one must prescribe values for the six602

parameters in (66), as noted above, in the context of fitting to the Wilk et al. data it603

appears that one can identify solutions characterized by three parameter groups P1,604

P2, and P3. In fact, with D = 0 and ε � 1, a closed form expression approximating605

rod and cone OS lengths is possible. An approximate solution for ūeq in (69) is606

ūeq =
P2

(
R̄(θ) + P3C̄(θ)

)
1 + P2

(
R̄(θ) + P3C̄(θ)

) +O(ε), (74)

in which case an approximation for r̄eq = c̄eq is607

r̄eq = c̄eq =
P1

1 + P2

(
R̄(θ) + P3C̄(θ)

) +O(ε2). (75)

Note that from equation (75) we find that608

dr̄eq

dθ
=
dc̄eq

dθ
= −

P1

(
dR̄
dθ

+ P3
dC̄
dθ

)
[
1 + P2

(
R̄(θ) + P3C̄(θ)

)]2 +O(ε2). (76)

Also note that dr̄eq/dθ and dc̄eq/dθ appear to be negative over the values of θ for which609

we have Wilk et al. OS length data. Recall from equations (28) and (29) and also610

Figure 1 that dR̄/dθ > 0 and dC̄/dθ < 0 over this range of θ. Therefore, it appears611

that dR̄/dθ + P3dC̄/dθ > 0 is needed to describe the Wilk et al. data and so P3 must612

not be too large. A very small value of P3 seems to be consistent with our numerical613

findings.614
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Numerical values for P1, P2, and P3 based on the comparison to the Wilk et al. [67]615

data are listed in Table 6. We have included cases in which we explicitly set P3 = 0 and616

cases in which we allow P3 > 0. For each different value of D there are slight differences617

between the reported solutions. These differences we believe are not significant given618

the uncertainty associated with the specific set of fit data used and more generally in619

light of the broad variation from one subject to the next in photoreceptor OS lengths.620

Solutions for the rod and cone OS lengths r̄eq and c̄eq as functions of θ are shown621

in Figure 6 for the case where P3 = 0. For the case D = 0 solid black lines show the622

numerical solution and the nearly coincident dashed magenta lines show the approx-623

imate solution given by equation (75). The right plot shows the same quantities for624

values of θ near the range of the Wilk et al. data, which corresponds to approximately625

2.5 mm out from the fovea. The corresponding results for nutrient concentration T̄eq626

(solid black curve and coincident dashed magenta curve) are shown in Figure 7. The627

clear trend in the data, which is also reflected in the model predictions is a decrease628

in the photoreceptor OS length moving away from the fovea. Our predictions extend629

further and suggest that the OS length reaches a minimum and begins to increase630

with increasing distance from the fovea. This behavior can be linked directly to the631

non-monotonic structure of the rod density function R̄(θ) as evident in equation (75),632

recalling that C̄(θ)→ 0 away from the fovea. Certainly it would be interesting to com-633

pare these predictions with experimental measurements of photoreceptor OS lengths634

further from the fovea where the rods dominate. We remark that there is information635

on the spatial variation of retina thickness over the whole retina. In Kolb, Fernandez,636

& Nelson [32] (p. 1830, Figure 3) values for retinal thickness at the foveal floor, the637

foveal rim, and the ora serrata are 150 µm–200 µm, 320 µm, and 80 µm, respectively.638

Our predictions for OS length near 30 µm at the ora serrata in Figure 6 may be more639

than a retinal thickness value of 80 µm would be able to accommodate given the vari-640

ous other sublayers in addition to the photoreceptor OS that must also occupy space641
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in the retina. This observation may suggest that in our model the quantities `r and `c642

are likely also spatially-dependent; potentially related to the retinal thickness, which643

is necessarily an upper bound on the OS length.644

While equation (75) also involves the cone density function C(θ) it does not appear645

that there is sufficient resolution in the Wilk et al. [67] data near θ = 0 to conclusively646

