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ABSTRACT 
As a multi-staged digital manufacturing process, Additive 

manufacturing (AM) inherently benefits from data analytics 
(DA) decision-making opportunities. The abundance of data 
associated with the various observations and measurements 
taken throughout the design-to-product transformation creates 
ample opportunities for iterative, process improvements. To best 
formulate and address these opportunities, knowledge needs to 
be strategically and deliberately managed for efficient DA 
development. However, knowledge in AM is broad and 
comparatively sparse, making it difficult to create robust DA 
solutions. Also, existing methods for knowledge management in 
AM are often case-dependent. To address such challenges, this 
paper proposes a novel framework to manage case-independent 
knowledge for AM data analytics. The proposed framework 
consists of two phases: a knowledge-identification phase and a 
knowledge-representation phase. A knowledge architecture is 
defined to provide a reference for discovering knowledge that 
facilitates AM data analytics. In the knowledge identification 
phase, the architecture is used to facilitate the identification of 
actionable knowledge relevant to a specific DA use case. In the 
knowledge representation phase, ontologies are used for 
representing and linking that identified knowledge. A case study 
of application scenarios demonstrates how actionable 
knowledge is identified, represented, and managed by the 
framework. The framework enhances efficiency of AM data 
analytics development and enables knowledge sharing, 
understanding and reuse in AM data analytics activities.  
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1. INTRODUCTION 
Additive manufacturing is an advanced manufacturing 

technology process that builds parts by adding layers on top of 
each other based on the existing 3D CAD model [1]. With 
accompanying sensors and equipment, AM processes can 
generate a massive amount of big data with great volume, 
variety, and velocity [2]. Accordingly, several, data analytics 
(DA) technologies can be applied to AM big data to improve AM 
decision-making [3]. The outputs can provide new opportunities 
for optimizing and controlling AM processes based on that 
knowledge [4]. 

Knowledge is critical to improving the DA performance [5], 
and as such is an important source for understanding the AM 
domain and analyzing the data. Acquiring that data and creating 
and utilizing new knowledge from it requires various resources 
including human experts and specialized software. They are both 
time-consuming and based on [6] non-value-added activities.  
Therefore, it is critical to have the ability to acquire, represent, 
manage, and store the various types of AM knowledge.   

Knowledge in the AM domain is broad and complex, and 
managing such domain knowledge is a challenging task [7]. 
There is a lack of comprehensive and readily available 
knowledge for AM. These data-rich but knowledge-sparse 
features of AM, makes it more difficult to use that data to create 
and manage AM knowledge bases [9]. Although data analytics 
techniques have matured over time, there are only few published 
studies that concentrate on using them to develop AM 
knowledge bases [8]. Most of the existing studies address the 
knowledge needed for using DA to solve a specific, AM activity 
[9, 10]; but that knowledge cannot be applied to other AM 
activities. 

This is because AM lacks standard practices for 1) handling 
data, 2) creating common information structures from that data, 
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and 3) developing an AM knowledge base from that information 
[11]. Consequently, there are only a few, novel methods for 
deriving and managing the AM knowledge necessary to support 
specific, AM-related, data analytics tools. Even though AM data 
analytics opportunities with high importance and high feasibility 
are available [12], large knowledge gaps still exist on how to take 
advantage of them through DA development. Therefore, new 
methods are needed to effectively address these gaps and 
systematically manage the knowledge that is essential for using 
data analytics to improve AM process control. 

In this paper, we introduce a novel knowledge management 
framework for AM data analytics. This framework identifies 
knowledge from AM data analytics use cases and represents 
knowledge that is essential for AM data analytics. The 
framework consists of two sequential phases: knowledge 
identification and knowledge representation. For the knowledge 
identification stage, we define a knowledge architecture for AM 
data analytics. The knowledge architecture is used to identify the 
knowledge of a specific, AM, data-analytics use case. In the 
knowledge representation stage, we define knowledge models to 
represent and link knowledge identified through the knowledge 
architecture.  

Figure 1 shows a descriptive illustration of the knowledge 
management process, which is leveraged by our proposed 
framework. The figure shows how the framework is used in the 
knowledge management process for AM data analytics. In the 
process, knowledge from DA use cases are associated with the 
knowledge architecture. The knowledge outputs from each use 
case are represented using specific knowledge models. Finally, 
the knowledge representations of every use case are ‘combined’ 
to create a single knowledge representation – called “the global 
knowledge representation”. 

