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ABSTRACT: The industry standard for sorting plastic wastes is near-infrared
(NIR) spectroscopy, which offers rapid and nondestructive identification of
various plastics. However, NIR does not provide insights into the chain
composition, conformation, and topology of polyolefins. Molar mass, branching
distribution, thermal properties, and comonomer content are important variables
that affect final recyclate properties and compatibility with virgin resins.
Heterogeneous mixtures arise through sorting errors, multicomponent materials,
or limits on differentiation of polyolefin subclasses leading to poor thermal and
mechanical properties. Classic polymer measurement methods can quantify
physical properties, which would enable better sorting; however, they are generally too slow for application in commercial recycling
facilities. Herein, we leverage the limited chemistry of polyolefins and correlate the structural information from slower measurement
methods to NIR spectra through machine learning models. We discuss the success of NIR-property correlations to delineate between
polyolefins based on topology.

■ INTRODUCTION
Polyolefins (PO) are a vital, structurally complex family of
commodity plastics that have both a high global demand and a
high potential for recyclability due to their chemical stability
and ability to be reprocessed.1−4 Despite this fact, the recycling
rates of postconsumer and postindustrial materials, as well as
the utilization rates of recycled PO resins remain low
compared to other recycled products like aluminum cans and
glass bottles.2,5,6 As of 2022, approximately 42% of U.S.
polymer consumption is POs, yet less than 10% of those
materials are recycled effectively.2 If consumer waste could be
properly recycled and reclaimed into a circular economy, there
is an estimated economic benefit of as much as 1 trillion USD
per year.7 Unfortunately, there are significant scientific,
practical, and societal barriers to PO recycling. One such
barrier is the limitation of current sorting technologies at
materials recovery facilities (MRFs) and secondary recyclers
(SRs). Typically, recycled plastics are sorted at MRFs
following the ASTM International Resin Identification Coding
System (RIS), specifically D7611M-21,8 using a variety of
manual and automatic sortation schemes. SRs then purchase
these materials by the bale to reprocess and sell as
postconsumer resin (PCR). While ASTM D7611M-21
classifies resins with some granularity according to the
chemical composition and material density, it cannot address
the myriad of architectural variations present in POs. PO
variations are extensive and enable many unique product
designs including rigid containers, blown films, layered
packaging, impact-resistant materials, and many others.2,9

This useful variability, however, complicates the production

of reliable PCR, necessitating careful sorting by either MRFs or
SRs.
Despite being chemically “similar”, sorting polyethylenes

(PE) and polypropylenes (PP) at recovery facilities is
important as these materials are largely incompatible and
cannot be easily mixed.10,11 When they are mixed, they result
in significantly degraded properties.1,11,12 Surprisingly, even
many of the subclasses of PE can be incompatible with each
other, depending on their topological variation, composition of
the blend, and molar mass. For example, the variation between
high-density polyethylene (HDPE) and low-density poly-
ethylene (LDPE) can prevent the two materials from fully
mixing, resulting in significant defects or compromised
mechanical properties for recycled parts.13

Furthermore, challenges in PO circularity overlap with
classic polymer measurement challenges because the multitude
of PO products is made possible through control of
interdependent structure−property relationships (e.g., chem-
ical composition, chain topology, crystallization). The breadth
of material properties resulting from large varieties and
distributions of chain topologies are not well described using
broad terms for POs such as PP, HDPE, LDPE, and linear low-
density polyethylene (LLDPE) as demonstrated by the range
of values present in Table 1. These subclasses differ in
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branching concentration and length which arise from various
polymerization mechanisms, comonomers, catalysts, reactor
and process conditions that favor different isomers during
synthesis.13−18 Generally, the distinction between high-, low-,
and linear low-density PE is specified by their density, as
outlined in ASTM D883−22,19 and are graded as such for
appropriate processing and mechanical properties.17 HDPE
polymers have long ethylene backbone chains with minimal
branching defects.20,21 LDPE branching content consists of
both short-chain branches (SCB) and long-chain branches
(LCB), and the long-chain branches themselves can have
differing topologies depending on the polymerization method
used.15,16 SCB are often generally defined as side chains ≤6
carbons off the main chain, and are often reported as methyls
per 1000 carbons (CH3/1000 C).

15,18,20,22 LCB are generally
defined as side chains that are greater than their entanglement
molecular weight.17 These inter- and intrachain defects lower
the crystallinity and density in PE polymers. LLDPE polymers
have higher fractions of SCB and no significant LCB. Despite
the branching differences, LLDPE polymers usually have
similar or lower density to LDPE. Additionally, mid- or
medium-density PE (MDPE) has been used by some vendors
to describe PE with densities and branching content
somewhere between those of HDPE and LDPE. PP carries a
methyl (−CH3) pendant group in the repeat unit leading to
roughly one methyl pendant per monomer unit, depending on
ethylene comonomer content. The degree of ethylene addition
to commercial PP is usually between (1 and 7) % by mass.22

Despite this addition of ethylene, these polymers are still
commercially labeled as PP homopolymers.22 Larger fractions
of ethylene comonomer can be included in random
copolymers. Higher ethylene content ((5 to 15) % by mass)
is present in PE/PP impact copolymers (PP-co-PE), which, as
their name implies, have excellent impact strength even at low
temperatures.22