distinguish cases with P3 = 0 and P3 6= 0 but small. With sufficiently large values647

of P3 our predictions for rod and cone OS lengths near θ = 0 would have OS lengths648

increasing locally, which does not appear to be a feature of the Wilk et al. data. Values649

for P1 and P2, while certainly variable with respect to D appear to be more robustly650

identified by our minimization problem, but again would certainly be sensitive to the651

details of the OS length data (e.g. using data from a different subject).652

Best Fit

Parameter Groups

D P1 P2 P3 JW

0 0.83 1.50 0 10.00

0 0.83 1.50 2.4× 10−6 10.00

10−4 0.93 2.02 0 29.04

10−4 0.93 2.02 2.52× 10−6 29.04

10−3 1.38 4.31 0 49.03

10−3 1.38 4.31 4.27× 10−6 49.03

10−2 5.45 21.60 0 57.81

10−2 5.45 21.62 2.65× 10−5 57.81

Table 6: Fitted parameter groups P1, P2, and P3 obtained from comparisons with the Wilk et al. [67]

photoreceptor spatial-dependence data. There are two sets of runs for each value of D; the first has

P3 = 0 and the second allows P3 to vary as one of the fitted parameters. These results have assumed

pd = 0.
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6.2. Nonzero Diffusion653

The predictions for nonzero diffusion require the application of boundary conditions654

for T at θ = θfovea and θ = θoraserrata. We use ∂T/∂θ = 0 at both boundaries (again655

note a particular detail for implementing this condition numerically at θ = 0 in the656

Appendix). Solutions are computed numerically using a method of lines approach with657

the domain θ ∈ [θfovea, θoraserrata] divided into Nθ equal intervals.658

Numerical values for P1, P2, and P3 again for cases with P3 = 0 and P3 > 0 are659

listed in Table 6. We see that P1 and P2 are sensitive to the value of D but P3 tends to660

remain near zero in all cases. Figure 6 shows the corresponding rod and cone OS lengths661

for D = 10−4 (dashed curve), 10−3 (dash-dotted curve), and 10−2 (dotted curve). In662

this figure we see that increasing the diffusion coefficient has the effect of amplifying663

the variation in the photoreceptor OS length over intermediate angles shown, although664

still maintaining consistency with the Wilk et al. data. Again, the results of our model665

suggest the need for additional experimental data covering the retina away from the666

fovea. Again we remark that in this context the consideration of spatial dependence667

of `r and `c may be important. The corresponding nutrient concentration predictions668

are shown in Figure 7. As the diffusion coefficient increases the spatial variation in669

the nutrient variable in general decreases but the overall nutrient level stays near a670

dimensionless value of unity.671

7. Conclusions672

In this study we have developed a dynamic mathematical model that incorporates673

spatial dependence of rod and cone densities across the retina and uses this information674

in the prediction of rod and cone OS lengths and nutrient concentration. The model675

includes diffusion of nutrient and is in the form of a coupled partial differential equation676

system. Our mathematical model, as a PDE system that accounts for spatial depen-677

dence of critical features of the retina, has a number of connections with the ODE-based678
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Figure 7: Dimensionless nutrient concentration T̄ predictions as a function of angle measured from the

fovea for several cases shown in Table 6 with P3 6= 0 (solid curve: D = 0), (dashed curve: D = 10−4),

(dash-dotted curve: D = 10−3), and (dotted curve: D = 10−2). The dashed magenta curve is the

analytical approximation T̄eq = 1/(1 + εūeq) with ūeq given by equation (74). These correspond to

the rod OS and cone OS predictions in Figure 6.

model of Camacho & Wirkus [15] and the PDE-based models of Roberts et al. [53, 51].679

