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Abstract 

The Static Analysis Tool Exposition (SATE) VI report presents the results of a security-focused 
bug finding evaluation exercise carried out from 2018 to 2023 on various code bases using static 
analysis tools. Existing bugs were extracted from bug tracker reports and the National 
Vulnerability Database (NVD), and additional bugs were injected using automated tools and 
manual analysis. The results of this exercise showed significant variability across tool 
effectiveness, depending on the test cases, bug classes, and bug complexity involved. The report 
discusses the shortcomings and difficulties encountered during the bug injection process, which 
marginally impeded the efficiency of the evaluation. 
The report emphasizes the correlation between high code complexity and tool difficulty in 
identifying bugs. Recall and discrimination rates were lower for the convoluted C Track than the 
considerably less complex Java Track. Across all languages and code bases, tools found bugs 
with lower complexity more readily than bugs with higher complexity. Finding rates varied for 
different bug classes, in line with the inherent complexity of each bug class (e.g., recall for 
simpler initialization errors was greater than on more intricate buffer errors). 
The report discusses the shortcomings of the bug injection process. Regardless of the test case, 
injected bugs were not found by tools at the same rate as existing bugs, implying that their 
quality needs to improve. 
The report also includes a summary of the Ockham Sound Analysis Criteria track, which focused 
on tools that do not report false positives or false negatives. 
The SATE VI report concludes that static analysis is a useful technique to find real security bugs 
in large code bases. The right set of tools, used properly, can help increase code quality and 
security. Potential users should test a tool or set of tools on their own code base before using 
them in production. The metrics presented in SATE VI are suitable for assessing tool fitness for 
such a use case.  
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Caution on Interpreting and Using the SATE Data 

SATE VI, as well as its predecessors, taught us many valuable lessons. Most importantly, our 
analysis should NOT be used as a basis for rating or choosing tools; this was never the goal. 
No single metric or set of metrics is considered by the research community to indicate or 
quantify all aspects of tool performance. We caution readers not to apply unjustified metrics 
based on the SATE data. 
Due to the nature and variety of security weaknesses, defining clear and comprehensive analysis 
criteria is difficult. While the analysis criteria have been much improved since the first SATE, 
further refinements are necessary. 
The test data and analysis procedure employed have limitations and might not indicate how these 
tools perform in practice. The results may not generalize to other software because the choice of 
test cases, as well as the size of test cases, can greatly influence tool performance. Also in the 
Classic track, we analyzed only the tool warnings that were related to the collected or 
injected weaknesses. 
The procedure that we used for injecting weaknesses in production software has limitations, so 
the results may not indicate the tools’ actual abilities to find important security weaknesses. 
Specifically, the shortcomings of the injected weaknesses are described in Section 5.2. 
Synthetic test cases are much smaller and less complex than production software. Weaknesses 
may not occur with the same frequency in production software. Additionally, for every synthetic 
test case with a weakness, there is one test case without a weakness, whereas, in practice, sites 
with weaknesses appear much less frequently than sites without weaknesses. Due to these 
limitations, tool results, including false positive rates, on synthetic test cases may differ from 
results on production software. 
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The tools were used differently in this exposition from their typical use. We analyzed tool 
warnings for correctness and looked for related warnings from other tools. Developers, on the 
other hand, use tools to determine what changes need to be made to the software. Auditors look 
for evidence of assurance. Also, in practice, users write specific rules, suppress false positives, 
and write code in certain ways to minimize tool warnings. 
We did not consider the tools’ user interfaces, integration with the development environment, 
and many other aspects of the tools, which are important for a user to understand a weakness 
report efficiently and correctly. 
Teams ran their tools against the test sets in 2018 and 2019. The tools continue to progress 
rapidly, so some observations from the SATE data may already be out of date. 
Because of the stated limitations, SATE should not be interpreted as a tool testing exercise. The 
results should not be used to make conclusions regarding which tools are best for a given 
application or the general benefit of using static analysis tools. 

 Introduction 

Concurrently with society's increasing reliance on software, the software complexity and 
vulnerabilities are growing as well. Hence, software assurance is critically needed. 
Software assurance is a set of methods and processes to prevent, mitigate or remove 
vulnerabilities and ensure that the software functions as intended. Multiple interrelated 
techniques and tools are used for software assurance [1][2]. One commonly used technique is 
static analysis, which examines software for weaknesses without executing it [3]. 
Over the years, the National Institute of Standards and Technology (NIST) Software Assurance 
Metrics and Tool Evaluation (SAMATE) project has organized six Static Analysis Tool 
Expositions (SATEs) [4][5][6][7][8], designed to advance research in static analysis tools that 
find security-relevant weaknesses in source code.  
Briefly, NIST provides a set of programs to tool makers, then they run their tools and return tool 
outputs for analysis. Tool makers and organizers share their experiences and observations at a 
workshop. 
SATE VI included three tracks: 

1. Classic track, evaluating tool performance on C and Java test cases produced using bug 
injection and collection. 

2. Ockham Sound Analysis Criteria track, evaluating sound analysis tools. 
3. Mobile track, evaluating mobile apps. 

The results of the Ockham track are published in [16]. The results of the Mobile track are 
presented in [31]. We explain the SATE procedure and present the results of SATE VI in this 
report. 
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 Goals 

SATE encourages participation by creating a collaborative, rather than competitive, 
environment. This broader participation brings more results, on which we build and assess 
stronger metrics. The SATE metrics provide assessments of tools’ features, such as weakness 
types, the accuracy in detecting such weaknesses, and the rate of missing weaknesses in source 
code. 
Also, SATE provides participating toolmakers with quality feedback, enabling them to assess 
their tools’ strengths and weaknesses. The results produced by their tools are partially reviewed 
and rated by experts. 
Finally, demonstrating the use of tools on production software fosters their adoption by the user 
community. In fact, several toolmakers informally reported that their current and prospective 
customers demanded that they participate in SATE. 

 Scope 

SATE focuses on tools capable of finding security flaws. Although its parent project, SAMATE, 
considers all types of software assurance tools, SATE is only concerned with tools that statically 
analyze software, i.e., without executing the code. 

 Target Audience 

The target audiences for this report are static analysis toolmakers, security researchers, and tool 
users. 

 Terminology 

We use the concepts defined in Table 1. Terms specific to the Ockham criteria discussed in 
Section 6 are defined in Table 2. 
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Table 1. General Glossary of Terms 

Term Definition 

Weakness, flaw, bug Defect in a system that may (or may not) lead to a vulnerability. 

Vulnerability 
A weakness in system security requirements, design, implementation, or operation, 
that could be accidentally triggered or intentionally exploited and result in a 
violation of the system’s security policy [9]. 

Site Conceptual place in a program where an operation is performed. 

Finding, claim A definitive statement provided by a tool about a site, e.g., the presence or absence 
of a weakness. 

Warning Claim reporting the presence of a potential weakness. 

Report Collection of warnings reported by a tool on a specific test case. 

Location A representation of a site, e.g., by file name and line number in source code. 

Complexity Code construct encapsulating a site, making the latter more or less difficult to 
analyze. 

Synthetic code Artificial code generated and documented automatically. 

True positive (TP) Flawed code correctly reported by a tool. 

False positive (FP) Non-flawed code reported by a tool as flawed. 

False negative (FN) Flawed code not reported by a tool. 

Test case A code base containing weaknesses, or fixes for these weaknesses.  

Weakness class A general type of weakness e.g., buffer errors or initialization errors. 

Ground truth Knowledge of all weaknesses in a test case, including their location in code and 
weakness class. 

Track An area of focus, such as a programming language (C/C++ and Java), sometimes 
collectively called “classic tracks”, or methodology (Ockham Criteria). 

Good, fixed, non-buggy code Code that should not contain any weakness. 

Bad, flawed, buggy code Code that contains at least one weakness. 

 

Table 2. Ockham Criteria Glossary of Terms 

Term Definition 

Bad function A function in a Juliet test case that is written to exhibit a weakness. (Sec. 6.1.2.1) 

Good 
function 

A function in a Juliet test case that is identical to a bad function, except that it does not have the 
weakness. (Sec. 6.1.2.1) 

Finding A definitive statement by a tool about a specific place in code, e.g., the presence or absence of a 
weakness. (Sec. 6.2) 

Site A location in code where a weakness might occur. (Sec. 6.1.2.2) 

Buggy site A site that has a bug or weakness. 

Sound tool Every finding is correct. (Sec. 6.2.1) 

Weakness The property of a piece of code such that execution could lead to a fault. (Sec. 6.1.2.2) 
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 Metrics 

The following metrics address some basic questions about tool performance: 

• Recall ‒ What proportion of weaknesses can a tool find? 
Recall is defined by the number of correct findings by a tool compared with the total number of 
weaknesses present in the code. It is calculated by dividing the number of True Positives (TP) by 
the total number of weaknesses, i.e., the sum of the number of True Positives (TP) and the 
number of False Negatives (FN). 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (1) 

• Precision ‒ How much can I trust a tool? 
Precision is the proportion of correct warnings produced by a tool and is calculated by dividing 
the number of True Positives (TP) by the total number of warnings. The total number of 
warnings is the sum of the number of True Positives (TP) and the number of False Positives 
(FP). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

• Discrimination Rate ‒ How smart is a tool? 

Buggy and good code often look similar. It is useful to determine whether the tools can 
differentiate between the two. Although precision captures that aspect of tool efficiency, it is 
relevant only when good sites dominate buggy sites. When there is parity in the number of good 
and bad sites, e.g., in some synthetic test suites, a tool could indiscriminately flag both good and 
bad sites as flawed and still achieve a precision of 50 %. Discrimination, however, recognizes a 
true positive on a specific flawed test case only if a tool did not report a false positive on the 
corresponding fixed test case [10]. For each weakness instance, a tool is assigned a 
discrimination of 1 if the tool reports a weakness for a bad site but not for the corresponding 
good site; otherwise, it is assigned a discrimination of 0. Over a set of test cases, the 
Discrimination Rate is the number of discriminations divided by the total number of weakness 
instances. A tool that flags all sites (good and bad) indiscriminately would achieve a 
discrimination rate of 0 %. 

• F1 Score ‒ Can a tool be measured by a single metric? 
The F1 score combines recall and precision in a single metric. In SATE, recall and precision (or 
alternatively, discrimination) are two independent dimensions of tool behavior. Two tools with 
different profiles (i.e., different recall and precision) could wind up with the same F1 score. In 
SATE, we prefer to keep the two metrics as separate axes to better represent tool behavior. 

• Overlap ‒ Can the findings be confirmed by other tools? 
Overlap represents the proportion of weaknesses found by more than one tool. This metric 
identifies which tools behave similarly and which weaknesses are easy or difficult for tools to 
find. The use of multiple tools would find more weaknesses (higher recall), whereas the use of 
independent tools would provide a higher confidence that the common warnings are accurate. 
(Independent tools use different approaches to find bugs, so a bug found by multiple such tools is 
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more likely to be a real one, in the same way a fire is more likely to be accurately detected by 
both a smoke detector and a temperature sensor, instead of just one of the two.) 

 Related Work 

Definition and classification of security weaknesses in software are necessary to communicate 
and analyze security findings. While many classifications have been proposed, Common 
Weakness Enumeration (CWE) is the most prominent effort [11]. 
The Bugs Framework (BF) is a structured, complete, orthogonal, and language- and technology-
independent classification of software security bugs and weaknesses, which allows precise 
description of software security vulnerabilities that exploit them [12]. 
Several studies used synthetic test suites to evaluate tools. Kratkiewicz and Lippmann [13] 
developed a comprehensive taxonomy of buffer overflows and created 291 test cases, comprised 
of small C programs, to evaluate tools for detecting buffer overflows. Each test case has three 
vulnerable versions with buffer overflows just outside, moderately outside, and far outside the 
buffer, in addition to a fourth, fixed, version. Kratkiewicz’s taxonomy [13] lists different 
attributes, or code complexities, including aliasing, control flow, and loops, which may 
complicate analysis by the tools. 
The largest synthetic test suite in the NIST Software Assurance Reference Dataset (SARD) [14] 
was created by the U.S. National Security Agency’s (NSA) Center for Assured Software (CAS). 
Juliet 1.0 consists of about 60 000 synthetic test cases, covering 177 CWEs and a wide range of 
code complexities [10]. CAS ran nine tools on the test suite and found that static analysis tools 
differed significantly with respect to precision and recall. Also, tools’ precision and recall 
ranking varied for different weaknesses. CAS concluded that sophisticated use of multiple tools 
would increase the rate of finding weaknesses and decrease the false positive rate. 
A newer version of the test suite, Juliet 1.2, correcting several errors and covering a wider range 
of CWEs and code constructs, was used in SATE V. Juliet 1.3, which increased weakness 
coverage and corrected many errors in version 1.2 [15], was used in the SATE VI Ockham 
Sound Analysis Criteria track [16]. 
Studies also evaluated tools on production software. Rutar et. al. [17] ran five static analysis 
tools on five open source Java programs, including Apache Tomcat, of varying size and 
functionality. Due to many tool warnings, Rutar et al. did not categorize every false positive and 
false negative reported by the tools. Instead, the tool outputs were cross-checked with each other. 
Additionally, a subset of warnings was examined manually. Previous SATEs also analyzed a 
subset of tool warnings for production software. One of the conclusions of Rutar et al. was that 
there was little overlap among warnings from different tools. Another conclusion was that a 
meta-tool combining and cross-referencing outputs from multiple tools could be used to 
prioritize warnings. 
Several tool evaluation studies identified ground truth in production software. The earliest such 
effort was by Zitser et al. [18]. At the time of their 2004 publication, sophisticated tools could 
not handle realistic software, so they extracted source code for model programs. They created 
fourteen small model programs from three popular, open source, Internet server programs 
(BIND, Sendmail, and WU-FTP), which contained publicly known, exploitable buffer 
overflows. The model programs had both vulnerable and patched source code. Complexity of the 
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model programs related to the buffer overflows was similar to the real programs, while the size 
was much smaller. Now, many sophisticated tools can handle large software out of the box or 
with minimal configuration. The study analyzed different characteristics of buffer overflows and 
evaluated true positive rates, false positive rates, and discrimination counts of static analysis 
tools. 
Li et al. [19] developed VulPecker, an automated vulnerability detection system, based on code 
similarity analysis. They created a Vulnerability Patch Database, comprised of over 1700 CVEs 
from nineteen C/C++ open source software. The CVEs are mapped to diff hunks, which are 
small files tracking the location of a given weakness and changes in source code across versions. 
Instead of extracting ground truths, such as CVEs, from software, some studies focused on 
injecting realistic bugs into software. We review these studies in Section 2.2. 

 Evolution of SATE 

The first SATE [4] used open source, production programs as test cases. We learned that not 
knowing the locations of weaknesses in the programs complicates the analysis task. 
To address this problem, starting in the second SATE [5], we randomly selected a subset of thirty 
warnings from each tool report, based on weakness category and severity. The selection 
procedure assigned higher weight to higher severity warnings. We then analyzed the selected 
warnings for correctness. We also searched for related warnings from other tools, which allowed 
us to study overlap of warnings between tools. 
Over the years, we added other types of test cases. One type, CVE-selected test cases, is based 
on the Common Vulnerabilities and Exposures (CVE) [20], a database of publicly reported 
security vulnerabilities. The CVE-selected test cases are pairs of programs: an older vulnerable 
version with publicly reported vulnerabilities (CVEs) and a fixed version, i.e., a newer version 
where some or all of the CVEs were fixed. For the CVE-selected test cases, we focused on tool 
warnings that corresponded to the CVEs. 
In SATE IV [7], we introduced a large number of synthetic test cases, the Juliet test suite, which 
contain precisely characterized weaknesses. Thus, warnings for these weaknesses were amenable 
to mechanical analysis. 
In SATE V [8], we introduced the Ockham Criteria to evaluate sound static analysis tools. Sound 
tools are designed to never report incorrect findings. 
The evolution of SATE is described in detail and summarized in the SATE V report [8], Sec. 1.8. 
To address the limitations of the different types of test cases used in SATE V (production, CVE-
selected, and synthetic), SATE VI Classic track focused on bug injection and collection. 

 Mobile Track 

Mobile applications are pervasive in the public and private sectors. Enterprises in these sectors 
should evaluate the mobile applications used within their infrastructures for vulnerabilities to 
minimize potential risk. The SATE VI Mobile track sought to improve the tools and services 
used in these evaluations by extending the Static Analysis Tool Exposition (SATE) to include 
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mobile application tool evaluations. [31] describes NIST’s first attempt to carry out that goal and 
the results that stemmed from the first Mobile SATE track. 

 Bug Injection and Collection 

The first step in building our test suites was to collect existing bugs in the software we selected 
for test cases, by browsing bug trackers, bug reports and CVEs. These high-quality bugs were, 
however, generally too few to achieve statistical significance. We then decided to augment the 
corpus of existing bugs with injected ones. 

 Motivation for Bug Injection 

The quality of a test suite for static analysis can be articulated around three axes: relevance, 
ground truth and statistical significance: 

• Relevance describes how close to real code the test cases are. For example, production-
grade software provides the highest relevance, whereas computer-generated test cases do 
not demonstrate the complexity and development history typical of real software. 

• Ground-truth simply means that we sufficiently know the bugs in the test suite to 
determine if tools found them or not. Bug characteristics of interest are the type of and 
sequence of operations triggering the bug. 

• Statistical significance is gained if the test suite contains enough comparable bugs to 
draw statistical conclusions. 

Test suite types demonstrating two of the three characteristics are readily available: 

• Production software offers relevance and statistical significance if the code base is 
sufficiently large, but no ground truth. 

• Known vulnerabilities (as listed in, e.g., CVE/NVD) provide ground truth and relevance 
but are too few in a single code base to provide statistical significance. 

• Synthetic test cases offer ground truth and statistical significance but not the sought-after 
level of relevance, as their complexity is not comparable to production software’s. 

One approach to create a better test suite is to inject many synthetic bugs in production software. 
The numbers will provide statistical significance, and the original software the relevance. The 
ground truth can be determined during the injection process, as the type and location of the bugs 
are known. This is the approach we experimented with to create many of the SATE VI Classic 
Track’s test cases. 
One benefit of using bug injection is the ability to infer proof of vulnerability (PoV or exploit) to 
demonstrate that a bug can be triggered and, therefore, matters. PoVs also make tracing bugs 
easier, which in turn makes matching tool warnings to bugs easier and more accurate. 

 Related Work on Bug Injection 

Several approaches for injecting bugs into production software have been proposed and 
implemented recently. The Intelligence Advanced Research Projects Activity (IARPA) 
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attempted to combine all three properties of an ideal test suite in its Securely Taking On New 
Executable Software of Uncertain Provenance (STONESOUP) program [21][22]. IARPA 
created 7770 test cases by injecting small code snippets, containing weaknesses, into sixteen 
open-source base programs written in C and Java. Safe and triggering inputs, as well as expected 
outputs, were also created as part of the test case generation process. Although the base programs 
were real-world software, the inserted code snippets, or cysts, were unrelated to the control and 
data flow of the base programs. The resulting weaknesses were not representative of bugs made 
by real programmers. 
EvilCoder [23] extends Joern [24], a tool for robust analysis of C code, to support 
interprocedural analysis. Joern converts source code into a code property graph - a 
combinationof the abstract syntax tree, control flow and data flow. Analyzing the code property 
graph, EvilCoder finds sensitive sinks – security-relevant Application Programing Interface 
(API) calls such as memcpy. Then, EvilCoder finds data flow connections between the sinks and 
user-controlled sources, such as files, command line arguments, etc. After that, it traces the 
control flow from source to sink in order to find the relevant security mechanisms, such as 
sanitization functions or security checks. Finally, EvilCoder modifies the source code to weaken 
or remove the security mechanisms or replace secure API calls with insecure ones. 
Although EvilCoder produces taint-style bugs, [23] suggests possible extensions to other 
weakness classes such as race conditions and use-after-free. EvilCoder uses static analysis to 
insert bugs and does not produce triggering inputs for the bugs, so there is no guarantee that the 
injected code created real bugs. Additionally, its reliance on static analysis for bug injection may 
bias static analysis tool evaluation. 
As proposed in [25], the injected bugs must: 

• Be cheap and plentiful. 

• Span the execution lifetime of a program. 

• Be embedded in representative control and data flow. 

• Come with an input that serves as an existence proof. 