 
 

 
FIGURE 1: KNOWLEDGE MANAGEMENT PROCESS 

 
The remainder of the paper is as follows. Section 2 describes 

the background of our proposed, ontology-based, knowledge 
representation and management in AM, AM data analytics (DA) 
tools, and knowledge architectures for using those tools. Section 
3 introduces the proposed framework for knowledge 
management for AM data analytics. Section 4 demonstrates a 
case study of the proposed framework. Lastly, this paper is 
concluded with contributions and future work in Section 5. 

 

2. BACKGROUND 
 
2.1 Ontology in AM 
An ontology is a common way to represent knowledge. An 

ontology is a set of concepts and categories in a domain that 
possesses the properties and relations between them. Ontologies 
are used for sharing a common understanding of the structure 
and content of information and reusing domain knowledge [13]. 
Ontologies have been applied in knowledge representation and 
management for their advanced capabilities that include 
knowledge sharing, processing, reusing, capturing, and 
communicating [14]. Such ontologies provide 1) sophisticated 
knowledge for a better understanding of the domain and 2) new 
opportunities for discovering new knowledge [15].  

Ontologies have been used to create AM knowledge bases, 
and existing foundational ontologies such as basic formal 
ontology (BFO), common core ontology (CCO), and coordinated 
holistic alignment manufacturing process (CHAMP) are used for 
AM ontologies to increase the chances of reuse and integration 
with other ontologies [16]. Recently, ontologies have been used 
in AM applications for knowledge representation and 
management [17]. Related works have developed ontologies for 
representing and managing AM, process plans [18], AM process 
parameters [19], AM product lifecycle [19], and AM sensor data 
[20]. The most recent studies apply DA tools for developing 
ontology-based, knowledge representations. For instance, 
machine learning and knowledge graphs were used for 
constructing the design for AM (DfAM) ontology [21].  Also, 
ontologies are used for solving a specific DA task. In [9,10], the 
authors proposed DA-related knowledge management methods 
for solving specific AM activities. As of now, ontology-based 
representations for DA opportunities in AM have been generally 
limited to collaborative knowledge management [12].  

 
2.2 Data analytics in AM 

AM DA tools are used to optimize and control the AM 
design-to-product transformation process [11]. Advanced DA 
tools such as artificial intelligence (AI) use AM big data as an 
input to provide actionable knowledge [12]. Those DA tools are 
used throughout the entire AM product lifecycle. For example, 
they are used to make design feature recommendations, material 
predictions, build-time predictions, cost estimations, topology 
optimization, shape deviation predictions and AM powder 
classifications [11]. Using ontologies to represent knowledge 
enhances repeatability, fidelity, and functional integrity in 
developing and providing guidance for how to use AM data 
analytics [21].  

Despite the continuing growth of applied DA in AM 
activities, there has been limited work on defining a common 
knowledge structure for implementing DA in AM. Additionally, 
according to [11], the knowledge that is created and used for 
implementing a specific DA tool is not well-managed. Managing 
the knowledge of AM data analytics use cases will lead to 
knowledge sharing, understanding and reuse in the process of 
developing AM data analytics. 
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2.3 Knowledge architecture for AM data analytics 
A knowledge architecture for AM analytics is presented to 

support our proposed framework. The architecture is a schematic 
diagram of the knowledge that is required for developing a 
specific AM DA use case. The architecture is used to identify the 
knowledge needed for each such use case. The knowledge 
architecture, which is shown in Figure 3, is derived from the DA 
implementation process shown in Figure 2 (A). Figure 2 involves 
two processes: implementing a DA use case and identifying 
knowledge generated from that DA use case. 

DA use cases are implemented in sequential steps, as shown 
in Figure 2 (A): domain understanding, data understanding, data 
preparation, DA development, and DA use case transition. The 
knowledge for developing DA is identified in the opposite 
direction to implementing DA use cases. Figure 2 (B) shows that 
knowledge for developing DA is identified in the order of use 
case knowledge, DA knowledge, data knowledge, and domain 
knowledge.  

 
 

 
FIGURE 2: (A) DA IMPLEMENTATION PROCESS, (B) 
KNOWLEDGE IDENTIFICATION PROCESS 

Use case knowledge can be identified by referring to the 
transitioned DA use case. DA knowledge is determined by the 
DA model created for the use case. Data knowledge is specified 
according to the data used for the DA model. Domain knowledge 
is identified by investigating how the data was transformed with 
the domain knowledge. 