We have connected our model predictions to a number of different experimental mea-680

surements. First, rod and cone photoreceptor density data in the retina have been681

incorporated for both humans (Curcio et al. [21]) and Rhesus Monkeys (Adams et682

al. [2]). Second, we have used the Rhesus Monkey photoreceptor density data to make683

detailed comparisons with rod and cone OS dynamic regrowth data from experiments684

of Guérin et al. [28, 29]. Third, we have used the human photoreceptor density data685

to make comparisons with measured photoreceptor OS length data of human retinas686

by Wilk et al. [67]. Here we have derived a closed-form expression for photoreceptor687

OS lengths, in the absence of diffusion, that could be further tested against additional688

experimental data. In all cases, our ability to make comparisons to experimental data689

and offer testable predictions lends support to the utility of our mathematical model.2690

2This meets the definition of a ‘useful’ model by Roberts et al. [52] as it ‘replicates current data

enabling us to make predictions’.
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Given the importance of mathematical models to explore retinal diseases such as re-691

tinitis pigmentosa, we anticipate that the model presented here may be of interest for692

future investigations of retinal structure, function, and dynamics.693
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Appendix A. Adams et al. Rhesus Monkey Photoreceptor Density Data699

We record in Table A.7 the angle and photoreceptor data that we have extracted700

via Matlab’s grabit.m from Figure 2 in Adams et al. [2]. We use this as the Rhesus701

Monkey analog of the Curcio et al. [21] human photoreceptor density data. Results of702

the fits to this photoreceptor data are shown in Table 1.703

Appendix B. Wilk et al. Photoreceptor OS Length Data704

We have used Matlab’s grabit.m software to extract photoreceptor OS length data705

versus position in the retina from experimental images in Wilk et al. [67] Figures 1706

and 2. We have identified these approximate photoreceptor OS lengths directly from707

their image A in Figure 1 by marking points along their upper (blue) line and lower708

(orange) line and extending this out to the edge of the image. We repeated a similar709

procedure with two images in their Figure 2. While their measurement scheme is clearly710

more accurate than ours, the additional quantitative information of OS length versus711

position appears to be accurate within the variation across subjects and is extremely712

helpful in our analysis. These values are listed in Table B.8. The two additional713

examples shown in Wilk et al. Figure 2 show similar detail to lower resolution but are714
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Angle from Rod Density

Fovea (Degrees) (mm−2 10−3)

1.31 5.12
3.72 24.13
6.04 48.50
6.95 61.65
7.96 65.56
9.16 68.24
10.77 80.43
13.88 93.60
15.38 88.01
16.69 94.35
18.69 92.66
21.40 96.82
24.01 109.26
26.71 104.65
31.90 83.74
37.21 79.40
42.41 67.75
48.00 52.93
53.11 45.90
58.51 43.51

Angle from Cone Density

Fovea (Degrees) (mm−2 10−3)

0.23 49.19
0.83 37.02
1.52 30.20
3.92 23.16
6.12 9.54
8.12 9.55
9.32 9.07
10.62 9.57
13.83 9.59
15.33 7.41
16.93 7.91
18.73 5.97
21.23 6.23
24.04 5.04
26.74 5.06
31.55 4.36
37.05 2.94
42.26 2.73
47.67 2.52
52.88 2.80
58.29 3.08

Table A.7: Rod and cone density data for a Rhesus Monkey collected via Matlab’s grabit.m from

Adams et al. [2] Figure 2.

useful as they show data for two additional subjects and at points further from the715

fovea (e.g. out to an estimated 2500 µm to 2600 µm versus the estimated 880 µm we716

were able to extract from their Figure 1 and also versus their reported measurements717

in Table 1 at 2 mm = 2000 µm). These values are listed in Table B.9. As described718

in the main text, we define our objective function based on the data we extracted719

from Figure 1 and use the data Wilk et al. report in their Table 1 for normal subjects720

(Maximum, Minimum, and 2 mm OS lengths) as constraints in our calculations. The721

data we obtained from the two images in Wilk et al. Figure 2 are quite noisy due to722
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the nature of our data collection scheme and for this reason are used simply as a visual723

comparison of our predictions that extend further from the fovea than the data that we724

used in the fitting procedure. The distance from fovea data was converted to radians725

by interpreting these values as arclength, converting them to mm and then dividing by726