• Manifest for a very small fraction of possible inputs. 
To address these requirements, large-scale automated vulnerability (LAVA) [25] uses a dynamic 
taint analysis approach to find locations in code that are relevant for bug injection. Specifically, 
LAVA identifies two key elements: 

• An attack point, that is, a site that can potentially have a bug, and 

• User-controlled data that do not determine control flow are available before the attack 
point on the program trace and could be used at that attack point to trigger the bug. 

Then LAVA modifies the program to make the user-controlled data available at the attack point 
and use them to trigger the vulnerability. Thus, LAVA provides both the triggering input and the 
bug locations. LAVA can inject thousands of bugs in minutes. However, the tool alters the 
program data flow in a somewhat unrealistic way. Also, LAVA initially covered only buffer 
overflows and was extended later [26] to cover a few other types of bugs. With its focus on 
producing bugs that manifest for a very small fraction of possible inputs, LAVA is well-suited 
for the evaluation of fuzz testing tools and security competitions such as Capture the Flag. 
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Apocalypse [27] uses formal techniques - symbolic execution, constraint-based program 
synthesis and model counting - to automatically inject bugs in large software. Compared to 
LAVA, Apocalypse improves fairness and depth of bugs. According to [27], a fair bug can be 
found by practical bug detection techniques, while a deep bug requires a long sequence of data 
and control flow conditions to be met for it to trigger. 
Mutation testing [28] systematically produces mutants, that is, programs with small syntactic 
changes that correspond to typical programmer errors. Some example changes are replacing a 
variable with another variable, replacing a relational operator with another relational operator, 
and deleting a statement. A test set is adequate if it can distinguish the program from each 
mutant. Mutation testing can be used for both test generation and analysis. Mutation testing does 
not guarantee that the mutants are real bugs. 
GrammaTech developed a bug injector [29] based on the Software Evolution Library1, 
independently from the company’s static analyzer, Code Sonar. The tool uses instrumentation to 
discover suitable sites for bug injection, and produces exploits for the bugs it injects. 
GrammaTech described the tool’s process on their blog2: 
“Bug-Injector takes three inputs: (1) a host program in source format, (2) a set of tests for this 
program, and (3) a set of bug templates. It attempts to inject bugs from the set of bug templates 
into the host program and returns multiple different buggy versions of the host program. Each 
returned buggy program variant contains at least one known bug (the one that was injected), and 
is associated with a witness—a test input that is known to exercise the injected bug.” 

 Bug Injection and Collection in SATE VI 

Bugs can be injected with different degrees of automation. Therein lie challenges, as bug quality 
tends to degrade with an increase in automation. In SATE VI, we used different degrees of 
automation with successes and pitfalls. 

2.3.1. Injected Bug Quality 

The first question we asked was what sort of bugs to inject. LAVA publications [25][26] started 
a reflection on what constitutes a proper injected bug. For our purpose, we expected our bugs to: 

• Be embedded in existing control and data flows. Having bugs inserted outside of the 
program’s data flow – like in STONESOUP [21][22] – would not reflect the complexity 
of real-world bugs. 

• Span the execution lifetime of the program. Injecting a bug should not significantly 
change the behavior of the program. A bug that obviously and consistently breaks the 
program would have been noticed and remediated by the developer. Arguably, this is not 
of concern for static analysis, which does not rely on live execution of the target program, 
but it still introduces bug shadowing issues, which are discussed in Section 2.3.2. 

 
1 https://grammatech.github.io/sel 
2 https://blogs.grammatech.com/grammatech-wins-ieee-scam-2019-distinguished-paper-award-for-bug-injector-research 

https://grammatech.github.io/sel
https://blogs.grammatech.com/grammatech-wins-ieee-scam-2019-distinguished-paper-award-for-bug-injector-research
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• Trigger on a narrow sequence of inputs. A bug that triggers on a wide variety of inputs 
would be more likely to be accidentally triggered, noticed, and fixed by the developer 
and, therefore, would not be realistic. 

• Come with a Proof of Vulnerability (PoV) to demonstrate that the bug is real. 

• Reflect a human programmer’s coding style. 

2.3.2. Bug Shadowing 

When a program contains more than one bug, it is not uncommon that one bug entirely prevents 
the execution of another. If the second bug in the control flow graph is triggered by a subset of 
the inputs that trigger the first bug, and all paths leading to the second bug also pass through the 
first bug, then the first bug will always trigger before the second can be reached, the former 
shadowing the latter. 
This proves problematic for static analyzers, which might be unable to further analysis after 
encountering the first bug if the state of the program becomes undefined. 
To prevent this issue, we focused on injecting bugs in functions deep in the call graph. We listed 
candidate functions using tools such as Callgrind34 and Flow5 using this process: 

1. Dump the call graph for all available inputs 
2. Create a dictionary of all called functions and their inputs 
3. Select a function that was rarely called to inject a bug in 
4. Delete from the dictionary all functions that used the same inputs as the function in which 

we injected the bug 
For each newly injected bug, we ran the program against the PoVs of already injected bugs. If a 
PoV triggered the wrong bug, we manually determined if the issue could be easily remediated, 
otherwise removed the last injected bug, and moved on to the next. 

2.3.3. Bug Traces 

To better match tool warnings to bugs, we spent a considerable amount of time describing the 
bugs in our test cases. We recorded partial traces leading to each bug, recording and describing 
each step where tools typically report warnings. Key steps, such as sinks, intermediate bugs, or 
declaration and initialization of key variables, were given CWEs. These locations were expected 
to be reported by the tools for us to consider the bug as found. 
Traces were collected from PoVs when possible, using call graph tools such as Callgrind and 
Flow, or manually in last resort. Analysts then curated and annotated the traces manually. 
These detailed bug traces could be used for further research and are one of the greatest 
takeaways of SATE VI. 

 
3 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or 
concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. 
4 https://valgrind.org/docs/manual/cl-manual.html 
5 http://findtheflow.io 

https://valgrind.org/docs/manual/cl-manual.html
http://findtheflow.io/
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2.3.4. Bug Collection and Semi-automated Injection 

In SATE VI, we chose to inject specific types of bugs in production software, in addition to 
collecting existing vulnerabilities. We settled for high-impact, easily testable bug types: buffer 
errors and pointer issues for the C Track; and Structured Query Language (SQL) injection and 
Cross-site scripting (XSS) for the Java Track. 
Based on the type of bugs we selected, we sought production software that would offer enough 
suitable sites for injection. For example, we needed software that extensively used a SQL 
database to allow for SQL injection bugs in sufficient numbers. 

2.3.4.1. Bug Collection and Semi-automated Injection in C 

For C, we searched for software making pervasive use of pointers and buffers and decided to use 
one of SATE’s classics: Wireshark 1.2.0, a network protocol analyzer. Its large code base, 
complexity and attack surface made it an interesting candidate for static analysis testing. 
We started by searching for all reported bugs in Wireshark’s bug tracker and found 49 real-world 
vulnerabilities. The bug reports oftentimes provided exploits as well, facilitating the retrieval of 
the bugs traces, sources, and sinks. Most of these bugs are buffer errors, invalid pointer 
dereferences and a few initialization and calculation issues. 
We complemented this list of bugs with our own. To automatically find suitable sites for bug 
injection in C code bases, we developed a tool called SATESE (for SATE Site Extractor), based 
on Clang/LLVM and LibTooling/LibASTMatchers. The tool searches for user-defined patterns 
in the target code base’s AST and reports any finding for manual inspection. For SATE VI, we 
used the following custom patterns: 

• Decreasing loops with buffer access for potential buffer underflow 

• Array-writing sites 

• Buffer-writing functions (see below) 

• Pointer casting sites 

• Critical functions (see below) 

• Loops freeing memory for potential double free bugs 

• Any operation increasing integers for integer overflow bugs 

• Return statements returning literals 

• While loops with null pointer termination condition 

The buffer writing functions the tool looked for were: “strcpy”, “strncpy”, “strncat”, “strcat”, 
“fgets”, “wcsncpy”, “wcscpy”, “wcsncat”, “wcscat”, “wcpcpy”, “wcpncpy”, “memset”, 
“wmemset”, “memcpy”, “memmove”, “snprintf”, “SNPRINTF”. 
Wireshark 1.2 uses library GLib instead of the C standard library, so we used the critical function 
matcher to flag functions: “g_free”, “g_strdup”, “g_malloc”, “g_strdup_printf”, “g_strlcat”, 
“g_strlcpy”. 
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We used the sites found by the tool to inject bugs falling in three main categories: 

• 8 uninitialized pointer dereferences 

• 9 incorrect pointer offsets leading to out-of-bound memory access 

• 9 other bugs inspired by real bugs found in Wireshark 
In total, the test case had 75 bugs, split into 49 existing ones and 26 injected ones. 
To prove that these bugs matter, we also collected and created exploits for most of them. The 
Wireshark bug tracker usually provides triggering inputs for most reported issues, so many of the 
collected bugs already had a proof of vulnerability (PoV). For the rest, we used guided fuzzing6 
(using AFL/ASAN/Valgrind and adding instrumentation to the code base) with some success. 
Almost all our bugs have a PoV, many of which are system-dependent. 

2.3.4.2. Bug Collection and Semi-automated Bug Injection in Java 

For Java, we started with the web repository system DSpace 6.2, which already suffered from 
XSS vulnerabilities and contained many sites that could accommodate more XSS. DSpace used 
an Object-Relational Mapping (ORM) paradigm to access its database, making it impractical for 
SQL injection, so we added Sakai 11.2, a customizable learning management system, accessing 
its SQL database through generic functions. 
We used tools such as Flow to navigate control and data flows in the two programs and help find 
suitable locations for bug injection in their code bases. Selecting locations based on the control 
and data flows also helped with crafting PoV, as the input vector was known in advance. 
In DSpace, we collected 18 existing XSS bugs (1 reflected, 17 stored), and complemented the set 
by injecting 12 more bugs (5 reflected, 7 stored). These 30 vulnerabilities span a large portion of 
the code base. 
We were not aware of any vulnerability in Sakai, so we seeded 30 SQL injection bugs by 
transforming existing prepared statements into unfiltered SQL queries, or by grafting new 
unfiltered SQL queries at select locations in the code base and using available tainted data flow. 
We created the PoVs manually, based on the input vectors and data flows previously collected, 
and used to inject the bugs. Most PoVs are as simple as entering JavaScript code or malformed 
SQL queries for XSS and SQL injection, respectively. 

2.3.5. Mostly-automated Bug Injection 

In SATE VI, we used an automated bug injection tool, designed by GrammaTech7, to inject 
buffer errors in SQLite 3.21, a relational database management system written in C. The bug 
injector is described in Section 2.2. 

 
6 Fuzzing was “guided” by carefully selecting the initial input data to reach the vicinity of the target bug, then by adding “abort()” calls along the 
control flow graph leading to the bug to drive the fuzzer toward the bug. When one such call was hit, the fuzzer recorded it as a crash and saved 
the input. We then removed the call to “abort()” that was hit and started fuzzing again with the new input data, until the bug was reached at last. 
For such application, the fuzzer was not used to discover unknown bugs, but to generate a proof of vulnerability for an already known bug. 
7 Although we used the GrammaTech bug injector to create one of the test cases, it did not particularly benefit or hinder their static analysis tool, 
Code Sonar, which is completely independent. 
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GrammaTech provided us with about 10 000 inputs for SQLite to drive the instrumented analysis 
of the software. Using the data collected, we ran the injection tool multiple times on the code 
base and collected as many new buggy versions of SQLite. We then carefully selected a set of 
buggy versions, avoiding bug shadowing, and consolidated 30 buffer error bugs into a single 
code base. Bug shadowing is discussed in Section 2.3.2. Briefly, we added the bugs one by one 
to the code base. After each injection, we ran the PoVs of all bugs present in the code base, to 
check if the newest bug prevented another from triggering, or if a previously present bug 
prevented the newest bug from triggering. In such instance, we discarded the shallowest of the 
two interacting bugs and continued the process. 

2.3.6. Manual Buggy Application Building 

In 2016, Defense Advanced Research Projects Agency (DARPA) launched the Cyber Grand 
Challenge8 (CGC), a competition to create automatic defensive systems capable of reasoning 
about flaws, formulating patches and deploying them on a network in real time. For the purpose, 
DARPA created an extensive test suite of custom-made, buggy programs that were later ported 
to i386 architecture by Trail of Bits. From the test suite’s GitHub9: 
“The DARPA Challenge Binaries (CBs) are custom-made programs specifically designed to 
contain vulnerabilities that represent a wide variety of crashing software flaws. They are more 
than simple test cases, they approximate real software with enough complexity to stress both 
manual and automated vulnerability discovery. The CBs come with extensive functionality tests, 
triggers for introduced bugs, patches, and performance monitoring tools, enabling benchmarking 
of patching tools and bug mitigation strategies.” 
“Porting work was completed by Kareem El-Faramawi and Loren Maggiore, with help from 
Artem Dinaburg, Peter Goodman, Ryan Stortz, and Jay Little. Challenges were originally created 
by NARF Industries, Kaprica Security, Chris Eagle, Lunge Technology, Cromulence, West Point 
Military Academy, Thought Networks, and Air Force Research Labs while under contract for the 
DARPA Cyber Grand Challenge.” 
This test suite is a treasure trove of relatively complex applications containing known bugs, 
which comes close to the definition of a perfect test suite (see Section 2.1) with a few caveats 
discussed in Section 5.2.5. 
  

 
8 https://www.darpa.mil/program/cyber-grand-challenge 
9 https://github.com/trailofbits/cb-multios 
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 SATE VI Test Suite Summary 

The full test suite for the SATE VI Classic Track is summarized in Table 3. 

Table 3. SATE VI Classic Track Test Cases. 

 Test Case Ver. Real 
Bugs 

Inj. 
Bugs Inj. type Bug type App type 

C 

Wireshark 1.2.0 49 26 Semi-
auto 

Pointer, Buffer, 
Calc. 

Net. traffic 
analyzer 

SQLite 3.21 0 30 Mostly-
auto Buffer Database 

engine 

CGC n/a 0 370+ Manual Pointer, Buffer, 
Calc. Multiple 

Java 
DSpace 6.2 9 4 Semi-

auto XSS Repository 
system 

Sakai 11.2 0 30 Semi-
auto SQL Learning 

mngmt. 

 Overall Procedure 

SATE follows the Text REtrieval Conference (TREC) model [30] and is divided into tracks. 
Toolmakers are free to participate in any track and to analyze any test case. SATE VI included 
three tracks: 

• Classic track evaluating tool performance on C and Java test cases produced using bug 
injection and collection, 

• Ockham Sound Analysis Criteria track evaluating sound analysis tools, and 

• Mobile track, evaluating mobile apps. 

The results of the Ockham track are published in [16]. The procedure and results for the mobile 
track are presented in [31].  

 Changes Since SATE V 

SATE VI brings several significant changes since SATE V. The most substantive change from 
SATE V was the focus on bug injection and collection, which is described in Section 2. 
To facilitate the participants’ tasks, the test cases for SATE VI were shipped as Docker 
containers. These are lightweight containers that include all dependencies necessary to compile 
the test cases. They were preconfigured with proper compilation options. 
To simplify analysis, teams converted their output to a common Extensible Markup Language 
(XML) output format. As an alternative to the simple SATE output format [32], in SATE VI we 
also accepted the powerful Static Analysis Results Interchange Format (SARIF) [44]. 
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 Steps / Organization 

SATE uses the following steps: 
1. Preparation: NIST researchers prepare the test data. 
2. Meanwhile, toolmakers are invited to sign up. 
3. Kickoff: Test cases are released, and each team starts its analysis. 
4. Submission: Each team sends its tool’s outputs back to us. 
5. Analysis: We analyze tool outputs, using methods specific to each test case type. 
6. Workshop: Teams, NIST researchers, and others from industry and academia 

gather to share their experiences. 
7. Publication: We release the SATE report, summarizing SATE VI results. 

The Classic track test suites were produced using bug injection and collection; they are 
summarized in Section 2.4. 
The Ockham Sound Analysis Criteria track participants used the Juliet 1.3 C test suite [15]. 

 Participation 

The Classic track had the following 15 participants10: 
• Checkmarx CxSAST 
• Clang 
• Cppcheck 
• Flawfinder 
• Gimpel PC-lint Plus 
• Grammatech Code Sonar 
• Infer 
• JuliaSoft Julia 

• Kiuwan Code Security 
• Mathworks Polyspace Bug 

Finder 
• Microfocus Fortify SCA 
• Parasoft C/C++test and Jtest 
• SpotBugs 
• Synopsys Coverity 
• Viva64 PVS-Studio 

We ran three of the open source tools (Clang, Infer, and SpotBugs) and converted their output to 
the SATE output format ourselves. 
Two tool makers, Astrée and Frama-C, participated in the Ockham Sound Analysis Criteria 
track. 
Participation in SATE VI was the highest of all SATE events with 17 participants (Table 4). In 
the Classic track, some teams ran their tool on both C and Java test cases, while others chose one 
programming language only. 

 
10 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or 
concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. 
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Table 4. Overall Participation per Track / Language over SATEs 

SATE C/C++ Java PHP Ockham Unique Participants 
2008 4 7   9 
2009 5 5   8 
2010 8 4   10 
IV 7 3 0  8 
V 11 6 1 1 14 
VI 11 7  2 17 

 Data Anonymization 

SATE is not a competition. To prevent endorsement and protect the intellectual property of 
toolmakers, randomly assigned aliases will be used to identify their products from this point on. 
Tools will be referred to as Tools A through R consistently throughout the report. 

 Results Summary 

This section compiles and draws observations from the results detailed in Section 5. 
Injected bugs in SQLite and Sakai suffered from shortcomings, summarized in Section 5.2.6, 
which may have affected the results for these two test cases. 
On the C track (Tables 5, 60 and 70), Tool C performed best on Wireshark and SQLite, but 
comparatively not as capably on CGC. Tool H performed well on all C test cases. Although less 
so, Tools B and E performed adequately on all C test cases. Tools D, F, G and K performed 
variably, depending on the test case. Tools A, I and J did not report any true positive (TP). 
Excluding tools that did not report any TP, discrimination rate ranged from 8 % to 20 % on 
Wireshark and from 10 % to 23 % with an outlier at 60 % on SQLite. Recall ranged from 1 % to 
13 % on CGC. 
On the Java track (Tables 91 and 101), Tool O performed best on DSpace and Sakai. Tool R was 
on par with Tool O on Sakai but did not support DSpace’s XSS bugs. Tools Q and N showed 
good discrimination rate on both Java test cases, though trailing Tool O. Tools M and P correctly 
reported several TPs but suffered from poor discrimination on DSpace. Tool L did not report any 
TP. Excluding tools that did not report any TP, discrimination rate ranged from 0 % to 87 % on 
DSpace and from 40 % to 67 % on Sakai. 
Finding rates varied for different bug types. Buffer errors in Wireshark (Table 15) and CGC 
(Table 73) had a recall ranging from 2 % to 14 %. Pointer errors in Wireshark (Table 25) had a 
recall between 21 % and 33 % with an outlier at 3 %, while in CGC (Table 85) tools found 
almost no pointer errors. Initialization errors were found at a rate of 9 % to 55 % in Wireshark 
(Table 45) and 14 % to 29 % in CGC (Table 88). Buffer errors tend to be inherently more 
complex than, e.g., initialization errors, which could factor in these discrepancies. 
Across all languages, test cases and bug types, when bug complexity increased, tools found 
fewer bugs (fewer TPs) and discrimination rate decreased (more FPs per TP). Tools were better 
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at finding simpler bugs and were adversely affected by increases in bug complexity (Tables 11, 
65, 72, and 97). 
Ultimately, tool recall and discrimination vary wildly across tools and test cases. Testing tools on 
relevant code bases is, therefore, necessary to make informed decisions when integrating static 
analysis in a development pipeline. The metrics used in SATE help measure tool effectiveness 
and should be part of the process of selecting a static analysis tool suite. Users will seek high 
recall to maximize the number of bugs reported by the tool, and high discrimination rate to 
minimize tool confusion between good and bad code.  
Additionally, users can combine multiple tools advantageously. To maximize the number of 
reported bugs, tools with high recall and low overlap can be used together. The union of their 
reports could add up to more TPs and support of more bug types. Likewise, using independent 
tools with high overlap could increase the discrimination rate, by focusing on the intersection of 
the tool reports. Bugs that are reported by both tools have a higher probability of being TPs. 
Regarding the quality of injected bugs, shortcomings have been listed in Section 5.2.6. Tables 7 
to 10 and 93 to 96 indicate that tools tended to find injected bugs more frequently and with 
higher discrimination than existing bugs. This result can be partially explained by the low 
average complexity of injected bugs compared to existing bugs, as detailed in Tables 24 and 100. 
Considering these observations, injected bugs in SATE VI were discernible from existing bugs, 
evidence that the injection process fell somewhat short of producing realistic bugs. 