According to the process of knowledge identification, the 
knowledge architecture for AM data analytics is shown in Figure 
3. The knowledge architecture describes key knowledge 
components that are required for implementing DA use cases in 
each step of knowledge identification. The knowledge 
architecture consists of use case knowledge, DA knowledge, 
data knowledge and domain knowledge.  

 

 
FIGURE 3: KNOWLEDGE ARCHITECTURE FOR AM DATA 
ANALYTICS 

Use case knowledge describes the content of a use case by 
defining the AM problem that needs to be solved using DA, 
including the context, domain, and data associated with that use 
case. Context includes the goal, activity, DA task, and constraint 
components. Domain describes business, process, and 
production perspective of the use case. Data, which indicates the 
raw data, includes data source and description.  

DA knowledge describes the functional components of the 
DA model, including the input, output, method, and performance 
index of the DA model applied in the use case. Data knowledge 
expresses knowledge needed to make the input data of the DA 
model, including data source, data description, and data 
preparation. The data source is explained with 4M+1E, 
indicating Man, Machine, Material, Method, and Environment 
[23]. The description is the meta information component that 
explains descriptive and technical contents of given data and the 
characteristic component that describes distinctive factors of the 
data. Domain knowledge helps understand the given data with 
observations, hypotheses, and rules explaining the data content 
from a domain perspective.  
 
3. OUR PROPOSED FRAMEWORK 

Our proposed framework uses multiple AM data analytics 
examples, so-called use cases, to identify the appropriate 
knowledge and to represent that identified knowledge for 
knowledge management. The framework consists of two phases: 
knowledge identification and knowledge representation. 

 

 
FIGURE 4: OVERVIEW OF KNOWLEDGE MANAGEMENT 

Figure 4 shows an overview of our proposed framework. In 
phase 1, knowledge needed for developing DA is identified from 
DA use cases. The knowledge providers discover that knowledge 
based on the existing knowledge architecture. Knowledge 
architecture provided in Section 2.3 is used as a form to give 
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directions to capture knowledge. In phase 2, the knowledge 
needed for developing DA is represented by developing 
knowledge models to the identified knowledge using an 
ontology. Here, ontology is used as a tool for creating knowledge 
models to represent knowledge. Details of each phase are 
explained below. 

 
3.1 Phase 1 - Knowledge identification in AM data 
analytics 

In the knowledge identification phase, knowledge providers 
discover knowledge from a use case (see Figure 2 (B)). First, use 
case knowledge is identified with its “context”, “domain” and 
“data”. “Context” is defined with a specific “DA task” with one 
or more “constraints”, an “activity” supported by the DA task, 
and a “goal” of the activity. “Domain” is defined with a specific 
“business” area, “process” refers to the stage of the lifecycle, and 
“production” of the final product. “Data” indicates raw data that 
is used in the use case, described with the “source” of raw data 
and “description” of raw data.  

Starting from the “DA task” in the “context” of use case 
knowledge, DA task knowledge is discovered with its “input”, 
“method”, “output” and, “performance index”. “Input” describes 
the transformed data that is used as an input for the “method” of 
developing the “DA task”. “Method” is a specific algorithm for 
modeling the “DA task”. “Output” is the resulting model of the 
“method” and “performance index” is a measurement tool for 
assessing the performance of the “method”. 

To understand the “input” of a “DA task” for DA 
knowledge, data knowledge is discovered with “source”, 
“description” and “preparation”. “Source” of data includes each 
situation of “man”, “machine”, “method”, and “environment”, 
when data is collected. “Description” describes the data with 
“meta information” and “characteristic”. “Meta information” 
consists of a “descriptive” part that illustrates the data and a 
“technical” part that explains specifications of the data from a 
data engineering perspective. “Characteristic” identifies 
distinctive properties of data that are used as a reference for data 
handling. “Preparation” describes the sequential steps of 
creating the final transformed data that is used for developing 
DA. 

Domain knowledge is identified to understand the 
references for “preparation” of data knowledge. Domain 
knowledge is identified with “observations”, “hypotheses”, and 
“rules”. “Observations” are defined with experience, facts, or 
measurement of the target domain. “Hypotheses” are assumed 
with tentative statements referring to “observations”. “Rules” 
that are used as a reference for data preparation are determined 
using “observations” and “hypotheses”. 
 