11.06 mm as an estimate of the radius of a ‘spherical’ eye.727

Distance from Photoreceptor

Fovea (µm) OS Length (µm)

0.0 46.2
52.4 45.0
97.6 42.4
145.1 40.5
192.7 38.6
240.2 36.1
290.2 35.4
339.0 35.5
384.2 34.2
430.5 33.6
479.3 33.0
528.1 31.7
579.3 31.7
630.5 31.1
680.5 31.1
731.7 31.7
782.9 30.4
836.6 29.8
885.4 28.5

Table B.8: Data collected via Matlab’s grabit.m from Wilk et al. Figure 1A (right side of fovea).
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Distance from Photoreceptor

Fovea (µm) OS Length (µm)

0.0 47.9
104.1 42.7
212.5 40.6
329.5 36.5
446.5 34.3
559.2 31.3
682.6 34.3
797.4 30.1
908.1 29.1
1020.9 29.1
1144.3 27.1
1257.0 27.0
1369.8 25.9
1506.0 23.8
1631.6 22.9
1752.9 22.9
1876.4 24.9
1999.8 22.8
2121.2 23.9
2240.4 24.9
2353.3 21.8
2464.1 21.8
2553.6 21.8
2655.8 22.9

Distance from Photoreceptor

Fovea (µm) OS Length (µm)

0.0 48.1
122.9 39.7
243.6 34.5
358.2 32.3
474.9 31.3
589.5 31.2
697.9 28.1
810.4 24.9
925.0 26.1
1027.1 22.9
1127.2 26.0
1239.8 27.0
1337.8 29.2
1437.9 26.1
1533.8 24.9
1636.0 22.9
1752.7 24.9
1857.0 20.9
1955.0 24.0
2071.8 22.9
2180.2 22.9
2282.4 17.7
2384.5 18.7
2493.0 17.7
2568.1 21.0

Table B.9: Data collected via Matlab’s grabit.m from Wilk et al. Figure 2. The left table corresponds

to the lower left image of Wilk et al. Figure 2 (right side of fovea) from a subject with low peak cone

density. The right table corresponds to the lower right image of Wilk et al. Figure 2 (also right side

of fovea) from a subject with the highest peak cone density.

Appendix C. Boundary Condition: Nonzero Diffusion728

For cases in which we consider nonzero diffusion and wish to impose ∂T/∂θ = 0 at729

θ = 0 we make the following observation. Define the diffusion terms to be730

D =
1

sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
=
∂2T

∂θ2
+

cos θ

sin θ

∂T

∂θ
. (C1)
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In the limit θ → 0 it follows that731

D =
∂2T

∂θ2
(θ = 0) + θ

∂3T

∂θ3
(θ = 0) +O(θ2)

+
1 +O(θ2)

θ +O(θ3)

(
∂T

∂θ
(θ = 0) + θ

∂2T

∂θ2
(θ = 0) +O(θ2)

)
,

= 2
∂2T

∂θ2
(θ = 0) +O(θ) (C2)

if one imposes ∂T/∂θ(θ = 0) = 0. So D(θ = 0) = 2∂2T/∂θ2(θ = 0). Consider a732

finite difference scheme with uniformly-spaced grid points [θ1, . . . , θi, . . . , θNθ+1] where733

θi = (i−1)θoraserrata/Nθ for i = 1, . . . , Nθ+1. If we impose ∂T/∂θ = 0 at θ = 0 through734

the introduction of a ghost point θ0 ≡ θ2 (i.e. a second order accurate representation735

of a central difference formula for the derivative set to zero) then the application of the736

PDE for T at θ = 0 (i.e. i = 0) requires that the diffusion term be written as737

D(θ = 0) = 2
θ0 − 2θ1 + θ2

∆θ2
, (C3)

where ∆θ = θoraserrata/Nθ. That is, the diffusion term picks up a factor of 2.738
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