 Results 

 Procedure 

The procedure to analyze tool warnings remained essentially the same as in SATE V for the 
CVE-based test cases ([8], Sec. 3.2.2). 

5.1.1. Rating of Tool Warnings 

All injected bug traces (Sec. 2.3.3) and tool reports were converted to the SARIF format and 
imported in the SATE database. On the SATE web application, our analysts followed each bug 
trace to determine if any of its key step was reported by tools. If so, the warnings were analyzed 
to assess if they appropriately described the weakness. Depending on the assessment, the analyst 
would rate the warning as a miss, a hint, or a partial, alternate or exact match: 

• Miss: a tool did not report any relevant warning for a specific bug trace. 

• Hint: a tool reported a warning that could indirectly clue a reviewer to find the bug. 

• Partial: a tool reported a related warning on one of the key steps of the trace. 

• Alternate: a tool reported the same bug but on a different branch. 

• Match: a tool reported the full trace leading to the bug. 
In SATE VI, we considered as true positives (TPs) warnings rated as partial, alternate or match 
for the buggy version of the test cases. For the fixed version of the test cases, warnings rated as 
partial, alternate or match were considered false positives (FP). 
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5.1.2. Metrics 

SATE VI used a set of metrics to measure various aspects of tool effectiveness and test case 
properties. 

5.1.2.1. Tool Effectiveness 

SATE VI predominantly used two metrics to measure the effectiveness of the tools: recall and 
discrimination rate. Recall is the number of TPs divided by the number of bugs. Discrimination 
rate is the number of discriminated TPs divided by the number of bugs. A discriminated TP is 
granted if a tool reported a TP in the buggy test case, for which the tool did not report a FP for 
the same (fixed) bug in the fixed version of the test case. This shows that the tool did indeed 
understand the bug and did not report blanket warnings for code smells. 
Discrimination rate is a more discerning metric than recall, therefore we used it to sort the result 
tables. Secondary sorting considered the quality of the TPs, so exact matches were prioritized 
over alternate ones, over partial ones. 
To determine if tools handled some type of bugs better than others, we also sliced the results per 
common bug type, e.g., buffer / pointer / calculation errors, and calculated the recall and 
discrimination rate on these subsets. 
Similarly, we calculated recall and discrimination rate for each tool depending on bug 
complexity. Each bug was rated as simple, medium, high or extreme complexity depending on 
guidelines discussed in [8], Sec. 3.2.3.3. 

5.1.2.2. Tool Correlation 

Tool result overlap was used in SATE VI to determine if tools were independent or positively 
correlated. Independent (uncorrelated or negatively correlated) tools report different bugs, thus 
can be used in concert to increase recall. Positively correlated tools, provided they use 
independent underlying engines, should report a sizeable number of common bugs, which 
increases the confidence that these warnings are true positives. 
In SATE VI, overlap was measured for each bug individually, i.e., we counted the number of 
bugs found by both Tools X and Y. To calculate the overlap of Tool X over Tool Y, we divided 
the result by the number of TPs reported by Tool Y. This number is the proportion of Tool Y’s 
TPs found by Tool X. 

5.1.2.3. Injected Bug Quality 

One way to check if injected bugs measured up to existing bugs is to compare tools effectiveness 
on injected vs. existing bugs. Throughout the results section, recall and discrimination rates are 
presented separately for each of the two bug categories separately, enabling direct comparison. 

 Shortcomings 

During the analysis, issues with some injected bugs came to light. This section describes these 
shortcomings and possible remediations. 
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5.2.1. Cheap but Unhelpful Bugs 

A common pattern used to introduce pointer errors in Wireshark is loosely based on existing bug 
8C32D80311. It consisted of adding a large, context-relevant offset to a valid pointer, throwing 
the pointer out of range. For example, to create bug 80FA3989, the following valid snippet of 
code: 
memcmp(tvb_get_ptr(tvb, offset, 4), "YPNS", 4) 

was modified by adding tvb_length(tvb)*10 to the original pointer returned by function 
tvb_get_ptr, as follows: 
memcmp(tvb_get_ptr(tvb, offset, 4) + tvb_length(tvb)*10, "YPNS", 4) 

While this is indeed a valid bug, it is nearly impossible to statically differentiate a valid pointer 
address from an invalid one, especially in the context of Wireshark’s many complex memory 
allocation schemes.  
Out of 33 pointer errors, 9 bugs (27 %) were based on this pattern: 8EBE37FF, 80FA3989, 
4E251C0D, 256C7C53, 61CF9E42, 299E59EB, C75CCA7F, 3723B848, D5F4E690. These bugs 
were all rated as having extreme complexity, so the results obtained on low-, medium- and high-
complexity bugs remained unaffected. 
This type of bugs serves little purpose in a static analysis tool evaluation and should not be used 
in the future. 

5.2.2. Asymmetrical Bug/Fix Pairs 

Another pattern used in all SQL injection errors consists of turning prepared statements such as: 
query = "INSERT INTO FORUM_SATE (ID, TITLE, BODY) VALUES(?, ?, ?)"; 

statement = connection.prepareStatement(query); 

statement.setString(1, uuid); 

statement.setString(2, title); 

statement.setString(3, "body"); 

statement.executeUpdate(); 

Into unfiltered SQL statements such as: 
query = "INSERT INTO FORUM_SATE (ID, TITLE, BODY) \ 

VALUES('" + uuid + "', '" + title + "', 'body')"; 

statement = connection.createStatement(); 

int i = statement.executeUpdate(query);  

The original, non-buggy snippet used SQL injection-proof method prepareStatement while 
the buggy snippet used unsafe method createStatement with unfiltered inputs. To better test 
discrimination, the fixed code should have also used method createStatement, but with 

 
11 Bug IDs are used to flag bug traces directly in the Wireshark source code available at: https://samate.nist.gov/SATE6/wireshark-1.2-sate6.tar.xz 

https://samate.nist.gov/SATE6/wireshark-1.2-sate6.tar.xz
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comprehensively filtered inputs. This would have assessed whether the tools understood input 
validation in the context of SQL injection. 

5.2.3. Automatically Injected Bugs Issues 

The GrammaTech Bug Injector brought significant improvements over existing bug injection 
tools [29]. One such improvement consists of using existing data flows within the target program 
as sources for the bugs. In SQLite, 10 out of 30 bugs we injected used a global variable named 
Sqlite3PendingByte. This variable is set once to 0x40000000, and an attacker could never 
gain control over it. In conjunction with the bug patterns, we used with the Bug Injector in SATE 
VI, this shortcoming caused several unforeseen effects: 

1. 26 bugs depended on variable Sqlite3PendingByte, which could not be user-
controlled, making these bugs somewhat less complex and realistic. 

2. 10 of these bugs, expected to be integer overflow to buffer overflow chains, turned out to 
be zero-sized memory allocation bugs. The integer operation would overflow exactly to 
zero and, depending on the underlying implementation, the memory allocation function 
would return a zero-sized buffer or a null pointer. In the first case, the buffer overflow 
could still occur, but in the second, the bug was a null pointer dereference. In both cases, 
the sinks were not immediately discernable. 

3. Four bugs depending on variable Sqlite3PendingByte used always-true conditions, 
as the value of the variable cannot change. 

4. Similarly, 14 fixes depending on variable Sqlite3PendingByte used always-false 
conditions, turning the sink into dead code, which could be ignored by some tools and, 
therefore, no different from removing the offending code entirely. 

In the future, improved quality control should enforce the diversity and user control of source 
variables. The sinks should also be identified. 

5.2.4. Sink Separation 

Four bugs in SQLite used the same sink in function set_i. Some tools correctly reported one or 
more bugs inside the function, but without specifying the full trace. It was, therefore, impossible 
to attribute the true-positive to a specific bug. 
In such future occurrence, the sink function should be duplicated for each bug. With separate 
sinks, it will be possible to differentiate which bug was found even if only the sink line is 
reported by a tool. 

5.2.5. CGC Specificities 

The CGC test suite was created with vulnerability exploitability in mind. Its programs use 
customized memory allocation schemes based on the “mmap” Portable Operating System 
Interface (POSIX) system call, and customized buffer and string operation functions. These 
functions tend to follow the C standard library conventions, but use different names and can 
behave differently, which can hinder tool analysis. Tools can usually be configured to handle 
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custom functions, but SATE VI participants may not have had enough time and resources to 
analyze these functions and set up their tool accordingly. The source code of the functions was, 
however, included in the test suite, so fine-tuning tools might not have been strictly necessary. 
CGC was also designed to run on an Intel 32-bit architecture, which has become unusual 
nowadays, with 64-bit architectures being prevalent. Most bugs should nonetheless trigger 
similarly on both architectures. 

5.2.6. Shortcomings Summary 

Although problems altered some bugs in SATE VI, the issues remained relatively contained. 
Affected bugs tended to be less useful and realistic than initially planned, but not fundamentally 
wrong. 
We advise the reader to consider the affected results with a critical eye. These issues largely 
afflicted SQLite and the results obtained on this test case are unlikely to represent the 
effectiveness of tools on real software. In Sakai, discrimination was very high and might be the 
product of the asymmetry described in Section 5.2.2. In Wireshark, overall recall and 
discrimination rate in Table 5 would be 13.6 % higher if we disregarded the bugs described in 
Section 5.2.1, and 39 % higher for pointer-specific Table 25. 

 C 

5.3.1. Wireshark: Existing and Semi-automatically Injected Bugs 

Wireshark contained 75 bugs with different properties. In the following sections, we first present 
the general results on all bugs in Section 5.3.1.1, then slice the results along the various bug 
properties to offer more specific insights on tool strengths and weaknesses and on bug quality. 
Each bug can be a chain of different weaknesses and fall in more than one category in Sections 
5.3.1.2 through 5.3.1.5. 

5.3.1.1. Overall Analysis 

This section presents the tool results on all 75 bugs present in Wireshark. Table 5 offers an 
overview of the number of bugs found by each tool, the accuracy of the findings, and the main 
two metrics used in SATE VI: recall and discrimination rate. Excluding tools without valid 
findings, the average recall reached 16 % and discrimination rate 14 %. The very small 
difference between these two numbers supports the conjecture that the tools correctly grasped the 
workings of the bugs they reported. 
Table 6 offers a view of tool warning overlap. For example, Tool C had the highest recall (see 
Table 5) and found 67 % of the bugs correctly reported by Tools H, E and F. Reciprocally, Tools 
H, E and F found 47 % of the bugs reported by Tool C. Some tools, such as H and E (83 %), had 
even higher overlap. Using these two tools together would not significantly increase the number 
of bugs found, but would increase confidence that bugs reported by both tools are TPs (assuming 
the tools are independent). Using Tool G along with Tool H, E or F would provide little benefit, 
as bugs reported by Tool G were always reported by the latter tools. Overall, tool warning 
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overlap is significant. Barring Tool K, which had low recall, tools overlapped usually by over 
40 %. Half of the tools overlapped by over 60 %. 

Table 5. Overall Recall and Discrimination in Wireshark 

Findings Tool C Tool E Tool H Tool F Tool B Tool G Tool D Tool K Tool A Tool J Tool I 

Miss 55 62 62 61 56 66 50 66 75 75 75 

Hint 3 1 1 2 6 1 12 1 0 0 0 

Partial 5 3 3 11 11 6 5 3 0 0 0 

Alternate 1 0 0 0 0 0 0 0 0 0 0 

Match 11 9 9 1 2 2 8 5 0 0 0 

TP 17 12 12 12 13 8 13 8 0 0 0 

Disc. TP 15 12 12 12 10 8 7 6 0 0 0 

Bugs 75 75 75 75 75 75 75 75 75 75 75 

Recall 23 % 16 % 16 % 16 % 17 % 11 % 17 % 11 % 0 % 0 % 0 % 

Disc. Rate 20 % 16 % 16 % 16 % 13 % 11 % 9 % 8 % 0 % 0 % 0 % 

Table 6. Overall Tool Warning Overlap in Wireshark 

 Tool C Tool H Tool E Tool F Tool B Tool G Tool D Tool K Tool A Tool J Tool I 

Tool C N/A 67 % 67 % 67 % 46 % 88 % 62 % 50 % N/A N/A N/A 

Tool H 47 % N/A 83 % 75 % 62 % 100 % 54 % 38 % N/A N/A N/A 

Tool E 47 % 83 % N/A 75 % 46 % 100 % 54 % 50 % N/A N/A N/A 

Tool F 47 % 75 % 75 % N/A 38 % 100 % 54 % 50 % N/A N/A N/A 

Tool B 35 % 67 % 50 % 42 % N/A 50 % 46 % 25 % N/A N/A N/A 

Tool G 41 % 67 % 67 % 67 % 31 % N/A 46 % 13 % N/A N/A N/A 

Tool D 47 % 58 % 58 % 58 % 46 % 75 % N/A 25 % N/A N/A N/A 

Tool K 24 % 25 % 33 % 33 % 15 % 13 % 15 % N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

 
Tables 7, 8, 9 and 10 summarize recall and discrimination rate for all existing vs. injected bugs in 
Wireshark. 
Table 7 shows that injected bugs were found significantly more frequently on average (29 % 
excluding nil findings) than existing bugs (9 % excluding nil findings), and Table 8 that the 
discrimination rate followed the same trend. Tools C, B and K found a balanced mix of existing 
and injected bugs, while tools D, E, H, F and G primarily reported injected bugs. No tool had a 
higher recall on existing bugs than on injected bugs. 
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Table 9 shows an average drop (excluding nil findings) of 36 % from recall to discrimination rate 
on existing bugs, while Table 10 shows an average drop of only 7 % (excluding nil findings) on 
injected bugs. 
Overall, injected bugs were found significantly more frequently and with higher discrimination 
than existing bugs. We can then speculate that the bugs we injected in Wireshark were, on 
average, less complex than existing bugs from a static analysis perspective. 

Table 7. Overall Recall for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool C Tool B Tool K Tool D Tool E Tool H Tool F Tool G Tool A Tool J Tool I 

Existing 49 18 % 16 % 10 % 10 % 6 % 6 % 2 % 0 % 0 % 0 % 0 % 

Injected 26 31 % 19 % 12 % 31 % 35 % 35 % 42 % 31 % 0 % 0 % 0 % 

Table 8. Overall Discrimination Rate for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool C Tool B Tool H Tool E Tool K Tool D Tool F Tool G Tool J Tool I Tool A 

Existing 49 14 % 12 % 6 % 6 % 6 % 4 % 2 % 0 % 0 % 0 % 0 % 

Injected 26 31 % 15 % 35 % 35 % 12 % 19 % 42 % 31 % 0 % 0 % 0 % 

Table 9. Overall Recall and Discrimination for Existing Bugs in Wireshark 

 Tool C Tool B Tool K Tool D Tool E Tool H Tool F Tool G Tool A Tool J Tool I 

Recall 18 % 16 % 10 % 10 % 6 % 6 % 2 % 0 % 0 % 0 % 0 % 

Disc. Rate 14 % 12 % 6 % 4 % 6 % 6 % 2 % 0 % 0 % 0 % 0 % 

Table 10. Overall Recall and Discrimination for Injected Bugs in Wireshark 

 Tool F Tool K Tool D Tool C Tool G Tool E Tool B Tool H Tool J Tool I Tool A 

Recall 42 % 35 % 35 % 31 % 31 % 31 % 19 % 12 % 0 % 0 % 0 % 

Disc. Rate 42 % 35 % 35 % 31 % 31 % 19 % 15 % 12 % 0 % 0 % 0 % 

 
The SAMATE team classified the 75 bugs in Wireshark according to their complexity from a 
static analysis standpoint. For example, a bug completely contained within a single function 
would typically be rated as having low complexity. An interprocedural bug would be rated 
medium or higher. Undecidable bugs were rated as extreme. The team followed guidelines and 
homogenized the ratings. However, the classification was not always self-evident, and some 
ratings could be subjective. 
Tables 11 and 12 show an inverse correlation between the proportion of bugs found by tools and 
bug complexity. Table 13 shows the percentage drop between undiscriminated recall (i.e., 
regular recall) and discriminated recall (i.e., discrimination rate). As complexity increased, tools 
were not only less able to find bugs, but also less able to distinguish bugs and their respective 
fixes. 
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Table 11. Recall per Bug Complexity in Wireshark 

Complexity Bugs Tool C Tool B Tool H Tool F Tool E Tool D Tool K Tool G Tool A Tool I Tool J 

Low 16 56 % 38 % 56 % 69 % 63 % 44 % 25 % 50 % 0 % 0 % 0 % 

Medium 33 18 % 15 % 6 % 0 % 6 % 12 % 12 % 0 % 0 % 0 % 0 % 

High 14 14 % 14 % 7 % 7 % 0 % 7 % 0 % 0 % 0 % 0 % 0 % 

Extreme 12 0 % 0 % 0 % 0 % 0 % 8 % 0 % 0 % 0 % 0 % 0 % 

Table 12. Discrimination per Bug Complexity in Wireshark 

Complexity Bugs Tool C Tool B Tool H Tool F Tool E Tool D Tool K Tool G Tool A Tool I Tool J 

Low 16 56 % 31 % 56 % 69 % 63 % 31 % 25 % 50 % 0 % 0 % 0 % 

Medium 33 15 % 12 % 6 % 0 % 6 % 6 % 6 % 0 % 0 % 0 % 0 % 

High 14 7 % 7 % 7 % 7 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 12 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 13. Effect of Bug Complexity on Discrimination in Wireshark 

Complexity Bugs Tool C Tool B Tool H Tool F Tool E Tool D Tool K Tool G Tool A Tool I Tool J 

Low 16 0 % -17 % 0 % 0 % 0 % -29 % 0 % 0 % N/A N/A N/A 

Medium 33 -17 % -20 % 0 % N/A 0 % -50 % -50 % N/A N/A N/A N/A 

High 14 -50 % -50 % 0 % 0 % N/A -100 % N/A N/A N/A N/A N/A 

Extreme 12 N/A N/A N/A N/A N/A -100 % N/A N/A N/A N/A N/A 

 
Table 14 breaks down the number of existing and injected bugs across the different levels of bug 
complexity in Wireshark. Existing bugs’ complexity was clustered in the medium-high range 
while injected bugs were mostly simple or extreme. (See Section 5.2.1 for a description of the 
extreme injected bugs.) 

Table 14. Breakdown of Bug Count per Bug Properties in Wireshark 

Complexity Existing Injected 

Low 6 10 

Medium 29 4 

High 12 2 

Extreme 2 10 

5.3.1.2. Buffer Errors 

This section narrows down the results to the 44 buffer error bugs contained in Wireshark. Table 
15, as a focused version of Table 5, presents the number of buffer errors found by each tool, the 
accuracy of the findings, and the recall and discrimination rate. Excluding tools with nil findings, 
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the average recall reached 10 % and discrimination rate 7 %. These metrics are significantly 
lower than the overall recall and discrimination rate (Section 5.3.1.1), showing that tools found 
these bugs with more difficulty than average. However, recall and discrimination rate remain 
close, evidence that the tools mostly understood the bugs they reported. 
Interestingly, Tool K is the only tool that performed worse on the overall analysis (11 % recall) 
than on buffer errors (14 % recall), which appears to be one of its strengths. 
Table 16 presents the tool warning overlap for buffer errors, which represented a majority of 
59 % of the bugs in Wireshark. Consequently, the overlap for buffer errors was similar to the 
overall overlap reported in Table 6. 