3.2 Phase 2 - Knowledge representation in AM data 
analytics 

Knowledge representations are developed for identified 
knowledge, in our case using an ontology, as shown in Figure 5. 
Four types of knowledge models can be developed: 1) a use case 
knowledge model, 2) a DA knowledge model, 3) a data 
knowledge model, and 4) a domain knowledge model. These 

four models link the four individual representations to one 
knowledge representation. 

 

 
FIGURE 5: KNOWLEDGE REPRESENTATION OF A USE CASE 

Ontology-based knowledge models represent knowledge 
with classes and properties. Classes describe sets or individual 
components of knowledge, and properties represent relations or 
attributes between classes. Figure 6 shows properties between 
high-level classes, for example, “Domain knowledge influences 
data knowledge.” and “Data knowledge is used for DA 
knowledge.”. As shown in Figure 6, individual knowledge 
representations are linked to one knowledge representation by 
properties. Domain knowledge “influences” data knowledge, 
and data knowledge “is used for” DA knowledge. DA 
knowledge, domain knowledge, and data knowledge “explain” 
use case knowledge. 

 

 
FIGURE 6: KNOWLEDGE REPRESENTATION USING 
ONTOLOGY-BASED KNOWLEDGE MODEL 

Knowledge representation has classes according to the 
knowledge architecture and these classes are linked with the 
property “has component”.  Each knowledge model defines 
properties between classes to establish a scope of knowledge. 
For example, the use case knowledge model defines properties 
between classes of use case knowledge components. Details of 
the knowledge models are described in Table 1.  
 
TABLE 1: DETAILS OF THE KNOWLEDGE MODELS 

Knowledge 
Model 

Subject Class Information Property 
Object Class 
Information 

Parent Subject Parent Subject 

Use case 

Context Constraint Restricts Context Task 
Context Task Supports Context Activity 
Context Activity Aims Context Goal 
DA 
Knowledge Output Explains Context Task 
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- Domain 
Knowledge Explains Domain Business 

- Domain 
Knowledge Explains Domain Process 

- Domain 
Knowledge Explains Domain Production 

Data Raw data Collected 
from Data Source 

- Data 
Knowledge Explains Data Raw data 

- Data 
Knowledge Explains Data Source 

DA 

DA 
Knowledge Input Is used for DA 

Knowledge Method 

DA 
Knowledge 

Performance 
Index Measures DA 

Knowledge Method 

DA 
Knowledge Method Results DA 

Knowledge Output 

DA 
Knowledge Output Explains Use case 

Knowledge Task 

- Data 
Knowledge Is used for DA 

Knowledge Input 

Data 

Description Characteristic Influences Data 
Knowledge Preparation 

Meta 
Information Technical Influences Data 

Knowledge Preparation 

- Domain 
Knowledge Influences Data 

Knowledge Preparation 

Domain 

Domain 
Knowledge Observations Defines Domain 

Knowledge Hypotheses 

Domain 
Knowledge Hypotheses Defines Domain 

Knowledge Rules 

Domain 
Knowledge Observations Influences Data 

Knowledge Preparation 

Domain 
Knowledge Hypotheses Influences Data 

Knowledge Preparation 

Domain 
Knowledge Rules Influences Data 

Knowledge Preparation 

 
For example, DA knowledge is represented as shown in 

Figure 7. “DA knowledge” has “input”, “output”, “method” and 
“performance index” components with the “has components” 
property. “Data knowledge” is linked with “input” by “is used 
for” property, that represents the details of input data. “Input” 
has “is used for” property for “method”, that shows the input data 
is used for the DA method. “Method” is linked with 
“performance index” by the “measures” property, representing 
how the DA method is evaluated. Also, “method” is linked with 
“output” by the “results” property, explaining the DA model 
which is developed with the method. Lastly, “output” is linked 
with “task” class of “use case knowledge” using the “explains” 
property, representing the DA model implies the DA task. 

 
 

 
FIGURE 7: DA KNOWLEDGE REPRESENTATION  

 

Figure 8 visualizes the overall knowledge representation via 
the VOWL package in protégé, which is an ontology tool [23]. 
The red box indicates the use case knowledge representation, the 
blue box indicates the DA knowledge representation, the orange 
box indicates the data knowledge representation, and the green 
box indicates the domain knowledge representation. Figure 8 
shows how those four, different, knowledge representations can 
be linked to one knowledge representation by using those 
knowledge models. 