Table 15. Recall and Discrimination on Buffer Errors in Wireshark 

Findings Tool H Tool C Tool K Tool E Tool B Tool D Tool F Tool G Tool A Tool J Tool I 

Miss 38 35 38 39 33 28 41 43 44 44 44 

Hint 1 3 0 1 5 12 1 0 0 0 0 

Partial 2 2 3 0 6 3 2 1 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 3 4 3 4 0 1 0 0 0 0 0 

TP 5 6 6 4 6 4 2 1 0 0 0 

Disc. TP 5 4 4 4 3 2 2 1 0 0 0 

Bugs 44 44 44 44 44 44 44 44 44 44 44 

Recall 11 % 14 % 14 % 9 % 14 % 9 % 5 % 2 % 0 % 0 % 0 % 

Disc. Rate 11 % 9 % 9 % 9 % 7 % 5 % 5 % 2 % 0 % 0 % 0 % 

Table 16. Tool Warning Overlap on Buffer Errors in Wireshark 

 Tool H Tool C Tool K Tool E Tool B Tool D Tool F Tool G Tool J Tool I Tool A 

Tool H N/A 33 % 50 % 75 % 67 % 50 % 100 % 100 % N/A N/A N/A 

Tool C 40 % N/A 50 % 25 % 17 % 25 % 50 % 100 % N/A N/A N/A 

Tool K 60 % 50 % N/A 100 % 33 % 50 % 100 % 100 % N/A N/A N/A 

Tool E 60 % 17 % 67 % N/A 33 % 50 % 100 % 100 % N/A N/A N/A 

Tool B 80 % 17 % 33 % 50 % N/A 25 % 50 % 0 % N/A N/A N/A 

Tool D 40 % 17 % 33 % 50 % 17 % N/A 100 % 100 % N/A N/A N/A 

Tool F 40 % 17 % 33 % 50 % 17 % 50 % N/A 100 % N/A N/A N/A 

Tool G 20 % 17 % 17 % 25 % 0 % 25 % 50 % N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 
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Tables 17, 18, 19 and 20 summarize recall and discrimination rate for all existing vs. injected 
buffer errors in Wireshark. 
Table 17 shows that existing and injected buffer errors were found at similar rates on average, 
but the proportion of existing vs. injected bugs found depended on the tool. Tools C and B 
favored existing bugs, while Tools E, D, F and G were more apt with injected bugs. Tools K and 
H were roughly equally competent on both bug types. Table 18 shows that injected bugs were 
understood on average at a higher rate than existing bugs, characterized by the sharp drop 
between recall and discrimination rate on existing bugs for Tools C, B and K (Table 19). Except 
for Tools B and D, there was no discrimination drop for injected bugs (Table 20). 

Table 17. Recall on Buffer Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool C Tool B Tool K Tool H Tool E Tool D Tool F Tool G Tool A Tool J Tool I 

Existing 28 18 % 18 % 14 % 11 % 7 % 4 % 0 % 0 % 0 % 0 % 0 % 

Injected 16 6 % 6 % 13 % 13 % 13 % 19 % 13 % 6 % 0 % 0 % 0 % 

Table 18. Discrimination on Buffer Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool H Tool C Tool B Tool K Tool E Tool F Tool D Tool G Tool J Tool I Tool A 

Existing 28 11 % 11 % 11 % 7 % 7 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 16 13 % 6 % 0 % 13 % 13 % 13 % 13 % 6 % 0 % 0 % 0 % 

Table 19. Recall and Discrimination on Buffer Errors for Existing Bugs in Wireshark 

 Tool C Tool B Tool H Tool K Tool E Tool D Tool F Tool G Tool A Tool J Tool I 

Recall 18 % 18 % 11 % 14 % 7 % 4 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 11 % 11 % 11 % 7 % 7 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 20. Recall and Discrimination on Buffer Errors for Injected Bugs in Wireshark 

 Tool D Tool K Tool H Tool E Tool F Tool C Tool G Tool B Tool A Tool J Tool I 

Recall 19 % 13 % 13 % 13 % 13 % 6 % 6 % 6 % 0 % 0 % 0 % 

Disc. Rate 13 % 13 % 13 % 13 % 13 % 6 % 6 % 0 % 0 % 0 % 0 % 

 
Tables 21, 22 and 23 present buffer error results sliced by bug complexity. To a higher degree 
than in Tables 11 and 12, each increase in bug complexity reduced the number of tools that 
found buffer errors. Recall and discrimination rate were generally higher at lower complexity, 
but remarkably Tools H, C and B performed better on high-complexity bugs than on medium-
complexity bugs. Table 23 highlights the same phenomenon observed in Table 13, i.e., higher 
complexity correlated with a larger decrease in discrimination rate compared to recall. 
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Table 21. Recall per Bug Complexity on Buffer Errors in Wireshark 

Complexity Bugs Tool H Tool C Tool B Tool K Tool E Tool F Tool D Tool G Tool A Tool I Tool J 

Low 3 67 % 33 % 33 % 67 % 67 % 67 % 67 % 33 % 0 % 0 % 0 % 

Medium 23 9 % 13 % 13 % 17 % 9 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 7 14 % 29 % 29 % 0 % 0 % 0 % 14 % 0 % 0 % 0 % 0 % 

Extreme 11 0 % 0 % 0 % 0 % 0 % 0 % 9 % 0 % 0 % 0 % 0 % 

Table 22. Discrimination per Bug Complexity on Buffer Errors in Wireshark 

Complexity Bugs Tool H Tool C Tool B Tool K Tool E Tool F Tool D Tool G Tool A Tool I Tool J 

Low 3 67 % 33 % 0 % 67 % 67 % 67 % 67 % 33 % 0 % 0 % 0 % 

Medium 23 9 % 9 % 9 % 9 % 9 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 7 14 % 14 % 14 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 11 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 23. Effect of Bug Complexity on Discrimination for Buffer Errors in Wireshark 

Complexity Bugs Tool H Tool C Tool B Tool K Tool E Tool F Tool D Tool G Tool A Tool I Tool J 

Low 3 0 % 0 % -100 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Medium 23 0 % -33 % -33 % -50 % 0 % N/A N/A N/A N/A N/A N/A 

High 7 0 % -50 % -50 % N/A N/A N/A -100 % N/A N/A N/A N/A 

Extreme 11 N/A N/A N/A N/A N/A N/A -100 % N/A N/A N/A N/A 

 
Table 24 breaks down the number of existing and injected buffer errors across the different 
levels of bug complexity in Wireshark. Existing bugs’ complexity was clustered in the medium 
range while injected bugs were mostly extreme. 

Table 24. Breakdown of Bug Count per Bug Properties on Buffer Errors in Wireshark 

Complexity Existing Injected 

Low 1 2 

Medium 20 3 

High 6 1 

Extreme 1 10 

5.3.1.3. Pointer Errors 

This section narrows down the results to the 33 pointer error bugs contained in Wireshark. Table 
25, as a focused version of Table 5, presents the number of pointer errors found by each tool, the 
accuracy of the findings, and the recall and discrimination rate. Excluding tools with nil findings, 
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the average recall reached 24 % and discrimination rate 22 %. These metrics are significantly 
higher than the overall recall and discrimination rate (Section 5.3.1.1), showing that tools found 
these bugs with more facility than average. Furthermore, recall and discrimination rate remain 
close, evidence that the tools mostly understood the bugs they reported. 
In this case, Tool K continued to underperform by reporting a single bug, while the other tools 
reported close to 9 on average (excluding Tools A, J and I that did not report any bug). 
9 of the injected bugs were likely impossible for tools to find, as described in Section 5.2.1. 
Recall and discrimination rate would be 37.5 % higher if these bugs were not counted. 
Table 26 presents the tool warning overlap for pointer errors, which represented 44 % of the bugs 
in Wireshark. Consequently, the overlap for pointer errors was similar to the overall overlap 
reported in Table 6, except for Tool K for which low recall produced inconclusive results. 

Table 25. Recall and Discrimination on Pointer Errors in Wireshark 

Findings Tool C Tool E Tool F Tool H Tool B Tool G Tool D Tool K Tool A Tool J Tool I 

Miss 22 24 23 25 22 25 17 31 33 33 33 

Hint 1 0 1 0 3 1 5 1 0 0 0 

Partial 3 3 8 1 6 5 4 1 0 0 0 

Alternate 1 0 0 0 0 0 0 0 0 0 0 

Match 6 6 1 7 2 2 7 0 0 0 0 

TP 10 9 9 8 8 7 11 1 0 0 0 

Disc. TP 10 9 9 8 7 7 6 1 0 0 0 

Bugs 33 33 33 33 33 33 33 33 33 33 33 

Recall 30 % 27 % 27 % 24 % 24 % 21 % 33 % 3 % 0 % 0 % 0 % 

Disc. Rate 30 % 27 % 27 % 24 % 21 % 21 % 18 % 3 % 0 % 0 % 0 % 
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Table 26. Tool Warning Overlap on Pointer Errors in Wireshark 

 Tool C Tool F Tool E Tool H Tool B Tool G Tool D Tool K Tool J Tool I Tool A 

Tool C N/A 67 % 78 % 75 % 63 % 86 % 64 % 0 % N/A N/A N/A 

Tool F 60 % N/A 89 % 100 % 63 % 100 % 55 % 100 % N/A N/A N/A 

Tool E 70 % 89 % N/A 100 % 63 % 100 % 55 % 100 % N/A N/A N/A 

Tool H 60 % 89 % 89 % N/A 63 % 100 % 55 % 100 % N/A N/A N/A 

Tool B 50 % 56 % 56 % 63 % N/A 57 % 55 % 100 % N/A N/A N/A 

Tool G 60 % 78 % 78 % 88 % 50 % N/A 45 % 0 % N/A N/A N/A 

Tool D 70 % 67 % 67 % 75 % 75 % 71 % N/A 100 % N/A N/A N/A 

Tool K 0 % 11 % 11 % 13 % 13 % 0 % 9 % N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

 
Tables 27, 28, 29 and 30 summarize recall and discrimination rate for all existing vs. injected 
pointer errors in Wireshark. 
Tables 27 and 28 show that existing and injected pointer errors were found at similar rates and 
with similar understanding by Tools D, C and B, but Tools E, F, H, G and K almost exclusively 
found injected bugs. Tables 29 and 30 show little loss in discrimination vs. recall on both 
injected and existing bugs, with the exception of Tool D, which did not properly understand 
close to half the bugs it reported. 

Table 27. Recall on Pointer Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool D Tool C Tool B Tool E Tool F Tool H Tool G Tool K Tool A Tool J Tool I 

Existing 13 31 % 31 % 23 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 20 35 % 30 % 25 % 40 % 45 % 40 % 35 % 5 % 0 % 0 % 0 % 

Table 28. Discrimination on Pointer Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool C Tool B Tool D Tool E Tool F Tool H Tool G Tool K Tool J Tool I Tool A 

Existing 13 31 % 23 % 15 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 20 30 % 20 % 20 % 40 % 45 % 40 % 35 % 5 % 0 % 0 % 0 % 

Table 29. Recall and Discrimination on Pointer Errors for Existing Bugs in Wireshark 

 Tool C Tool B Tool D Tool E Tool F Tool H Tool G Tool K Tool A Tool J Tool I 

Recall 31 % 23 % 31 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 31 % 23 % 15 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 30. Recall and Discrimination on Pointer Errors for Injected Bugs in Wireshark 

 Tool F Tool H Tool E Tool G Tool C Tool D Tool B Tool K Tool A Tool J Tool I 

Recall 45 % 40 % 40 % 35 % 30 % 35 % 25 % 5 % 0 % 0 % 0 % 

Disc. Rate 45 % 40 % 40 % 35 % 30 % 20 % 20 % 5 % 0 % 0 % 0 % 

 
Tables 31, 32 and 33 present pointer error results sliced by bug complexity. Similarly to Tables 
11 and 12, each increase in bug complexity reduced the number of tools that found pointer 
errors. Recall and discrimination rate were generally higher at lower complexity. Table 33 differs 
significantly from Table 13. Indeed, with the exception of Tool D, the tools understood pointer 
errors much better than other bug types and showed little drop from recall to discrimination rate. 

Table 31. Recall per Bug Complexity on Pointer Errors in Wireshark 

Complexity Bugs Tool F Tool C Tool B Tool D Tool E Tool H Tool G Tool K Tool A Tool I Tool J 

Low 11 73 % 64 % 55 % 55 % 82 % 73 % 64 % 9 % 0 % 0 % 0 % 

Medium 10 0 % 30 % 20 % 40 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 2 50 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 10 0 % 0 % 0 % 10 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 32. Discrimination per Bug Complexity on Pointer Errors in Wireshark 

Complexity Bugs Tool F Tool C Tool B Tool D Tool E Tool H Tool G Tool K Tool A Tool I Tool J 

Low 11 73 % 64 % 45 % 36 % 82 % 73 % 64 % 9 % 0 % 0 % 0 % 

Medium 10 0 % 30 % 20 % 20 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 2 50 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 10 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 33. Effect of Bug Complexity on Discrimination for Pointer Errors in Wireshark 

Complexity Bugs Tool F Tool C Tool B Tool D Tool E Tool H Tool G Tool K Tool A Tool I Tool J 

Low 11 0 % 0 % -17 % -33 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Medium 10 N/A 0 % 0 % -50 % N/A N/A N/A N/A N/A N/A N/A 

High 2 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Extreme 10 N/A N/A N/A -100 % N/A N/A N/A N/A N/A N/A N/A 

 
Table 34 breaks down the number of existing and injected pointer errors across the different 
levels of bug complexity in Wireshark. Existing bugs’ complexity was clustered in the medium 
range while injected bugs were mostly of low or extreme complexity. 
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Table 34. Breakdown of Bug Count per Bug Properties on Pointer Errors in Wireshark 

Complexity Existing Injected 

Low 3 8 

Medium 9 1 

High 1 1 

Extreme 0 10 

5.3.1.4. Calculation Errors 

This section narrows down the results to the 12 calculation error bugs contained in Wireshark. 
Table 35, as a focused version of Table 5, presents the number of calculation errors found by 
each tool, the accuracy of the findings, and the recall and discrimination rate. Excluding tools 
with nil findings, the average recall reached 20 % and discrimination rate 17 %. These metrics 
are slightly higher than the overall recall and discrimination rate (Section 5.3.1.1), showing that 
tools found these bugs more readily than average. Furthermore, recall and discrimination rate 
remain close, evidence that the tools mostly understood the bugs they reported. 
Table 36 presents the tool warning overlap for calculation errors, which represented 16 % of the 
bugs in Wireshark. The low number of calculation bugs and lower number of bugs found by 
tools did not allow to draw strong conclusions here. We could still determine that one bug was 
found by Tools B, H, K and E and that Tools B and H found the same three bugs. Eight bugs 
remained completely undiscovered. 
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Table 35. Recall and Discrimination on Calculation Errors in Wireshark 

Findings Tool B Tool H Tool C Tool E Tool K Tool D Tool F Tool G Tool A Tool J Tool I 

Miss 6 8 9 11 11 8 11 12 12 12 12 

Hint 2 1 0 0 0 4 1 0 0 0 0 

Partial 4 2 1 0 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 0 1 2 1 1 0 0 0 0 0 0 

TP 4 3 3 1 1 0 0 0 0 0 0 

Disc. TP 3 3 2 1 1 0 0 0 0 0 0 

Bugs 12 12 12 12 12 12 12 12 12 12 12 

Recall 33 % 25 % 25 % 8 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 25 % 25 % 17 % 8 % 8 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 36. Tool Warning Overlap on Calculation Errors in Wireshark 

 Tool B Tool H Tool C Tool K Tool E Tool J Tool G Tool F Tool I Tool D Tool A 

Tool B N/A 100 % 33 % 100 % 100 % N/A N/A N/A N/A N/A N/A 

Tool H 75 % N/A 33 % 100 % 100 % N/A N/A N/A N/A N/A N/A 

Tool C 25 % 33 % N/A 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool K 25 % 33 % 0 % N/A 100 % N/A N/A N/A N/A N/A N/A 

Tool E 25 % 33 % 0 % 100 % N/A N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool G 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool F 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool D 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

 
Tables 37, 38, 39 and 40 summarize recall and discrimination rate for all existing vs. injected 
calculation errors in Wireshark. 
Tables 37 and 38 show that existing calculation errors were found by several tools, while 
injected bugs remained completely undiscovered. This may indicate that our injected bugs were 
not realistic or too scarce. Table 39 reveals little decrease in discrimination vs. recall on existing 
bugs, demonstrating that tools understood the bugs they reported. Table 40 is shown for 
consistency but provides no meaningful information, since no injected bugs were found. 
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Table 37. Recall on Calculation Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool B Tool C Tool H Tool E Tool K Tool D Tool F Tool G Tool A Tool J Tool I 

Existing 8 50 % 38 % 38 % 13 % 13 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 4 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 38. Discrimination on Calculation Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool H Tool B Tool C Tool K Tool E Tool J Tool G Tool F Tool I Tool D Tool A 

Existing 8 38 % 38 % 25 % 13 % 13 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 4 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 39. Discrimination on Calculation Errors for Existing Bugs in Wireshark 

 Tool B Tool H Tool C Tool E Tool K Tool D Tool F Tool G Tool A Tool J Tool I 

Recall 50 % 38 % 38 % 13 % 13 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 38 % 38 % 25 % 13 % 13 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 40. Recall and Discrimination on Calculation Errors for Injected Bugs in Wireshark 

 Tool B Tool H Tool C Tool E Tool K Tool D Tool F Tool G Tool A Tool J Tool I 

Recall 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

 
Tables 41, 42 and 43 present calculation error results sliced by bug complexity. Similarly to 
Tables 11 and 12, each increase in bug complexity reduced the number of tools that found 
calculation errors. Recall and discrimination rate were more evenly distributed across bug 
complexities than for any other bug type. Table 43 has meaningful information for medium- and 
high-complexity bugs only and suggests a larger decrease in discrimination compared with recall 
for the high-complexity bugs. 

Table 41. Recall per Bug Complexity on Calculation Errors in Wireshark 

Complexity Bugs Tool H Tool B Tool C Tool K Tool E Tool A Tool D Tool F Tool G Tool I Tool J 

Low 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Medium 7 29 % 43 % 14 % 14 % 14 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 4 25 % 25 % 50 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 42. Discrimination per Bug Complexity on Calculation Errors in Wireshark 

Complexity Bugs Tool H Tool B Tool C Tool K Tool E Tool A Tool D Tool F Tool G Tool I Tool J 

Low 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Medium 7 29 % 29 % 14 % 14 % 14 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 4 25 % 25 % 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 43. Effect of Bug Complexity on Discrimination for Calculation Errors in Wireshark 

Complexity Bugs Tool H Tool B Tool C Tool K Tool E Tool A Tool D Tool F Tool G Tool I Tool J 

Low 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Medium 7 0 % -33 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

High 4 0 % 0 % -50 % N/A N/A N/A N/A N/A N/A N/A N/A 

Extreme 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 
Table 44 breaks down the number of existing and injected calculation errors across the different 
levels of bug complexity in Wireshark. Existing bugs’ complexity was clustered in the medium 
to high range while injected bugs were few and more evenly distributed. 