 

 
FIGURE 8: VISUALIZATION OF THE OVERALL KNOWLEDGE 
REPRESENTATION 

4. CASE STUDY 
In this section, the proposed framework is illustrated using 

“melt pool size classification” [24], as the target use case. Here, 
the input knowledge needed for the selected DA is identified 
from the target use case, using the knowledge architecture 
(Figure 3). Also, that knowledge is representated with ontology-
based knowledge models. 

In the knowledge identification process, each component of 
the knowledge architecture is discovered. Basically, this process 
starts with use case knowledge and goes through DA knowledge, 
data knowledge, and domain knowledge. First, use case 
knowledge is identified based on use case knowledge 
components, for example, “context” of the target use case is 
identified as “melt pool size classification” task with “real-time” 
constraints that supports “process control” activity to “improve 
part quality” goal.  

To specify the “task” component of use case knowledge, DA 
knowledge is identified based on those same DA knowledge 
components. For example, “melt pool size classification” task is 
a “classification model” developed by applying “CNN” method 
with “melt pool image, image label” as an input.  

To understand what the “input” component corresponds to, 
data knowledge is identified based on data knowledge 
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components, for example, “melt pool image data” has technical 
meta information as “type = image, size = 128*120 pixels, count 
= 2763”.  

Finally, the “preparation” component of data knowledge is 
explained by identifying domain knowledge based on their 
related components. For example, a rule “normal label area 
range = 0.11 ~ 0.014” is based on a hypothesis “normal label 
can be defined based on average hatch distance”. Table 2 shows 
the representative output of knowledge identification on the 
target use case.  
 
TABLE 2: KNOWLEDGE IDENTIFICATION OF THE TARGET 
USE CASE 

Knowledge Architecture Knowledge 

Use case 

Context – Goal Improve part quality 
Context – Task Melt pool size classification 
Context – Activity Process control 
Context – Constraint Real-time 
Domain AM, LPBF, In-situ monitoring 
Data AMMT, Melt pool image 

DA 

Input melt pool image, image label data 
Output Classification Model 
Method CNN 

Performance Index • Accuracy = 91% 
• Reaction time = 0.34 ms/images 

Data 

Source 

• Machine: AMMT system, Galvo 
mirror system, beam splitter, 
high-speed camera triggered at 
every 500ms integration time of 
20ms, heating laser, laser power P 
= 195W, scan speed = 800mm/s 

• Method: serpentine scan strategy, 
FGA at 100 KHz 

• Material: Inconel 625 powder, 
build plate, substrate dimension 
102mm*102mm*12mm, part 
shape is a rectangle with 
chamfered corners with 
dimension 10mm*10mm*5mm 

Description – 
Meta Information – 
Descriptive 

Image captured from laser melting 
powder fusion build 

Description – 
Meta Information – 
Technical 

• Type: image 
• Size: 128*120 pixels 
• Count: 2763 

Description – 
Characteristic 

• The grayscale of the image is 
from 0 to 255 

• Higher melt pool intensity 
correlates to a larger grayscale 
value 

Preparation 

• Boundary detection 
• Image labeling  
• Resizing to 32*30 for 

computational efficiency 

Domain 

Observation 

• Melt pool has irregular shapes 
• Difficult measuring geometry 
• Melt-pool geometry has width, 

length, deflection angles, tails, 
outline 

• The boundary of a melt pool 
highlights the melt pool phase 
change frontier 

Hypotheses 

• Melt-pool boundary is 
approximated with regular ellipse 
shape using least square fitting  

• Melt-pool in same class can have 
different characteristics 

• Boundary can be defined based on 
manual sketched boundary 

• Normal label can be defined 
based on average hatch distance 

Rules 

• Melt pool width: 2*minor radius 
• Melt pool length: 2*major radius 
• Melt poo area: area of the 

approximated ellipse 
• Normal label area range: 

0.011mm2 to 0.014 mm2 
Boundary threshold: 150 

 
In the knowledge representation process, identified 

knowledge of the target case is represented in classes, 
individuals, and properties using ontology-based knowledge 
models. This process begins with applying an existing, use case 
knowledge model to the newly identified use case knowledge. 
For examples, the “context” class consists of the “goal” class 
with an “improve part quality” individual; the “activity” class 
with a “process control” individual; the the “task” class with a 
“melt pool size classification” individual, and the “constraint” 
class with a “real-time” individual.  