Table 44. Breakdown of Bug Count per Bug Properties on Calculation Errors in Wireshark 

Complexity Existing Injected 

Low 0 0 

Medium 5 2 

High 3 1 

Extreme 0 1 

5.3.1.5. Initialization Errors 

This section narrows down the results to the 11 initialization error bugs contained in Wireshark. 
Table 45, as a focused version of Table 5, presents the number of initialization errors found by 
each tool, the accuracy of the findings, and the recall and discrimination rate. Excluding tools 
with nil findings, the average recall reached 38 % and discrimination rate 33 %. These metrics 
are markedly higher than the overall recall and discrimination rate (Section 5.3.1.1), showing 
that tools found these bugs with more success than average. Furthermore, recall and 
discrimination rate remain close, evidence that most tools understood the bugs they reported. 
Tools D and B were the only tools with less than perfect discrimination on our initialization 
bugs. 
Table 46 presents the tool warning overlap for initialization errors, which represented 15 % of 
the bugs in Wireshark. Despite the lower number of bugs of this type, we observe very high 
overlap across the board, showing that the tools found essentially the same bugs. 
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Table 45. Recall and Discrimination on Initialization Errors in Wireshark 

Findings Tool E Tool H Tool F Tool C Tool G Tool D Tool B Tool K Tool A Tool J Tool I 

Miss 6 6 6 7 7 5 7 10 11 11 11 

Hint 0 0 0 0 0 0 1 0 0 0 0 

Partial 1 1 4 2 3 2 3 1 0 0 0 

Alternate 0 0 0 1 0 0 0 0 0 0 0 

Match 4 4 1 1 1 4 0 0 0 0 0 

TP 5 5 5 4 4 6 3 1 0 0 0 

Disc. TP 5 5 5 4 4 3 2 1 0 0 0 

Bugs 11 11 11 11 11 11 11 11 11 11 11 

Recall 45 % 45 % 45 % 36 % 36 % 55 % 27 % 9 % 0 % 0 % 0 % 

Disc. Rate 45 % 45 % 45 % 36 % 36 % 27 % 18 % 9 % 0 0 0 

Table 46. Tool Warning Overlap on Initialization Errors in Wireshark 

 Tool H Tool F Tool E Tool G Tool C Tool D Tool B Tool K Tool J Tool I Tool A 

Tool H N/A 100 % 100 % 100 % 75 % 83 % 100 % 100 % N/A N/A N/A 

Tool F 100 % N/A 100 % 100 % 75 % 83 % 100 % 100 % N/A N/A N/A 

Tool E 100 % 100 % N/A 100 % 75 % 83 % 100 % 100 % N/A N/A N/A 

Tool G 80 % 80 % 80 % N/A 75 % 67 % 67 % 0 % N/A N/A N/A 

Tool C 60 % 60 % 60 % 75 % N/A 67 % 33 % 0 % N/A N/A N/A 

Tool D 100 % 100 % 100 % 100 % 100 % N/A 100 % 100 % N/A N/A N/A 

Tool B 60 % 60 % 60 % 50 % 25 % 50 % N/A 100 % N/A N/A N/A 

Tool K 20 % 20 % 20 % 0 % 0 % 17 % 33 % N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

 
Tables 47, 48, 49 and 50 summarize recall and discrimination rate for all existing vs. injected 
initialization errors in Wireshark. 
Tables 47 and 48 show that existing initialization errors bugs remained largely undiscovered 
while injected bugs were found by most tools. This may indicate that our injected bugs were too 
simple to be realistic. 49 is shown for consistency but provides little meaningful information. 50 
reveals little loss in discrimination vs. recall on injected bugs, demonstrating that most tools 
understood the bugs they reported. 
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 Table 47. Recall on Initialization Errors for Existing vs. Injected Bugs in Wireshark  

 Bugs Tool C Tool D Tool E Tool H Tool F Tool G Tool B Tool K Tool A Tool J Tool I 

Existing 4 25 % 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 7 43 % 71 % 71 % 71 % 71 % 57 % 43 % 14 % 0 % 0 % 0 % 

Table 48. Discrimination on Initialization Errors for Existing vs. Injected Bugs in Wireshark 

 Bugs Tool C Tool H Tool F Tool E Tool G Tool D Tool B Tool K Tool J Tool I Tool A 

Existing 4 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Injected 7 43 % 71 % 71 % 71 % 57 % 43 % 29 % 14 % 0 % 0 % 0 % 

Table 49. Recall and Discrimination on Initialization Errors for Existing Bugs in Wireshark 

 Tool C Tool D Tool E Tool H Tool F Tool G Tool B Tool K Tool A Tool J Tool I 

Recall 25 % 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 50. Discrimination on Initialization Errors for Injected Bugs in Wireshark 

 Tool E Tool H Tool F Tool G Tool D Tool C Tool B Tool K Tool A Tool J Tool I 

Recall 71 % 71 % 71 % 57 % 71 % 43 % 43 % 14 % 0 % 0 % 0 % 

Disc. Rate 71 % 71 % 71 % 57 % 43 % 43 % 29 % 14 % 0 % 0 % 0 % 

 
Tables 51, 52 and 53 present initialization error results sliced by bug complexity. To a higher 
degree than in Tables 11 and 12, each increase in bug complexity reduced the number of tools 
that found initialization errors. No tool found any of the high- or extreme-complexity bugs. 
Recall and discrimination rate were generally higher at lower complexity. Table 53 highlights the 
same phenomenon observed in Table 13, i.e., higher complexity correlated with a higher drop in 
discrimination rate compared to recall. 

Table 51. Recall per Bug Complexity on Initialization Errors in Wireshark 

Complexity Bugs Tool C Tool E Tool F Tool H Tool G Tool D Tool B Tool K Tool A Tool I Tool J 

Low 5 60 % 100 % 100 % 100 % 80 % 100 % 60 % 20 % 0 % 0 % 0 % 

Medium 3 33 % 0 % 0 % 0 % 0 % 33 % 0 % 0 % 0 % 0 % 0 % 

High 2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 52. Discrimination per Bug Complexity on Initialization Errors in Wireshark 

Complexity Bugs Tool C Tool E Tool F Tool H Tool G Tool D Tool B Tool K Tool A Tool I Tool J 

Low 5 60 % 100 % 100 % 100 % 80 % 60 % 40 % 20 % 0 % 0 % 0 % 

Medium 3 33 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

 

Table 53. Effect of Bug Complexity on Discrimination for Initialization Errors in Wireshark 

Complexity Bugs Tool C Tool E Tool F Tool H Tool G Tool D Tool B Tool K Tool A Tool I Tool J 

Low 5 0 % 0 % 0 % 0 % 0 % -40 % -33 % 0 % N/A N/A N/A 

Medium 3 0 % N/A N/A N/A N/A -100 % N/A N/A N/A N/A N/A 

High 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Extreme 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 
Table 54 breaks down the number of existing and injected initialization errors across the 
different levels of bug complexity in Wireshark. Existing bugs’ complexity was clustered in the 
medium to high range while injected bugs were mostly of low complexity. 

Table 54. Breakdown of Bug Count per Bug Properties on Initialization Errors in Wireshark 

Complexity Existing Injected 

Low 0 5 

Medium 2 1 

High 2 0 

Extreme 0 1 

5.3.1.6. Summary 

This section summarizes the results obtained from Wireshark on the different bug types. 
Table 55 presents the discrimination rate for each tool on the different bug types. Tools (except 
Tools A, J and I) found and understood initialization errors with an average discrimination rate 
of 33 %, pointer errors with an average of 22 %, calculation errors with an average of 10 % and 
buffer errors with an average of 7 %. 
Tables 56, 57, 58 and 59 are presented in the same order to ease their comparison by the reader. 
They expose the differences in how tools handled existing vs. injected bugs. 
Generally, tools understood the bugs they reported for all bug types, as demonstrated by the 
similarities in Tables 56 and 57 for existing bugs and in Tables 58 and 59 for injected bugs. 
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Comparing Tables 56 and 58 or Tables 57 and 59 shows that tools behaved very differently on 
existing bugs than on injected bugs. This could imply that the bugs we injected in Wireshark are 
not representative of real bugs. Ignoring Tools A, J and I, overall discrimination rate is much 
higher for injected bugs (27 %) than for existing bugs (6 %). This leads us to conclude that 
injected bugs were much easier for tools to find than existing ones. 

Table 55. Discrimination Rate for All Bug Categories in Wireshark 

 Bugs Tool C Tool H Tool E Tool F Tool B Tool G Tool D Tool K Tool A Tool J Tool I 

Buffer 44 9 % 11 % 9 % 5 % 7 % 2 % 5 % 9 % 0 % 0 % 0 % 

Calculations 12 17 % 25 % 8 % 0 % 25 % 0 % 0 % 8 % 0 % 0 % 0 % 

Pointers 33 30 % 24 % 27 % 27 % 21 % 21 % 18 % 3 % 0 % 0 % 0 % 

Initialization 11 36 % 45 % 45 % 45 % 18 % 36 % 27 % 9 % 0 % 0 % 0 % 

Overall 75 20 % 16 % 16 % 16 % 13 % 11 % 9 % 8 % 0 % 0 % 0 % 

Table 56. Recall on Existing Bugs for All Bug Categories in Wireshark 

 Bugs Tool K Tool B Tool C Tool H Tool D Tool E Tool F Tool G Tool A Tool J Tool I 

Buffer 28 14 % 18 % 18 % 11 % 4 % 7 % 0 % 0 % 0 % 0 % 0 % 

Calculations 8 13 % 50 % 38 % 38 % 0 % 13 % 0 % 0 % 0 % 0 % 0 % 

Pointers 13 0 % 23 % 31 % 0 % 31 % 8 % 0 % 0 % 0 % 0 % 0 % 

Initialization 4 0 % 0 % 25 % 0 % 25 % 0 % 0 % 0 % 0 % 0 % 0 % 

Overall 49 10 % 16 % 18 % 6 % 10 % 6 % 2 % 0 % 0 % 0 % 0 % 

Table 57. Discrimination on Existing Bugs for All Bug Categories in Wireshark 

 Bugs Tool K Tool B Tool C Tool H Tool D Tool E Tool F Tool G Tool A Tool J Tool I 

Buffer 28 7 % 11 % 11 % 11 % 0 % 7 % 0 % 0 % 0 % 0 % 0 % 

Calculations 8 13 % 38 % 25 % 38 % 0 % 13 % 0 % 0 % 0 % 0 % 0 % 

Pointers 13 0 % 23 % 31 % 0 % 15 % 8 % 0 % 0 % 0 % 0 % 0 % 

Initialization 4 0 % 0 % 25 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Overall 49 6 % 12 % 14 % 6 % 4 % 6 % 2 % 0 % 0 % 0 % 0 % 

Table 58. Recall on Injected Bugs for All Bug Categories in Wireshark 

 Bugs Tool K Tool B Tool C Tool H Tool D Tool E Tool F Tool G Tool A Tool J Tool I 

Buffer 16 13 % 6 % 6 % 13 % 19 % 13 % 13 % 6 % 0 % 0 % 0 % 

Calculations 4 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Pointers 20 5 % 25 % 30 % 40 % 35 % 40 % 45 % 35 % 0 % 0 % 0 % 

Initialization 7 14 % 43 % 43 % 71 % 71 % 71 % 71 % 57 % 0 % 0 % 0 % 

Overall 26 12 % 19 % 31 % 35 % 31 % 35 % 42 % 31 % 0 % 0 % 0 % 
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Table 59. Discrimination on Injected Bugs for All Bug Categories in Wireshark 

 Bugs Tool K Tool B Tool C Tool H Tool D Tool E Tool F Tool G Tool A Tool J Tool I 

Buffer 16 13 % 0 % 6 % 13 % 13 % 13 % 13 % 6 % 0 % 0 % 0 % 

Calculations 4 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Pointers 20 5 % 20 % 30 % 40 % 20 % 40 % 45 % 35 % 0 % 0 % 0 % 

Initialization 7 14 % 29 % 43 % 71 % 43 % 71 % 71 % 57 % 0 % 0 % 0 % 

Overall 26 12 % 15 % 31 % 35 % 19 % 35 % 42 % 31 % 0 % 0 % 0 % 

5.3.2. SQLite: Mostly-automatically Injected Bugs 

SQLite contained 30 injected bugs, including 20 buffer errors and 10 calculation errors. In this 
section, we present general results and results per bug category. 
The bugs injected in SQLite had many shortcomings, as described in Section 5.2.3. Therefore, 
the reader should avoid drawing conclusions from these results. 
Table 60 offers an overview of the number of bugs found by each tool, the accuracy of the 
findings, and recall and discrimination rate. Excluding tools with nil findings (Tools J, F, I and 
A), the average recall reached 36 % and discrimination rate 21 %. Tools B and K experienced a 
significant drop between recall and discrimination rate, but the other tools retained the same 
discrimination rate as their recall, supporting the idea that they understood the bugs they 
reported. However, the issues mentioned in Section 5.2.3 Item 4 keep this result from being 
conclusive. 
Table 61 narrows down the results to the 10 calculation error bugs contained in SQLite. It 
presents the number of such bugs found by each tool, the accuracy of the findings, and the recall 
and discrimination rate. Excluding tools with nil findings, the average recall reached 90 % and 
discrimination rate 33 %. Out of 7 tools that reported bugs in SQLite, only 3 reported calculation 
errors. Furthermore, Tool C understood the bugs it reported, but Tools K and B did not properly 
discriminate bugs from fixes, despite a high recall. 
Table 62 narrows down the results to the 20 buffer error bugs contained in SQLite. It presents the 
number of such bugs found by each tool, the accuracy of the findings, and the recall and 
discrimination rate. Excluding tools with nil findings, the average recall reached 34 % and 
discrimination rate 25 %. All tools, except for Tool K, had perfect discrimination, suggesting that 
they understood the bugs they reported. 
Table 63 summarizes the results obtained from SQLite on the two bug types. Tool C performed 
best with a high discrimination rate on both calculation and buffer errors. Tools H, D, G, B, E 
and K only found buffer errors with a discrimination rate ranging from 15 % to 35 %. Tools J, F, 
I and A did not find any of the bugs. 
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Table 60. Overall Recall and Discrimination in SQLite 

Findings Tool C Tool H Tool D Tool B Tool G Tool E Tool K Tool J Tool F Tool I Tool A 

Miss 12 23 25 8 26 26 4 30 30 30 30 

Hint 0 0 0 11 0 0 0 0 0 0 0 

Partial 0 0 0 1 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 18 7 5 10 4 4 26 0 0 0 0 

TP 18 7 5 11 4 4 26 0 0 0 0 

Disc. TP 18 7 5 4 4 4 3 0 0 0 0 

Bugs 30 30 30 30 30 30 30 30 30 30 30 

Recall 60 % 23 % 17 % 37 % 13 % 13 % 87 % 0 % 0 % 0 % 0 % 

Disc. Rate 60 % 23 % 17 % 13 % 13 % 13 % 10 % 0 % 0 % 0 % 0 % 

Table 61. Recall and Discrimination on Calculation Errors in SQLite 

Findings Tool C Tool K Tool B Tool H Tool D Tool G Tool E Tool F Tool J Tool A Tool I 

Miss 0 0 2 10 10 10 10 10 10 10 10 

Hint 0 0 1 0 0 0 0 0 0 0 0 

Partial 0 0 0 0 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 10 10 7 0 0 0 0 0 0 0 0 

TP 10 10 7 0 0 0 0 0 0 0 0 

Disc. TP 10 0 0 0 0 0 0 0 0 0 0 

Bugs 10 10 10 10 10 10 10 10 10 10 10 

Recall 100 % 100 % 70 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc. Rate 100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 62. Recall and Discrimination on Buffer Errors in SQLite 

Findings Tool C Tool H Tool D Tool B Tool G Tool E Tool K Tool F Tool J Tool A Tool I 

Miss 12 13 15 6 16 16 4 20 20 20 20 

Hint 0 0 0 10 0 0 0 0 0 0 0 

Partial 0 0 0 1 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 8 7 5 3 4 4 16 0 0 0 0 

TP 8 7 5 4 4 4 16 0 0 0 0 

Disc. TP 8 7 5 4 4 4 3 0 0 0 0 

Bugs 20 20 20 20 20 20 20 20 20 20 20 

Recall 40 % 35 % 25 % 20 % 20 % 20 % 80 % 0 % 0 % 0 % 0 % 

Disc. Rate 40 % 35 % 25 % 20 % 20 % 20 % 15 % 0 % 0 % 0 % 0 % 

Table 63. Discrimination Rate for All Bug Categories in SQLite 

 Bugs Tool C Tool H Tool D Tool G Tool B Tool E Tool K Tool J Tool F Tool I Tool A 

Calc. 10 100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Buffer 20 40 % 35 % 25 % 20 % 20 % 20 % 15 % 0 % 0 % 0 % 0 % 

Overall 30 60 % 23 % 17 % 13 % 13 % 13 % 10 % 0 % 0 % 0 % 0 % 

 
Table 64 offers a view of tool warning overlap. Tool C’s high recall of 60 % (Table 60) affected 
its full overlap of Tools H, D, B, G and E and a high overlap of Tool K. The limited diversity of 
bugs injected in SQLite could be a contributing factor in the high overlap across the board. Tools 
can usually find simple patterns anywhere in a code base, so the application of the same 
templates for multiple bugs could allow a tool that can find a particular bug, to find other bugs 
using the same pattern. 
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Table 64. Overall Tool Warning Overlap in SQLite 

 Tool C Tool H Tool D Tool B Tool G Tool E Tool K Tool J Tool F Tool I Tool A 

Tool C N/A 100 % 100 % 100 % 100 % 100 % 54 % N/A N/A N/A N/A 

Tool H 39 % N/A 100 % 27 % 100 % 100 % 15 % N/A N/A N/A N/A 

Tool D 28 % 71 % N/A 27 % 100 % 100 % 15 % N/A N/A N/A N/A 

Tool B 61 % 43 % 60 % N/A 75 % 75 % 38 % N/A N/A N/A N/A 

Tool G 22 % 57 % 80 % 27 % N/A 100 % 15 % N/A N/A N/A N/A 

Tool E 22 % 57 % 80 % 27 % 100 % N/A 15 % N/A N/A N/A N/A 

Tool K 78 % 57 % 80 % 91 % 100 % 100 % N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool F 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

 
The SAMATE team classified the 30 bugs in SQLite according to their complexity from a static 
analysis standpoint. Please refer to Table 11’s comments for further explanations and examples. 
SQLite contained 14 low-, 16 medium- and no high- or extreme-complexity bugs. 
Tables 65, 66 and 67 present recall and discrimination rate sliced by bug complexity. Increase in 
bug complexity reduced the number of tools that found bugs. Ignoring Tools A, F, I and J, the 
average recall was 55 % for low-complexity bugs but only 19 % for medium-complexity bugs. 
Table 67 shows the percentage drop between undiscriminated recall (i.e., regular recall) and 
discriminated recall (i.e., discrimination rate). In this case, the results are inconclusive and the 
table is presented for consistency. 

Table 65. Recall per Bug Complexity in SQLite 

Complexity Bugs Tool C Tool H Tool D Tool B Tool E Tool G Tool K Tool A Tool F Tool I Tool J 

Low 14 100 % 29 % 29 % 71 % 29 % 29 % 100 % 0 % 0 % 0 % 0 % 

Medium 16 25 % 19 % 6 % 6 % 0 % 0 % 75 % 0 % 0 % 0 % 0 % 

Table 66. Discrimination per Bug Complexity in SQLite 

Complexity Bugs Tool C Tool H Tool D Tool B Tool E Tool G Tool K Tool A Tool F Tool I Tool J 

Low 14 100 % 29 % 29 % 21 % 29 % 29 % 21 % 0 % 0 % 0 % 0 % 

Medium 16 25 % 19 % 6 % 6 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 67. Effect of Bug Complexity on Discrimination in SQLite 

Complexity Bugs Tool C Tool H Tool D Tool G Tool E Tool B Tool K Tool J Tool F Tool I Tool A 

Low 14 0 % 0 % 0 % -70 % 0 % 0 % -79 % N/A N/A N/A N/A 

Medium 16 0 % 0 % 0 % 0 % N/A N/A -100 % N/A N/A N/A N/A 

 
Tables 68 and 69 present recall and discrimination rate for low- and medium-complexity bugs, 
respectively. Tools C, G, H, D and E showed perfect discrimination for low-complexity bugs, 
but the issues mentioned in Section 5.2.3 Item 4 might have skewed the results. Tools K and B 
experienced a large drop between recall and discrimination. Similarly, on medium-complexity 
bugs, Tools C, H, B and D showed perfect discrimination, but Tool K suffered from a significant 
drop. 

Table 68. Recall and Discrimination on Low Complexity Bugs in SQLite 

 Tool C Tool G Tool H Tool D Tool E Tool K Tool B Tool J Tool F Tool I Tool A 

Recall 100 % 29 % 29 % 29 % 29 % 100 % 71 % 0 % 0 % 0 % 0 % 

Disc.Rate 100 % 29 % 29 % 29 % 29 % 21 % 21 % 0 % 0 % 0 % 0 % 

Table 69. Recall and Discrimination on Medium Complexity Bugs in SQLite 

 Tool C Tool H Tool B Tool D Tool K Tool J Tool G Tool F Tool I Tool A Tool E 

Recall 25 % 19 % 6 % 6 % 75 % 0 % 0 % 0 % 0 % 0 % 0 % 

Disc.Rate 25 % 19 % 6 % 6 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

 
Overall, the results from SQLite offered limited insights on tool behavior and efficiency, but 
raised multiple issues regarding the bug injection process. These observations will be taken into 
account to improve the bug injection process in future SATEs. 

5.3.3. CGC: Manually Built Test Suite 

For this report, we sampled 111 of the more than 350 bugs contained in the CGC test suite. In the 
following sections, we first present the general results on all bugs in Section 5.3.3.1, then slice 
the results along the various bug properties to offer more specific insights on tool strengths and 
weaknesses and on bug quality. Each bug can be a chain of different weaknesses and fall in more 
than one category in Sections 5.3.3.2 through 5.3.3.7. 
CGC used custom memory management and string/buffer handling functions, which were 
included in the test suite. This may have increased code complexity, compared to using standard 
APIs. 
The fixed version of the test suite was not provided to participants as part of SATE VI, so 
discrimination rates could not be calculated. 



NIST SP 500-341 
June 2023 

53 

5.3.3.1. Overall Analysis 

This section presents the tool results on all 111 bugs sampled from CGC. Table 70 offers an 
overview of the number of bugs found by each tool, the accuracy of the findings, and recall. 
Excluding tools without relevant findings, recall varied from 1 % to 13 %. Note that most bugs in 
the sample related to buffer errors, which could explain the congruence between this score range 
and the results observed on buffer errors in Wireshark (Table 15). 
Table 71 offers a view of tool warning overlap. Tools F, D and G had lower recall and a higher 
overlap than most other tools. The majority of bugs they found were reported by other tools, 
suggesting that these bugs were easier to find than average. 
Tool C stands out with a very low overlap, so although its recall was on the lower end of the 
spectrum, it reported bugs that other tools missed. It could be used to increase recall in 
complement to one of the other tools. 
The SAMATE team classified the 111 bugs in CGC according to their complexity from a static 
analysis standpoint. Please refer to Table 11’s comments for further explanations and examples. 
CGC contained 28 low-, 64 medium-, 17 high- and 2 extreme-complexity bugs. 
Table 72 presents recall sliced by bug complexity. Increase in bug complexity reduced the 
number of tools that found bugs. Ignoring Tools A, I and J, the average recall was 17 % for low-
complexity bugs, 4 % for medium-complexity bugs, 1 % for high-complexity bugs and 0 % for 
extreme-complexity bugs.  

Table 70. Overall Recall in CGC 

Findings Tool E Tool H Tool B Tool F Tool D Tool C Tool G Tool K Tool J Tool I Tool A 

Miss 95 97 96 103 102 105 108 110 111 111 111 

Hint 2 0 4 1 3 1 0 0 0 0 0 

Partial 3 5 6 2 1 1 1 1 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 11 9 5 5 5 4 2 0 0 0 0 

TP 14 14 11 7 6 5 3 1 0 0 0 

Bugs 111 111 111 111 111 111 111 111 111 111 111 

Recall 13 % 13 % 10 % 6 % 5 % 5 % 3 % 1 % 0 % 0 % 0 % 
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Table 71. Overall Tool Warning Overlap in CGC 

 Tool H Tool E Tool B Tool F Tool D Tool C Tool G Tool K Tool A Tool I Tool J 

Tool H N/A 57 % 18 % 57 % 50 % 20 % 100 % 0 % N/A N/A N/A 

Tool E 57 % N/A 45 % 86 % 67 % 40 % 100 % 0 % N/A N/A N/A 

Tool B 14 % 36 % N/A 71 % 83 % 40 % 67 % 0 % N/A N/A N/A 

Tool F 29 % 43 % 45 % N/A 83 % 40 % 100 % 0 % N/A N/A N/A 

Tool D 21 % 29 % 45 % 71 % N/A 40 % 67 % 0 % N/A N/A N/A 

Tool C 7 % 14 % 18 % 29 % 33 % N/A 0 % 0 % N/A N/A N/A 

Tool G 21 % 21 % 18 % 43 % 33 % 0 % N/A 0 % N/A N/A N/A 

Tool K 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A 

Table 72. Overall Recall per Bug Complexity in CGC 

Complexity Bugs Tool H Tool E Tool B Tool F Tool D Tool C Tool G Tool K Tool J Tool I Tool A 

Low 28 29 % 32 % 18 % 21 % 14 % 11 % 11 % 4 % 0 % 0 % 0 % 

Medium 64 8 % 8 % 9 % 2 % 3 % 3 % 0 % 0 % 0 % 0 % 0 % 

High 17 6 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

5.3.3.2. All Buffer Errors 

This section narrows down the results to the 84 buffer error bugs contained in the CGC sample. 
It combines heap-based (51 %), stack-based (38 %) and data-based (11 %) buffer errors, which 
are individually covered in Sections 5.3.3.3, 5.3.3.4 and 5.3.3.5, respectively. Buffer errors 
accounted for 65 % of all bugs in the CGC sample, inducing a high correlation between the 
overall results in Section 5.3.3.1 and these results, which are offered as a more precise view of 
tool effectiveness on buffer errors. 
Table 73 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Excluding tools with nil findings, recall ranged from 2 % to 14 % with an average of 7 %, 
in line with the results presented in Table 70. Similarly, tool warning overlap as detailed in Table 
74 follows the same trend as Table 71. 
Table 75 presents buffer error results sliced by bug complexity. Following the trend of Table 72, 
each increase in bug complexity reduced the number of tools that found buffer errors. Recall was 
on par with overall results. 
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Table 73. Recall on All Buffer Errors in CGC 

Findings Tool H Tool E Tool B Tool F Tool G Tool D Tool C Tool J Tool I Tool K Tool A 

Miss 72 72 75 79 81 79 81 84 84 84 84 

Hint 0 1 2 1 0 2 1 0 0 0 0 

Partial 3 2 5 2 1 1 1 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 9 9 2 2 2 2 1 0 0 0 0 

TP 12 11 7 4 3 3 2 0 0 0 0 

Bugs 84 84 84 84 84 84 84 84 84 84 84 

Recall 14 % 13 % 8 % 5 % 4 % 4 % 2 % 0 % 0 % 0 % 0 % 

Table 74. Tool Warning Overlap on All Buffer Errors in CGC 

 Tool H Tool E Tool B Tool F Tool G Tool D Tool C Tool J Tool I Tool K Tool A 

Tool H N/A 73 % 29 % 100 % 100 % 100 % 50 % N/A N/A N/A N/A 

Tool E 67 % N/A 29 % 100 % 100 % 67 % 50 % N/A N/A N/A N/A 

Tool B 17 % 18 % N/A 50 % 67 % 67 % 0 % N/A N/A N/A N/A 

Tool F 33 % 36 % 29 % N/A 100 % 67 % 0 % N/A N/A N/A N/A 

Tool G 25 % 27 % 29 % 75 % N/A 67 % 0 % N/A N/A N/A N/A 

Tool D 25 % 18 % 29 % 50 % 67 % N/A 0 % N/A N/A N/A N/A 

Tool C 8 % 9 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool K 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A 

Table 75. Recall per Bug Complexity on All Buffer Errors in CGC 

Complexity Bugs Tool H Tool E Tool B Tool F Tool G Tool D Tool C Tool J Tool I Tool K Tool A 

Low 23 35 % 30 % 13 % 17 % 13 % 9 % 9 % 0 % 0 % 0 % 0 % 

Medium 48 8 % 8 % 8 % 0 % 0 % 2 % 0 % 0 % 0 % 0 % 0 % 

High 12 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

5.3.3.3. Heap-based Buffer Errors 

This section narrows down the results to the 43 heap-based buffer error bugs contained in the 
CGC sample. These errors accounted for 40 % of all bugs in the sample. 
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Table 76 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Excluding tools with nil findings, recall remained in a narrow 7 % to 12 % range. The 
high tool warning overlap detailed in Table 77 shows that tools largely found the same few bugs. 
Moreover, tools clustered their findings around simple and some medium complexity bugs, as 
demonstrated by the break down in Table 78. 
As a reminder, CGC used a custom memory management framework, which could have 
impacted these results. 

Table 76. Recall on Heap-based Buffer Errors in CGC 

Findings Tool B Tool E Tool H Tool D Tool G Tool F Tool C Tool J Tool I Tool K Tool A 

Miss 36 39 39 39 40 40 42 43 43 43 43 

Hint 2 0 0 1 0 0 1 0 0 0 0 

Partial 3 0 1 1 1 1 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 2 4 3 2 2 2 0 0 0 0 0 

TP 5 4 4 3 3 3 0 0 0 0 0 

Bugs 43 43 43 43 43 43 43 43 43 43 43 

Recall 12 % 9 % 9 % 7 % 7 % 7 % 0 % 0 % 0 % 0 % 0 % 

Table 77. Tool Warning Overlap on Heap-based Buffer Errors in CGC 

 Tool B Tool H Tool E Tool G Tool F Tool D Tool J Tool C Tool I Tool K Tool A 

Tool B N/A 50 % 50 % 67 % 67 % 67 % N/A N/A N/A N/A N/A 

Tool H 40 % N/A 75 % 100 % 100 % 100 % N/A N/A N/A N/A N/A 

Tool E 40 % 75 % N/A 100 % 100 % 67 % N/A N/A N/A N/A N/A 

Tool G 40 % 75 % 75 % N/A 100 % 67 % N/A N/A N/A N/A N/A 

Tool F 40 % 75 % 75 % 100 % N/A 67 % N/A N/A N/A N/A N/A 

Tool D 40 % 75 % 50 % 67 % 67 % N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 

Tool C 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 

Tool K 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A 
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Table 78. Recall per Bug Complexity on Heap-based Buffer Errors in CGC 

Complexity Bugs Tool B Tool H Tool E Tool G Tool F Tool D Tool J Tool C Tool I Tool K Tool A 

Low 11 18 % 27 % 27 % 27 % 27 % 18 % 0 % 0 % 0 % 0 % 0 % 

Medium 25 12 % 4 % 4 % 0 % 0 % 4 % 0 % 0 % 0 % 0 % 0 % 

High 6 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

5.3.3.4. Stack-based Buffer Errors 

This section narrows down the results to the 32 stack-based buffer error bugs contained in the 
CGC sample. These errors accounted for 29 % of all bugs in the sample. 
Table 79 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Excluding tools with nil findings, recall was clustered in two groups, one in 19-22 % 
range and one in the 3-6 % range. Indeed, Tools E and H significantly outperformed other tools 
on stack-based buffer errors. 
Tools E and H found essentially the same bugs, as demonstrated by their high overlap in Table 
80. They also both found the bugs reported by Tools C and F. On the other hand, Tool B’s 
findings were not reported by any other tool. 
Table 81 shows that 5 tools found low-complexity bugs while only 3 for medium-complexity. 
High-complexity bugs remained undiscovered. Recall was significantly higher for low-
complexity bugs than for their medium-complexity counterparts. 
Unlike Section 5.3.3.3, the custom memory management framework used by CGC should have 
interfered less with the results on stack-based buffer errors, which do not rely directly on heap 
memory allocation schemes. 

Table 79. Recall on Stack-based Buffer Errors in CGC 

Findings Tool E Tool H Tool B Tool C Tool F Tool D Tool J Tool G Tool I Tool K Tool A 

Miss 24 26 30 31 31 31 32 32 32 32 32 

Hint 1 0 0 0 0 1 0 0 0 0 0 

Partial 2 1 2 0 1 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 5 5 0 1 0 0 0 0 0 0 0 

TP 7 6 2 1 1 0 0 0 0 0 0 

Bugs 32 32 32 32 32 32 32 32 32 32 32 

Recall 22 % 19 % 6 % 3 % 3 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 80. Tool Warning Overlap on Stack-based Buffer Errors in CGC 

 Tool E Tool H Tool B Tool C Tool F Tool D Tool J Tool G Tool I Tool K Tool A 

Tool E N/A 83 % 0 % 100 % 100 % N/A N/A N/A N/A N/A N/A 

Tool H 71 % N/A 0 % 100 % 100 % N/A N/A N/A N/A N/A N/A 

Tool B 0 % 0 % N/A 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool C 14 % 17 % 0 % N/A 0 % N/A N/A N/A N/A N/A N/A 

Tool F 14 % 17 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool D 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool G 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool K 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A 

Table 81. Recall per Bug Complexity on Stack-based Buffer Errors in CGC 

Complexity Bugs Tool E Tool H Tool B Tool C Tool F Tool J Tool G Tool I Tool K Tool D Tool A 

Low 10 40 % 40 % 10 % 10 % 10 % 0 % 0 % 0 % 0 % 0 % 0 % 

Medium 16 19 % 13 % 6 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 6 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

5.3.3.5. Data-based Buffer Errors 

This section narrows down the results to the 9 data-based buffer error bugs contained in the CGC 
sample. This category combines all buffer errors that are neither stack- nor heap-based, e.g., 
overflows of static global variables. These errors accounted for 8 % of all bugs in the CGC 
sample. 
Table 82 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Tools H and C were the only tools to report valid findings. Table 83 shows that they 
targeted different bugs (there was no overlap) and Table 84 that they each found one of the two 
low-complexity bugs, and one medium-complexity bug for Tool H. However, the small size of 
the sample limits the relevance of these results. 



NIST SP 500-341 
June 2023 

59 

Table 82. Recall on Data-based Buffer Errors in CGC 

Findings Tool H Tool C Tool F Tool J Tool G Tool B Tool I Tool K Tool D Tool A Tool E 

Miss 7 8 8 9 9 9 9 9 9 9 9 

Hint 0 0 1 0 0 0 0 0 0 0 0 

Partial 1 1 0 0 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 1 0 0 0 0 0 0 0 0 0 0 

TP 2 1 0 0 0 0 0 0 0 0 0 

Bugs 9 9 9 9 9 9 9 9 9 9 9 

Recall 22 % 11 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Table 83. Tool Warning Overlap on Data-based Buffer Errors in CGC 

 Tool H Tool C Tool A Tool B Tool D Tool E Tool F Tool G Tool I Tool J Tool K 

Tool H N/A 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool C 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool A 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool B 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool D 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool E 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool F 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool G 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool I 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool K 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Table 84. Recall per Bug Complexity on Data-based Buffer Errors in CGC 

 Bugs Tool H Tool C Tool J Tool G Tool F Tool B Tool I Tool K Tool D Tool A Tool E 

Low 2 50 % 50 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Medium 7 14 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Extreme 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

5.3.3.6. Pointer Errors 

This section narrows down the results to the 11 pointer error bugs contained in the CGC sample. 
These errors accounted for 10 % of all bugs in the sample. 



NIST SP 500-341 
June 2023 

60 

Table 85 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Only two tools correctly reported one bug each, with a recall of 9 %. Table 86 confirms 
that the two bugs are different and, according to Table 87, of medium complexity. The small size 
of the sample limits the relevance of these results. 

Table 85. Recall on Pointer Errors in CGC 

Findings Tool C Tool H Tool B Tool D Tool E Tool J Tool G Tool F Tool I Tool K Tool A 

Miss 10 10 10 10 10 11 11 11 11 11 11 

Hint 0 0 1 1 1 0 0 0 0 0 0 

Partial 0 1 0 0 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 1 0 0 0 0 0 0 0 0 0 0 

TP 1 1 0 0 0 0 0 0 0 0 0 

Bugs 11 11 11 11 11 11 11 11 11 11 11 

Recall 9 % 9 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

 Table 86. Tool Warning Overlap on Pointer Errors in CGC 

 Tool C Tool H Tool A Tool B Tool D Tool E Tool F Tool G Tool I Tool J Tool K 

Tool C N/A 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool H 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool A 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool B 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool D 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool E 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool F 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool G 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool I 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Tool K 0 % 0 % N/A N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 87. Recall per Bug Complexity on Pointer Errors in CGC 

Complexity Bugs Tool H Tool C Tool J Tool G Tool F Tool B Tool I Tool K Tool D Tool A Tool E 

Low 1 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Medium 8 13 % 13 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 2 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Extreme 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

5.3.3.7. Initialization Errors 

This section narrows down the results to the 7 initialization error bugs contained in the CGC 
sample. These errors accounted for 6 % of all bugs in the sample. 
Table 88 breaks down the number of bugs found by each tool, the accuracy of the findings, and 
recall. Excluding tools with nil findings, recall varied from 14 % to 29 %, i.e. 1 to 2 true 
positives for Tools B, E, F and D. 
Table 89 shows that these four tools found the same two bugs. One bug was found by all four 
tools and the other by two tools. According to Table 90, the first bug was of low-complexity and 
the second of medium complexity. 

Table 88. Recall on Initialization Errors in CGC  

Findings Tool B Tool E Tool F Tool D Tool J Tool G Tool H Tool C Tool I Tool K Tool A 

Miss 5 5 6 6 7 7 7 7 7 7 7 

Hint 0 0 0 0 0 0 0 0 0 0 0 

Partial 1 1 0 0 0 0 0 0 0 0 0 

Alternate 0 0 0 0 0 0 0 0 0 0 0 

Match 1 1 1 1 0 0 0 0 0 0 0 

TP 2 2 1 1 0 0 0 0 0 0 0 

Bugs 7 7 7 7 7 7 7 7 7 7 7 

Recall 29 % 29 % 14 % 14 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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Table 89. Tool Warning Overlap on Initialization Errors in CGC 

 Tool B Tool E Tool D Tool F Tool A Tool C Tool G Tool H Tool I Tool J Tool K 

Tool B N/A 100 % 100 % 100 % N/A N/A N/A N/A N/A N/A N/A 

Tool E 100 % N/A 100 % 100 % N/A N/A N/A N/A N/A N/A N/A 

Tool D 50 % 50 % N/A 100 % N/A N/A N/A N/A N/A N/A N/A 

Tool F 50 % 50 % 100 % N/A N/A N/A N/A N/A N/A N/A N/A 

Tool A 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool C 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool G 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool H 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool I 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool J 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

Tool K 0 % 0 % 0 % 0 % N/A N/A N/A N/A N/A N/A N/A 

 

Table 90. Recall per Bug Complexity on Initialization Errors in CGC 

Complexity Bugs Tool B Tool E Tool F Tool D Tool J Tool G Tool H Tool C Tool I Tool K Tool A 

Low 2 50 % 50 % 50 % 50 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Medium 5 20 % 20 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

High 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Extreme 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 Java 

5.4.1. DSpace: Existing and Semi-automatically Injected Bugs 

DSpace contained 18 existing and 12 injected XSS bugs. 
Table 91 offers an overview of the number of bugs found by each tool, the accuracy of the 
findings, and recall and discrimination rate. Most tools correctly reported bugs, except Tools L 
and R, which did not support XSS. Recall ranged from 7 % to 100 % with an average of 60 % 
and discrimination rate from 13 % to 87 %. Tool O did not report false positives on the fixes 
corresponding to the bugs it correctly reported, so its recall and discrimination rate are the same. 
Other tools had high discrimination, except Tools P and M, which reported nearly as many false-
positives as true positives. 
The high recall induced a high overlap between tools in Table 92 and consequently, most bugs 
were found by more than one tool. 
Tables 93, 94, 95 and 96 compare tool results on existing vs. injected bugs. Table 93 shows that 
recall was analogous for both types of bugs, but discrimination rate had more pronounced 
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variation for existing vs. injected bugs, as described in Table 94. Tables 95 and 96 reinforce this 
observation: most tools’ discrimination was less than stellar on existing bugs, but it was 
substantially higher on injected bugs. 
Tables 97, 98 and 99 break down the results by bug complexity. Table 97 shows some decrease 
in recall for medium-complexity bugs, compared to low-complexity bugs. However, the effect is 
much more contained than what we witnessed on the C test cases. Some tools even found more 
medium-complexity than low-complexity bugs. Discrimination, on the other hand, was more 
affected by increase in complexity, as can be seen in Tables 98 and 99. The discrimination rate 
for medium-complexity bugs was much lower than for low-complexity bugs, except for Tool O, 
which had perfect discrimination. 
Table 100 breaks down existing and injected bugs across bug complexities. Injected bugs were 
all of low-complexity and existing bugs split between low- and medium-complexity. 