The DA knowledge is represented by applying an existing 
DA knowledge model to the identified DA knowledge. For 
example, the “method” class with a “CNN” individual and the 
“output” class with a “classification model” individual are both 
linked with the “results” property. Also, use case knowledge 
representation and DA knowledge representation are connected 
by linking the “output” class with a “classification model” 
individual and the “task” class with a “melt pool size 
classification” with the “explains” property.  

The data knowledge model represents identified data 
knowledge, such as, the “preparation” class with “boundary 
detection” and “image labeling” individual. Moreover, the data 
knowledge model links data knowledge representation with both 
the use case knowledge representation and the DA knowledge 
representation. The “data” class in use case knowledge 
representation is linked with the “data knowledge” class by the 
“explains” property. DA knowledge representation and data 
knowledge representation are connected by linking the “data 
knowledge” class and the “input” class with “is used for” 
property.  

Lastly, domain knowledge representation is implemented 
using the domain knowledge model, such as, the “observations” 
class with a “melt pool has boundary” individual. The domain 
knowledge model connects domain knowledge representation 
with use case knowledge representation and data representation. 
The “domain” class in use case knowledge representation is 
linked with the “domain knowledge” class with “explains” 
property and individuals of “preparation” class in data 
knowledge representation are linked with individuals in “domain 
knowledge” with “influences” property. 

Figure 9 shows a portion of the knowledge representation of 
the target use case. Three application scenarios of the knowledge 
representation can be illustrated in the figure. First, we can 
understand the data preparation flow of the target use case. When 
we say 𝐷! in the figure, it means raw data; and we say 𝐷" in 
the figure, it means transformed data. We can discover how raw 
data gets transformed using our proposed, knowledge 
representation approach. Melt pool image data 𝐷!  is 
transformed to 𝐷"!  and 𝐷""  according to domain knowledge 
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and data knowledge. In the process of generating 𝐷"!, domain 
knowledge is used for data preparation.  

Domain knowledge explains the observation that melt pool 
has a boundary, and that observation defines two hypotheses that 
1) the boundary is measured with least square fitting and 2) 
normal size is based on average hatch distance. The hypotheses 
then define two rules for data preparation: 1) computation 
function that measures area within the boundary and 2) the range 
of the normal, boundary-area size. Defined rules in domain 
knowledge are used for two, data preparation activities to 
generate 𝐷"!: 1) boundary detection and 2) image labeling. In 
the process of generating 𝐷"", data knowledge is used for data 
preparation. Technical meta information, size of 𝐷!, influences 
𝐷! to be resized to 𝐷"". Second, we can understand the overall 
DA description of the target use case. DA uses two transformed 
data 𝐷"! and 𝐷"" as inputs for training the CNN to develop a 
classification model. Also, we can see that the performance of 
the classification model is evaluated with accuracy and reaction 
time. Lastly, use case context can be described as a real-time melt 
pool classification task that supports process control to improve 
part quality. 

The case study identified and represented knowledge to 
manage knowledge for developing the target use case “melt pool 
size classification”. It is meaningful that we can manage 
actionable knowledge for DA through knowledge identification 
and knowledge representation. However, the case study did not 
link the representations of individual, use cases to implement 
global knowledge representation, and this is left for our future 
work. Also, evaluation method for validating the proposed 
framework should be considered in the future work. 
 
 

5. CONCLUSION 
In this paper, we proposed a novel knowledge management 

framework for AM data analytics. The proposed framework 
identifies knowledge using the knowledge architecture and 
represents knowledge with ontology-based knowledge models. 
In the case study, knowledge identification and knowledge 
representation were demonstrated with the target use case. Also, 
three application scenarios of the knowledge representation were 
illustrated to show that actionable knowledge for AM data 
analytics can be managed through the proposed framework.  

This work enables knowledge sharing, understanding, and 
reuse in activities related to AM data analytics. Also, the 
proposed framework provides actionable knowledge for AM 
data analytics that contributes to reduce time and effort in 
developing an AM data analytics solution. In the future, we will 
focus on linking knowledge representations of use cases to create 
a global knowledge representation and further formalize the 
proposed framework.   
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