Table 91. Recall and Discrimination on XSS in DSpace 

Findings Tool O Tool Q Tool N Tool P Tool M Tool L Tool R 

Miss 2 9 16 0 21 30 30 

Hint 2 2 1 0 7 0 0 

Partial 12 12 0 30 2 0 0 

Alternate 13 4 6 0 0 0 0 

Match 1 3 7 0 0 0 0 

TP 26 19 13 30 2 0 0 

Disc. TP 26 13 10 4 0 0 0 

Bugs 30 30 30 30 30 30 30 

Recall 87 % 63 % 43 % 100 % 7 % 0 % 0 % 

Disc. Rate 87 % 43 % 33 % 13 % 0 % 0 % 0 % 

Table 92. Tool Warning Overlap on XSS in DSpace 

 Tool P Tool O Tool Q Tool N Tool M Tool L Tool R 

Tool P N/A 100 % 100 % 100 % 100 % N/A N/A 

Tool O 87 % N/A 89 % 92 % 100 % N/A N/A 

Tool Q 63 % 65 % N/A 85 % 50 % N/A N/A 

Tool N 43 % 46 % 58 % N/A 0 % N/A N/A 

Tool M 7 % 8 % 5 % 0 % N/A N/A N/A 

Tool L 0 % 0 % 0 % 0 % 0 % N/A N/A 

Tool R 0 % 0 % 0 % 0 % 0 % N/A N/A 
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Table 93. Recall for Existing vs. Injected Bugs in DSpace 

 Bugs Tool P Tool O Tool Q Tool N Tool M Tool L Tool R 

Existing 18 100 % 83 % 61 % 22 % 6 % 0 % 0 % 

Injected 12 100 % 92 % 67 % 75 % 8 % 0 % 0 % 

Table 94. Discrimination Rate for Existing vs. Injected Bugs in DSpace 

 Bugs Tool O Tool Q Tool P Tool N Tool L Tool M Tool R 

Existing 18 83 % 33 % 17 % 11 % 0 % 0 % 0 % 

Injected 12 92 % 58 % 8 % 67 % 0 % 0 % 0 % 

Table 95. Discrimination on Existing Bugs in DSpace 

 Tool O Tool Q Tool P Tool N Tool M Tool L Tool R 

Recall 83 % 61 % 100 % 22 % 6 % 0 % 0 % 

Disc. Rate 83 % 33 % 17 % 11 % 0 % 0 % 0 % 

Table 96. Discrimination on Injected Bugs in DSpace 

 Tool O Tool N Tool Q Tool P Tool M Tool L Tool R 

Recall 92 % 75 % 67 % 100 % 8 % 0 % 0 % 

Disc. Rate 92 % 67 % 58 % 8 % 0 % 0 % 0 % 

Table 97. Recall per Bug Complexity in DSpace 

Complexity Bugs Tool O Tool Q Tool P Tool N Tool L Tool M Tool R 

Low 18 83 % 72 % 100 % 61 % 0 % 6 % 0 % 

Medium 12 92 % 50 % 100 % 17 % 0 % 8 % 0 % 

Table 98. Discrimination per Bug Complexity in DSpace 

Complexity Bugs Tool O Tool Q Tool P Tool N Tool L Tool M Tool R 

Low 18 83 % 61 % 17 % 56 % 0 % 0 % 0 % 

Medium 12 92 % 17 % 8 % 0 % 0 % 0 % 0 % 

Table 99. Effect of Bug Complexity on Discrimination in DSpace 

Complexity Bugs Tool O Tool Q Tool P Tool N Tool L Tool M Tool R 

Low 18 0 % -15 % -83 % -9 % N/A -100 % N/A 

Medium 12 0 % -67 % -92 % -100 % N/A -100 % N/A 
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Table 100. Breakdown of Bug Count per Bug Properties in DSpace 

Complexity Existing Injected 

Low 6 12 

Medium 12 0 

High 0 0 

Extreme 0 0 

5.4.2. Sakai: Semi-automatically Injected Bugs 

Sakai contained 30 SQL injection bugs. The bugs were all injected and of medium complexity, 
limiting the number of ways we can split the results. 
Table 101 offers an overview of the number of bugs found by each tool, the accuracy of the 
findings, and recall and discrimination rate. Excluding Tool L, which did not support SQL 
injection, the recall ranged from 53 % to 67 % with an average of 58 % and discrimination rate 
from 40 % to 67 % with an average of 55 %. Discrimination was very high for all tools, but the 
shortcomings described in Section 5.2.2 render this particular result inconclusive. 
Table 102 shows high overlap across tools, which can be partially explained by the high recall. 
Tool R reported all bugs found by Tools N, Q, P and M. Tool O, on the other hand, found several 
bugs that were missed by other tools. Tools R and O together found all but a single bug. 

Table 101. Recall and Discrimination on SQL Injection in Sakai 

Findings Tool O Tool R Tool Q Tool N Tool M Tool P Tool L 

Miss 10 9 13 13 15 14 30 

Hint 0 1 0 0 0 0 0 

Partial 7 20 14 17 15 16 0 

Alternate 5 0 0 0 0 0 0 

Match 8 0 3 0 0 0 0 

TP 20 20 17 17 15 16 0 

Disc. TP 20 20 17 17 13 12 0 

Bugs 30 30 30 30 30 30 30 

Recall 67 % 67 % 57 % 57 % 50 % 53 % 0 % 

Disc. Rate 67 % 67 % 57 % 57 % 43 % 40 % 0 % 
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Table 102. Tool Warning Overlap on SQL Injections in Sakai 

 Tool O Tool R Tool N Tool Q Tool P Tool M Tool L 

Tool O N/A 57 % 71 % 71 % 56 % 73 % N/A 

Tool R 60 % N/A 100 % 100 % 100 % 100 % N/A 

Tool N 60 % 81 % N/A 100 % 81 % 100 % N/A 

Tool Q 60 % 81 % 100 % N/A 81 % 100 % N/A 

Tool P 45 % 76 % 76 % 76 % N/A 73 % N/A 

Tool M 55 % 71 % 88 % 88 % 69 % N/A N/A 

Tool L 0 % 0 % 0 % 0 % 0 % 0 % N/A 

 Ockham Criteria 

The Ockham criteria track used specific terms described in Section 1.4. 

 Background 

In SATE V [8], the SAMATE team introduced the Ockham Sound Analysis Criteria, a track for 
static analyzers whose analysis is logically sound. Tools that are not “bug-finders” can satisfy the 
Ockham Criteria, too. A tool that reports that pieces of code are certainly bug free is welcome. 
We check that tools satisfy the SATE VI Ockham Sound Analysis Criteria to show that they are 
reliable and worth the effort to use. Beyond that, our test material and approach should help 
others investigate what assurance a tool provides for their own code in their own development 
process. 
The rest of this section gives additional background and explains changes between the previous 
Ockham Sound Analysis Criteria evaluation and the current one. Section 6.2 explains the Criteria 
in detail. It also presents the general procedure we used to evaluate a tool by the Criteria. Section 
6.3 explains details of the evaluation for Astrée, Section 6.3.1, and Frama-C, Section 6.3.2. 
Section 6.4 lists what we found and our conclusions. 

6.1.1. Using Sound Static Analyzers 

Our evaluation of tools against the Ockham Sound Analysis Criteria only reflects one aspect of 
using a sound static analyzer in a production software development process. Adding almost any 
tool to a software development process takes work. Even to evaluate as we have, there is a 
particular learning curve to effectively use static analysis tools. 
To be precise, such tools use a detailed description of the actual compilation and execution 
environments of the software being analyzed. Is an int 32 or 64 bits on the target computer? Does 
the code rely on the compiler laying out memory for a struct in a certain order with no padding? 
Do you want warnings of unsigned short integer overflow if your code does a lot of masking and 
shifting, e.g., for hashes or encryption? Is the high-order bit propagated when a signed integer 
shifted right? The C11 standard [33] allows different definitions of main() and different 
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behaviors of bitwise operators. The term “implementation-defined” occurs almost 200 times in 
the C11 standard. 
In addition, the tools are elaborate systems with many abilities. As an analogy, consider that the 
word “vehicle” includes bicycles, dump trucks, and buses. All have wheels, can be steered, and 
transport something, but their design and uses are very different. Similarly, we evaluate only a 
small part of the tools’ capabilities for the SATE VI Ockham Criteria. Astrée [34] has 
sophisticated graphical user interfaces to select hundreds of options, including checking Motor 
Industry Software Reliability Association (MISRA) guidelines, controlling software checking, 
and displaying violations found in context. Frama-C [35] is an open-source suite of tools to 
analyze software written in C, such as code slicing, dependency analysis, and enabling proofs 
that code satisfies functional specifications. Another tool, not in SATE VI Ockham, Kestrel 
Technology’s CodeHawk-C, exposes the validity requirements—proof obligations (PO)—of 
every code fragment reporting that each PO is satisfied, violated, or cannot be proved. 
Consider that Thales defines many levels of using formal verification for software assurance 
[36]. These levels are Stone—adhering to the SPARK [37] programming language— then 
Bronze—proving variable initialization and clear data flow—then Silver, Gold, and finally 
Platinum—proving that software meets its fully- and formally-specified requirements. Similarly, 
a knowledgeable user will “tune” the use of sophisticated tools, for instance, specify depth of 
recursion, number of loops to unroll, and analysis options so the tool produces the most useful 
result. It took us three or four full days of experimenting, reading, and guidance from tool 
makers to get tools reporting the errors that we were interested in. Even then we do not claim 
that our choices were optimal for a software production environment. 

6.1.2. Differences Between SATE V and SATE VI Ockham Exercises 

In this subsection, we examine differences between the SATE V Ockham evaluation procedure 
and that of SATE VI Ockham. For details of the SATE V evaluation, see [9]. 
We only evaluated Frama-C in the SATE V Ockham Sound Analysis Criteria. For this SATE VI, 
we evaluated two tools: Astrée [34] and a new version of Frama-C [35] with its Evolved Value 
Analysis (Eva) plug-in. 

6.1.2.1. Known Bugs 

SATE VI Ockham used Juliet Version 1.3 test cases. Juliet cases are small, synthetic programs 
with deliberate bugs. Juliet was originally developed by National Security Agency’s Center for 
Assured Software. It is available from the Software Assurance Reference Dataset (SARD) [14]. 
It includes a list of known bugs in a manifest file. 

6.1.2.2. Determining Sites 

To explain sites, we first define “weakness”. A piece of code has a weakness when some 
execution could lead to a fault. In contrast, a vulnerability in a system could be accidentally 
triggered or intentionally exploited to cause a failure [9]. Every vulnerability is one or more 
weaknesses. A weakness is not a vulnerability if it is guarded by code or has other mitigations 
anywhere in the broader system. For example, suppose an analyst is considering a dozen lines of 
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code and sees that that piece of code has no protection from an SQL Injection attack. The code 
has an SQL Injection weakness. However, if the broader system context filters out any possible 
string with SQL Injection attacks, there is no vulnerability. 
To be precise, we used the concept of site. A site “is a location in code where a weakness might 
occur.” [38]. See [38] for further exposition of what constitutes a site. In the current Ockham, 
SATE VI, we simply checked that all buggy sites were included in warnings, that is, B ⊆ W, see 
Figure 1. 
Not determining sites means that we cannot calculate that Ockham Criterion 2, explained in 
Section 6.2.2, is satisfied. 
 

 
Figure 1. Relation between warnings reported, W, and known buggy sites, B, for SATE VI Ockham. 

Ockham Criterion 3 is satisfied if B⊆W. 

6.1.2.3. Bug or Weakness Classes 

The Juliet test cases are grouped by Common Weakness Enumeration (CWE) [11]. For SATE VI 
Ockham, we defined our own classes to be orthogonal (no overlaps) and precise. Our classes are 
listed and defined in Section 6.2.4. 
We still had significant difficulty assigning tool warnings to these new classes. Part of the 
problem was understanding exactly what the tool warning covered or what it did not cover. Part 
of the problem was that our classes made distinctions that tools did not and vice versa. Our own 
classes were easier to use than CWEs but did not come close to being reasonable universal 
classes. 



NIST SP 500-341 
June 2023 

69 

 The Criteria 

This section has the details of the Ockham Criteria themselves and includes explanation and 
discussion. Much of this section comes from Section 2 of the SATE V Ockham report [38]. 
The Criteria are named for William of Ockham, best known for Occam’s Razor. Since the details 
of the Criteria will likely change in the future, the name includes a time reference: SATE VI 
Ockham Sound Analysis Criteria. The criteria were: 

1. The tool is claimed to be sound. 
2. For at least one weakness class and one test case the tool produces findings for a 

minimum of 75 % of appropriate sites. 
3. Even one incorrect finding disqualifies a tool for this SATE. 

An implicit criterion is that the tool is useful, not merely a toy. 
A finding is a definitive report about a site, which is a specific place in code. In other words, the 
tool reports that the site has a specific weakness (is buggy) or that the site does not have that 
weakness. 
No manual editing of the tool output was allowed. No automated filtering specialized to a test 
case or to SATE VI was allowed, either. The tool’s settings and options may be selected to 
produce the best result, as alluded to in Section 6.1.1. Such setting should be reported. 

6.2.1. Criterion 1: “Sound” (and “Complete”) Analysis 

Criterion 1 is “The tool is claimed to be sound.” 
We use the term sound to mean that every finding is correct. In other words, “Sound analysis 
means that the [tool] never asserts a property to be true when it is not true.” ([39], FM.1.6.2). The 
tool need not produce a finding for every site; that is completeness. 
A tool may have settings that allow unsound analysis. The tool still qualifies if it is “mostly 
sound, with specific, well-identified unsound choices” [40], that is, it is soundy as defined by 
Livshits, et. al. For a more detailed exposition of uses of the terms “sound” and “complete” 
applied to static analysis, see [38], Sec. 2.3. 

6.2.2. Criterion 2: Tools Produce Findings for Most Sites 

Criterion 2 balances usefulness with theoretical limits: the tool produces findings for a minimum 
of 75 % of sites. 
A sound tool reports one of three findings about a site: it definitely has a certain weakness, it 
definitely does not have a certain weakness, or the tool cannot determine. 
As explained previously, a site “is a location in code where a weakness might occur.” ([38], Sec. 
2.2). 
A finding may be that a site is buggy or that a site does not have a particular bug. Either type of 
statement (or both!) is acceptable. For instance, a tool may use conservative approximations and 
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sometimes produce warnings about (possible) bugs at sites that are actually bug-free. If it never 
misses a bug, then any site without a warning is sure to be correct. 
Because we did not determine sites for weakness classes, we cannot calculate that Criterion 2 is 
satisfied. 

6.2.3. Criterion 3: Determining That All Findings Are Correct 

Criterion 3 is “Even one incorrect finding disqualifies a tool for this SATE.” This section 
describes the general procedure we followed to confirm that a tool satisfied Criterion 3. 
Initial comparison between findings and the Juliet manifest almost always produced thousands of 
mismatches. 
One reason for mismatches is that reasoning is based on models, assumptions, definitions, etc. 
(collectively, “models”). Mismatches that result from model differences do not automatically 
disqualify a tool. To satisfy the SATE VI Ockham Criteria, any such differences are publicly 
reported in the full report. 
We performed the bulk of the analysis with automated scripts and custom programs. Some 
exclusions and special handling were built into the code. These are mentioned in relevant 
sections in the full report. The steps are listed below and are given in Figure 2: 

1. Distill bugs from the list of known bugs in the test cases. 
2. Run the tool on the test cases. 
3. Extract findings from the tool results. 
4. Check that all bugs are in the findings. If so, Criterion 3 is satisfied. 

 

 
Figure 2. General flow to confirm that a tool satisfied the SATE VI Ockham Sound Analysis Criterion 3. 
Distill bugs from the known-bugs manifest. Run the tool on the test cases. Extract findings from the tool 

output. Compare bugs and findings. 

When we distill bugs and extract findings, we encode them as classes that we created for a 
common representation. The classes are listed and explained in Section 6.2.4. 
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When a bug from the known list is missing from findings extracted from the tool result, we 
resolve the discrepancy. See the full report for details. 

6.2.4. Ockham Bug Classes 

We defined our own classes to organize our examination of warnings. We tried to precisely and 
rigorously define clear classes. The classes must not overlap. That is, a bug must be in one class 
or another. In many instances, our classes did not correspond well to the tool warnings. 
This section briefly explains each class. Complete explanations are in the full report. We treat 
closely related classes or subclasses in a single subsection. 

6.2.4.1. ARC—Arithmetic or Conversion Fault Classes 

We begin with the Arithmetic or Conversion Fault, or ARC, class. We define ARC as: 
Software produces a faulty result due to conversions between primitive types, range violations, 
or domain violations. 
We subdivided ARC into several classes: Truncate, Overflow, Underflow, Distort, and 
Undefined. 
ARC/Truncate is when the value to be stored is too big for the destination. 
ARC/Overflow is when the types match, but the result is too big for the destination. 
ARC/Underflow is when the types match, but the result is too negative for the destination. 
ARC/Distort is when the result is otherwise distorted. 
To contrast the four preceding subclasses, truncate is when the type of the source is larger than 
the type of the destination. Overflow and Underflow are when the destination is at least as big as 
the source, but the result of an arithmetic operation will not fit in the destination type. Distort is 
when the destination is at least as big as the source and the result would fit, but it is changed for 
another reason. 
ARC/Undefined is a domain violation, such as divide by zero or negative shift. 

6.2.4.2. ARG/Memcpy—Incorrect Argument for memcpy() 

We define ARG as: 
Software calls a function with incorrect arguments. 

6.2.4.3. BOF/Read and BOF/Write—Read or Write Outside Buffer 

We define BOF as: 
Software accesses through an array a memory location that is outside the boundaries of that 
array. 
Because there are so many BOF bugs in Juliet, we divided this into BOF/Read and BOF/Write 
classes. 
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6.2.4.4. DEP—Dereference Erroneous Pointer Classes 

We define DEP as: 
Software dereferences an invalid pointer. 
The invalid pointer may be NULL, refer to memory that was freed (see MAL below), be 
produced by incorrect pointer arithmetic (see PAR below), or be completely arbitrary. 
Because Juliet has particular cases for incorrect pointer arithmetic, we separate them into their 
own class, DEP/Incorrectly Computed Pointer (DEP/ICP). 

6.2.4.5. PAR—Pointer Arithmetic 

We define PAR as: 
Software produces a faulty value because of incorrect pointer arithmetic. 
DEP is when an incorrect pointer is dereferenced. PAR is when the result of pointer arithmetic is 
used as a number or when pointers are compared incorrectly. 

6.2.4.6. ILP—Infinite Loop 

We define ILP as: 
Software never terminates execution. 

6.2.4.7. INI—Initialization Fault 

We define INI as: 
Software uses a faulty value because an entity was not properly initialized. 
“Entity” includes a variable, a member of a structure or record, parts of an array, a pointer or 
reference, etc. “Not properly” covers both not initialized at all and not correctly initialized. Not 
initialized correctly includes initialized with a value that leads to a security concern. 

6.2.4.8. MAL—Memory Allocation and Deallocation 

We define MAL as: 
Software improperly allocates or deallocates memory. 

6.2.4.9. UCE—Unchecked Error 

We define UCE as: 
Software does not check, checks incorrectly, or checks but does not take action on a possible 
error condition. 
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 SATE VI Evaluation 

We evaluated several tools by the SATE VI Ockham Sound Analysis Criteria. This section has 
one subsection for each tool. 
All of the scripts and files are available in a tar file with xz compression [41] at DOI 
http://dx.doi.org/10.18434/M32187  or https://nist-sate-ockham-sound-analysis-criteria-
evaluationmaterial.s3.amazonaws.com/ockham-sate-VI-2020/ockhamCriteriaSATEVI 
data2020.tar.xz. The README is available at https://nist-sate-ockham-sound-analysiscriteria-
evaluation-material.s3.amazonaws.com/ockham-sate-VI-2020/README. 

6.3.1. Astrée 

“Astrée is a static code analyzer that proves the absence of run-time errors and invalid concurrent 
behavior in safety-critical software written or generated in C. [...] Astrée is sound for floating-
point computations and handles them precisely and safely. [...] Astrée offers powerful annotation 
mechanisms for supplying external knowledge and fine-tuning the analysis precision for 
individual loops or data structures. [...] This allows for analyses with very few or even zero false 
alarms.” [34] 
AbsInt Angewandte Informatik GmbH granted NIST an evaluation license to run Astrée for C on 
a Linux 64-bit platform. In June 2018 we installed a3 for C 18.04 (2819232) and began analyzing 
the Juliet test cases. 
By its own definition, Astrée claimed to be sound: “Astrée is sound — that is, if no errors are 
signaled, the absence of errors has been proved.” [34]. This satisfies Criterion 1. 
Since Astrée produced thousands of warnings, we believe it satisfies Criterion 2. 

6.3.1.1. Performing the Evaluation 

What we refer to elsewhere in this report as warnings, Astrée refers to as alarms. We used the 
classes listed in Section 6.2.4 to organize our examination of Astrée alarms. 
AbsInt supplied the initial wrappers and stub code, declaration and configuration (.dax) files, and 
Astrée Annotation Language (.aal) files. AbsInt notes that the stubs are only example 
implementations and should always be checked to determine what enhancements, if any, are 
necessary to match the libraries in use and the properties of importance. 
Astrée allows users to enable or disable rules and checks individually or as groups. 

6.3.1.2. Common Considerations 

This section explains some considerations that applied to all the classes. These are details of 
Astrée operation or steps we took to match Astrée alarms to our notion of classes, locations, and 
warnings. 
In many cases the line that Astrée produces and the line in the manifest are different, but both are 
reasonable. See the full report for examples and resolutions. 

http://dx.doi.org/10.18434/M32187
https://nist-sate-ockham-sound-analysis-criteria-evaluationmaterial.s3.amazonaws.com/ockham-sate-VI-2020/ockhamCriteriaSATEVI%20data2020.tar.xz
https://nist-sate-ockham-sound-analysis-criteria-evaluationmaterial.s3.amazonaws.com/ockham-sate-VI-2020/ockhamCriteriaSATEVI%20data2020.tar.xz
https://nist-sate-ockham-sound-analysis-criteria-evaluationmaterial.s3.amazonaws.com/ockham-sate-VI-2020/ockhamCriteriaSATEVI%20data2020.tar.xz
https://nist-sate-ockham-sound-analysiscriteria-evaluation-material.s3.amazonaws.com/ockham-sate-VI-2020/README
https://nist-sate-ockham-sound-analysiscriteria-evaluation-material.s3.amazonaws.com/ockham-sate-VI-2020/README
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Sometimes Astrée reports an alarm as in a utility file, not in the calling function, where it would 
be convenient for us. With highly-automated processing, we added some context sensitive 
checks. 
Another consideration is that Astrée did not support C++, so we excluded all .cpp cases12. Astrée 
needs library stubs and type definitions to support Windows-specific code. Since we did not have 
them, we excluded _w32_ and _wchar_t_ test cases. Astrée followed C99, not C11, semantics. 
The following are one subsection for each weakness class. 

6.3.1.3. ARC/Overflow—Arithmetic Overflow 

Anomalies, Observations, and Interpretations: 
Analyzing this class showed that the manifest was missing ARC/Overflow bugs for 
CWE680 cases.  
Results: 3666 buggy sites. 

6.3.1.4. ARC/Underflow—Arithmetic Underflow 

Anomalies, Observations, and Interpretations: 
The vast majority of the unmatched findings (4412 of 4792) are uses of the RAND32 macro. The 
rest (380) are code with something-1, which underflows for some types. 
We found poor code in “good” functions in CWE191. We also found that “bad” functions in 
CWE680 had extraneous errors. 
Results: 2622 buggy sites. 

6.3.1.5. ARC/Undefined—Divide by Zero 

Results: 684 buggy sites. 

6.3.1.6. ARC/Distort—Result Distortion 

Results: 1824 buggy sites. 

6.3.1.7. ARC/Truncate—Result Truncation 

Anomalies, Observations, and Interpretations: 
We had many ARC/Truncate alarms from cases under CWE367 TOC TOU and CWE404 
Improper Resource Shutdown. We posit that open() is modeled as returning a “signed long 
long”, which would be truncated (ARC/Truncate) to fit in int. However, [42] says open() returns 
int, so the Juliet code is not buggy. Many alarms for cases under CWE369 Divide by Zero are 

 
12 C++ support has been added and is scheduled to be available to all users with the 20.04 release. 
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valid, but not interesting to us. We did not have a .dax files for CWE681 Incorrect Conversion 
Between Numeric Types, so we did not run Astrée on those cases. 
Initial comparison showed 26 buggy sites not in the findings. 
Results: 684 buggy sites. 

6.3.1.8. ARG/Memcpy—Incorrect Argument for memcpy() 

Results: 18 buggy sites. 

6.3.1.9. BOF/Read—Read Outside Buffer 

Anomalies, Observations, and Interpretations: 
Reconciling (the lack of) Astrée alarms found 72 “fossil” errors in the manifest. The Juliet code 
had been corrected in Juliet 1.3, see [15], Sec. 2.3, but the errors had not been removed from 
manifest. 
We found 1450 unmatched alarms in code calling printLine(). These are valid, but we did not 
add these to the manifest since these are caused by the out-of-bounds access, which is already 
listed. 
Results: 1188 buggy sites. 

6.3.1.10. BOF/Write—Write Outside Buffer 

Anomalies, Observations, and Interpretations: 
Astrée produced “invalid dereference” alarms for the call to strlen(). 
The manifest has warnings for the memcpy() in cases such as SARD case 231444. We believe 
that Astrée gives no alarm for these because the data copied stay within the structure, although 
they go outside the buffer. We filter out these unmatched manifest warnings. 
Astrée models allopca() as possibly returning NULL. Because of Astrée’s model, it gives an 
alarm of possible NULL pointer dereference (DEP) and stops analysis. We removed these 
alloca() cases from the buggy set to match. 
Analyzing Astrée alarms led us to discover that the manifest had incorrect locations for many 
CWE665 Improper Initialization cases. We corrected those in the manifest. 
Results: 5192 buggy sites. 

6.3.1.11. DEP—Dereference Erroneous Pointer 

Anomalies, Observations, and Interpretations: 
Some cases under CWE476 NULL Pointer Dereference are intended to find out if a tool reports a 
useless NULL check after a dereference. Since Astrée behaves reasonably, we skip these cases. 
As with BOF/Write, Section 6.3.1.10, the model for alloca() led to many unmatched alarms, 
which we consider spurious. 
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Results: 1166 buggy sites. 

6.3.1.12. DEP/ICP—Incorrect Pointer Arithmetic 

Anomalies, Observations, and Interpretations: 
It appears that Astrée does not check for CWE188 at all. We, therefore, did not examine any 
CWE188 cases. 
Results: 52 buggy sites. 

6.3.1.13. PAR—Pointer Arithmetic 

Results: 18 buggy sites. 

6.3.1.14. ILP—Infinite Loop 

Anomalies, Observations, and Interpretations: 
We found a difference in reporting locations in some cases. In these cases the extractor patches 
the extracted alarm to correspond with the manifest. 
Results: 6 buggy sites. 

6.3.1.15. INI—Initialization Fault 

Anomalies, Observations, and Interpretations: 
We found a difference in reporting locations from some code. 
Results: 776 buggy sites. 

6.3.1.16. MAL—Memory Deallocation 

Anomalies, Observations, and Interpretations: 
Evaluating Astrée lead us to discover that the manifest was wrong for some code. Resolving the 
discrepancy also showed that the manifest was wrong for other code. 
Results: 536 buggy sites. 

6.3.1.17. UCE—Unchecked Error 

Anomalies, Observations, and Interpretations: 
Astrée did not check the handling of error returns from functions like fread(), putchar(), and 
scanf(), which are under CWE253. We, therefore, did not check any CWE253 cases. We did not 
run Astrée on any cases under CWE390 or CWE391. 
Results: 540 buggy sites. 
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6.3.1.18. Summary of Evaluation 

Astrée reported all buggy sites and satisfied SATE VI Ockham Criteria 3. 
Alarms from Astrée led us to find and fix thousands of mistakes in the Juliet known-bug list, 
manifest.xml. 
Because Astrée analyzes code very precisely and we checked meticulously, details of modeling 
that otherwise would be inconsequential showed up and were resolved. 
In the test cases of the 28 sets used from the Juliet 1.3 C test suite, we considered  
18 954 buggy sites for Astrée. We processed a total of 36 316 Astrée alarms. 
Astrée satisfied the SATE VI Ockham Sound Analysis Criteria. 

6.3.2. Frama-C 

“Frama-C is a suite of tools dedicated to the analysis of the source code of software written in 
C.” [35] “Frama-C allows [you] to verify that the source code complies with a provided formal 
specification. Functional specifications can be written in a dedicated language, ANSI/ISO C 
Specification Language (ACSL). The specifications can be partial, concentrating on one aspect 
of the analyzed program at a time.” [43] It is free software licensed under the GNU Lesser 
General Public License (LGPL) v2.1 license13. 
We began evaluation in June 2019 and used Frama-C ‘Argon’ 18.0 Version. 
By its own definition, Frama-C claimed to be sound: “it aims at being correct, that is, never to 
remain silent for a location in the source code where an error can happen at run-time” [35]. This 
satisfies Criterion 1. 
Since Frama-C with the Evolved Value Analysis (Eva) plug-in produced thousands of warnings, 
we believe it would satisfy Criterion 2. 

6.3.2.1. Performing the Evaluation 

To produce all the warnings we were interested in, we eventually ran Frama-C and Eva on each 
test case with four different sets of options. See the full report for details. 
We used the classes listed in Section 6.2.4 to organize our examination of Frama-C/Eva 
warnings. We examined warnings generally class by class. 

6.3.2.2. Common Considerations 

This section explains some considerations that applied to all the classes. 
Frama-C halts analysis when it reaches an invalid state. These are often reported as 
nonterminating states. Undefined code leads to a state where anything can happen. Following 
that, no sound analysis makes sense, so Frama-C performs no further analysis. 
Because of our misunderstanding, we unnecessarily skipped wchar_t cases in many classes. 

 
13 http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html 
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Following is one subsection for each weakness class. See the full report for more. 

6.3.2.3. ARC/Overflow—Arithmetic Overflow 

Anomalies, Observations, and Interpretations: 
The good functions in 38 test cases named CWE190_Integer_Overflow__unsigned_ 
int_max_square_ are written wrong. We excused these test cases from analysis. 
Results: 3628 buggy sites. 

6.3.2.4. ARC/Underflow—Arithmetic Underflow 

Results: 2622 buggy sites. 

6.3.2.5. ARC/Undefined—Divide by Zero 

Results: 684 buggy sites. 

6.3.2.6. ARC/Distort—Result Distortion 

Results: 1824 buggy sites. 

6.3.2.7. ARC/Truncate—Result Truncation 

Results: 684 buggy sites. 

6.3.2.8. ARG/Memcpy—Incorrect Argument for memcpy() 

Results: 36 buggy sites. 

6.3.2.9. BOF/Read—Read Outside Buffer 

Results: 1358 buggy sites. 

6.3.2.10. BOF/Write—Write Outside Buffer 

Anomalies, Observations, and Interpretations: 
The manifest has extra warnings for 74 CWE665 test cases. Frama-C warns about the 
initialization problem but does not give any BOF/Write warning. That is reasonable behavior. 
For automated checking, we have the analysis change all 74 of the warnings from Frama-C for 
these test cases. 
The manifest incorrectly has different lines for 26 CWE122 test cases. For no particular reason, 
instead of changing the manifest lines or having the Frama-C extractor patch the warnings, we 
created a file with the 26 excused warnings. The evaluation script includes this file when 
checking for mismatches. 
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Test cases under CWE242 purposely use gets(), even though gets() cannot be used safely. Since 
the library we used for Frama-C does not correctly model gets(), we excluded all CWE242 from 
the analysis. 
Results: 5156 buggy sites. 

6.3.2.11. DEP—Dereference Erroneous Pointer 

In several instances, Frama-C produces the same, perfectly useful warning for classes of bugs 
that we distinguish. We used the names of the test cases to distinguish them and encode them 
into our comparison classes. 
Anomalies, Observations, and Interpretations: 
In 114 cases under CWE690, the manifest lists two flaws. As explained in Section 6.3.2.2, 
Frama-C warns about the first assignment when data are NULL, which is undefined behavior, 
then stops further analysis. We accommodated this by adding to the file of excused warnings. 
Results: 1204 buggy sites. 

6.3.2.12. DEP/ICP—Incorrect Pointer Arithmetic 

Anomalies, Observations, and Interpretations: 
Frama-C did not warn about cases of implementation-dependent code under CWE188. We 
skipped analysis of CWE188 test cases due to time constraints. 
Results: 34 buggy sites. 

6.3.2.13. PAR—Pointer Arithmetic 

Results: 36 buggy sites. 

6.3.2.14. INI—Initialization Fault 

Anomalies, Observations, and Interpretations: 
In 96 cases under CWE457, the manifest lists two flaws. After warning, Frama-C enters a “non-
terminating state” and stops further analysis, as explained in Section 6.3.2.2. We accommodated 
this in automated analysis by adding to the file of excused warnings. 
Results: 776 buggy sites. 

6.3.2.15. MAL—Memory Deallocation 

Results: 784 buggy sites. 
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6.3.2.16. Summary of Evaluation 

Warnings from Frama-C led us to discover 38 test cases with incorrect “good” code in CWE190 
(Section 6.3.2.3). 
Frama-C always warns about buggy sites but may warn about sites without bugs. 
In many instances, there are minor differences between the location of flaws given in the 
manifest and locations reported by Frama-C (Section 6.3.2.10). 
Frama-C lacks a sufficiently detailed model for the function gets(). The function gets() is 
inherently dangerous and should not be used anyway (Section 6.3.2.10). 
In the test cases of the 24 sets used from the Juliet 1.3 C test suite, we considered  
18 826 buggy sites for Frama-C. We processed a total of 42 056 Frama-C warnings. 
Frama-C with Eva satisfied the SATE VI Ockham Sound Analysis Criteria. 

 Observations and Conclusions 

6.4.1. New Errors Found in Juliet 1.3 and its Manifest 

While evaluating Frama-C, Astrée, and another tool, we found several previously unknown 
systematic problems in Juliet 1.3 and thousands of problems in its manifest of known errors. For 
a summary, see the full report. 

6.4.2. Weakness Classes 

Although the SATE VI Ockham Sound Analysis Criteria used the term “weakness classes”, no 
classes are specified. For evaluation we defined our own classes, see Section 6.2.4. We tried to 
be clear and logical in our choice of classes, but they still did not always correspond well to the 
warnings that the tools used. 
It may have been easier to evaluate the warnings as produced by the tools. 
Without understanding the exact definition of the class of weakness the tool was considering, we 
could not decide whether a known bug corresponded to a tool warning: perhaps there was just a 
difference in choice of which line number to report. If the tool was intended to report that class, 
then a missing warning indicated an error. If the tool in actuality is not considering a particular 
class of warning, such as integer overflow of types smaller than int, then a known bug should be 
ignored. 
In retrospect, there is little need to have DEP/Incorrectly Computed faults as a separate class. It 
has less than 5 % of all DEP cases. 

6.4.3. Summary 

We processed a total of 78 372 warnings over 29 sets from the Juliet 1.3 C test suite. 
Both Astrée and Frama-C with Eva satisfied the SATE VI Ockham Sound Analysis Criteria. 
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 Workshop Outcome 

On September 19, 2019, we welcomed participating tool makers, tool users, and security 
researchers to the SATE VI Workshop [45]. While the organizers presented initial results, tool 
makers shared their experiences in participating in SATE. 
Several tool makers noted that they used SATE feedback to improve their tools. There was a 
general agreement for doing SATE VII in the future. 
Tool makers found several errors in the SATE test cases. For example, Andre Maroneze and 
Julien Signoles reported finding unintentional weaknesses in the Juliet test suite. Some tool 
makers also noted that tool outputs may not always map to expected tool outputs, e.g., due to 
differences in how sinks and sources are defined. 
Eric Schulte presented the Bug Injector, which was used in SATE VI. In particular, he described 
the injection methodology, bug templates, and evaluation results from [29]. 
Workshop participants supported using bug injection for SATE VII, but with a few conditions. 
First, the types of injected bugs should be prioritized based on community input. Second, we 
must be careful about introducing test case bias and favoring some tools. Finally, the base 
program needs to be analyzed prior to bug injection. 
Paul Anderson noted that the bugs injected in SQLite were based on just five different scions and 
recommended using more varied bugs in the future. He emphasized the importance of tool 
customization and stated that small examples of real programs are far better than micro tests. 
Paul Anderson also suggested varying the application domain of the test cases, for example, 
using an embedded application. 
Igor Matlin stated that SQLite and DSpace have the optimal size for SATE, considering the 
limited resources. He observed that tools need to be customized and also expressed hope that 
SATE can automate matching tool outputs to expected outputs.  
It was proposed to choose a popular project on GitHub and analyze its history to mine for CVEs. 
This is like our use of CVE-selected test cases in previous SATEs.  Some participants proposed 
using publicly available bug collections such as BugZoo [46] and ManyBugs [47]. 
Workshop participants thought that the choice of programming languages for SATE should 
depend on the language popularity, number of static analysis tools for the language, and other 
parameters. Matt Rhodes noted that these parameters are fluid, as the Internet of Things may 
change the language relevance. 
Most workshop participants supported the introduction of JavaScript test cases in the next SATE, 
although some participants noted that additional languages can be too much of a burden for the 
organizers. 
Inclusion of other types of tools in SATE was opposed by most participants to avoid diluting the 
effort. 
All tool makers present at the workshop said that their tools either already supported SARIF [44] 
or will support it soon. Accordingly, it was agreed that SATE VII should use SARIF only. 
A process consisting of two rounds was proposed for SATE VII. In the first round, to iron out 
any issues with the test cases, run the tools out of the box, that is, without customization. In the 
second round, run the tools with customization, for best results.  
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Matt Rhodes stated that there is a potential synergy between sound and unsound tools. Sound 
tool can clean up unsound tool output, e.g., by reducing false positives. Unsound tool can add 
details to sound tool findings, e.g., by corroborating exploitability. Matt Rhodes also emphasized 
that static analysis does not eliminate the need for software testing. 
The workshop information and presentations are available in [45]. 

 Conclusion 

In SATE VI, we used existing and injected bugs to measure tool effectiveness (Sec. 2). Existing 
bugs were mined out of bug tracker reports and the CVE/NVD database. To complement the 
limited number of bugs thus obtained, we injected additional bugs using a combination of 
automated tools and manual analysis. The bug injection process encountered many difficulties, 
such as bug shadowing (Sec. 2.3.2), bug tracing laboriousness (Sec. 2.3.3) or tooling 
complications leading to significant, but limited shortcomings (Sec. 5.2) and delays in running 
SATE VI and publishing this report. This undertaking taught us many lessons that will help 
better position ourselves for a potential SATE VII. 
The SATE VI results (Sec. 4 and 5) show considerable variability across tools, test cases, bug 
classes and bug complexity. Some tools did not support some of the bug classes at all. 
Overall, low code complexity was the prominent driver for tool success in identifying bugs. Test 
cases of the C Track were on average more complex than test cases of the Java Track, and indeed 
recall and discrimination rates were lower for the C Track than the Java Track. On the C Track, 
Wireshark had a much higher code complexity than SQLite. Recall and discrimination rate for 
buffer errors on Wireshark averaged 10 % and 7 %, respectively (Sec. 5.3.1.2), while on SQLite 
they averaged a higher 34 % and 25 %, respectively (Sec. 5.3.2). 
The same observation was made on individual bugs’ complexity throughout the report. Across 
all languages and code bases, tools found bugs with lower complexity more readily than bugs 
with higher complexity. Table 72 illustrates this effect on CGC. Code complexity remained the 
curse of static analysis. 
Calculation of tool warning overlap showed tool results ranging from highly correlated to highly 
independent. This metric is particularly useful when working with a set of tools. Common 
findings by independent tools can lead to increased confidence in their accuracy. Besides, using 
multiple tools can increase overall recall. 
Regardless of the test case, injected bugs were not found by tools at the same rate as existing 
bugs, implying that the quality of injected bugs needs to improve. Ideally, injected bugs should 
be indiscernible from existing ones. 
We encourage the reader to start with the concise summary of all results in Section 4, which 
includes references to Section 5 for further details. 
The Ockham Criteria track [16] is briefly discussed in Section 6. 
SATE VI showed that static analysis is a useful technique to find real security bugs in large code 
bases. Tools are not perfect, but the right set of tools, used properly, can help increase code 
quality and security. A potential user should test a tool or a set of tools on his own code base 
before using them in production. The metrics presented in SATE VI are suitable to assess tool 
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fitness for such a use case. For further gains, static analysis tools can also be complemented by 
other types of tools, such as dynamic analyzers (e.g., fuzzers).  

 Future Work 

SATE VI’s foray in the realm of bug injection taught us valuable lessons. The comparison 
between injected and existing bugs clearly showed a need to improve injected bug quality if the 
avenue is to be further pursued. Armed with this new wisdom, we may be able to improve our 
injection process to create better test cases for a potential SATE VII. 
The advent of large language models (LLM) could prove an interesting complement to bug 
injection.  LLMs can generate small, but more realistic programs than template-generated test 
suites like Juliet [15]. They can also generate functionally-identical alternatives of the same 
program, offering a promising way to explore code complexity variations in the context of static 
analysis tool evaluation. 
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