To adapt to these broad categories, MRFs and SRs rely on
multiple sorting techniques, including hand-sorting, density-
based sorting, and a combination of both optical and
spectroscopic methods.10,32 Near-infrared spectroscopy
(NIR) has become the industrial workhorse technique used
in recycling facilities to sort plastics. NIR can be rapidly
executed from a distance in reflection geometry and provide
enough rich chemical information, based on the vibrational
energies of the polymer chains, to separate by resin codes. NIR
can identify subtle structural differences between polymers
and, most notably, it is possible to separate PE and PP by
exploiting signal differences in the NIR.33−36 Distinguishing
PEs is a larger challenge, as a lower concentration of −CH3
chain ends from the SCB and main chain represents only a
small fraction of total chemical functionality and is not readily
observed in NIR spectra. In addition, colorants and other

additives provide extra sorting complications as they alter the
NIR signal by introducing new chemistries to the materials.
Black pigments in particular absorb a large fraction of the
incident light, limiting the observable signal.33,37

Further efforts to address challenges in plastics sorting have
begun through advances in NIR reflection technology, Raman
scattering, and hyperspectral imaging (HSI).36−39 Recently,
chemometrics has advanced the separation technology by resin
types in the laboratory, differentiating PE, PP, polystyrene
(PS), polyvinyl chloride (PVC), polyethylene terephthalate
(PET), and others using partial least-squares discriminant
analysis of NIR reflectance data.33 Despite these improvements
in supervised pattern recognition to classify the postconsumer
plastics, POs’ near-identical chemistries limit the success of
these techniques. Even hyperspectral imaging, an extremely
data-rich technique, struggles to distinguish the subtle shifts
between subclasses of PE.39 The use of multiple spectroscopic
methods, such as NIR or Fourier transform infrared (FTIR)
and Raman measurements, coupled with multivariate data
analysis has been shown to identify key properties such as
density and crystallinity in POs.38,40,41 FTIR/mid-IR (MIR)
can use peak ratios to provide a quantitative value for the
branching content, which can then be used to infer trends in
crystallinity and density.38,40,42−44 However, in their current
states, both Raman and MIR are impractical for independent
use in large-scale sorting operations.45 A combination of NIR
and factor analysis has demonstrated some ability to
distinguish between various classes of POs, including HDPE
and LDPE blends.41,46,47 Additionally, both Kim et al. and Sato
et al. have demonstrated that partial least-squares regression
(PLSR) of NIR spectra may be able to predict properties such
as densities, crystallinity, and melting points of PEs made by a
single manufacturer.41,47 However, in both papers, the authors
appear to use manufacturer-provided properties and assume
they remain constant despite thermal processing. Gosselin et
al. demonstrated that these are poor assumptions when they
characterized their melt-pressed films of LDPE, HDPE, and PP
with NIR, HSI, and differential scanning calorimetry (DSC).48

Gosselin’s work more robustly demonstrated that NIR can be
correlated to sample crystallinity by mapping crystallinity
across a film; however, they only had one polymer architecture
per polymer type.48

To enable additional advances in spectra-based character-
ization and sortation, including HSI, it is essential to form a
link between the spectra and physical properties.49 The subtle
changes in conformational isomers of POs yield substantial
property changes, which can be described and quantified using
robust analytical tools and connected to the observed NIR
signal. Specifically, density can be measured via the
Archimedes principle,50 crystallinity is commonly measured
using X-ray scattering or melt enthalpy from DSC,43,48,51,52 and
an appropriately configured high-temperature size exclusion
chromatography (HT-SEC) system can identify branching
content and molar mass distribution.42 While each of these
characterization techniques is impractical for characterization
at an MRF or even a secondary recycler, they can easily
characterize PO samples in a way that can be connected to the
NIR measurements for further analysis. By using physical
measurements to inform the spectral interpretations, it may be
possible to draw much more information from the spectra and
identify the physical characteristics of the polymer samples.
This would then enable the rapid quantification of polyolefin
isomers with property-specific categorizations to maintain the

Table 1. Polyolefin Variability from Literature Examples

class subclass
(SCB

a

or CH3)/
1000 C

LCB
a

/
1000 C refs

PE HDPE 0−15 0 20, 21, 23−26, this
work

PE LDPE 13−34 2−15 13−18, 23, 25−27
PE LLDPE ≤40 0 21, 25, 26, 28−30
PP 310−333 0−2 16, 22, 31
PP PP-co-PE 283−316 0−3 16, 22

a

denotes short chain branching (SCB) and long chain branching
(LCB), respectively.
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quality and control of PCR properties. Additionally, the
physical measurements can inform researchers using chemo-
metric and machine learning (ML) techniques by opening the
“blackbox” and providing insight into the learning algorithms.
In this work, we combine the chemometric and ML

techniques of functional principal component analysis
(fPCA) with the NIR spectra of a variety of well-characterized
POs sourced from polymer standards and commercial sources.
Using appropriate scattering corrections and data processing,
we demonstrate that NIR can not only distinguish between
POs such as PP and PE but also identify and predict various
degrees of bulk density, crystallinity, and SCB for PEs sourced
from multiple suppliers. To the authors’ knowledge, this is the
first time unsupervised dimensionality reduction has been used
to correlate NIR with properties of multiple polymer samples
across multiple suppliers. While this study serves as a proof of
principle, expansion of this work with a greater variety of
samples would enable more robust sorting of POs without
significant additional requirements for current MRFs and SRs,
and therefore increase the value of recycled materials to further
incentivize a circular economy. This work would be most
helpful to SRs where POs have already been roughly sorted
and the facilities are looking to maximize the purity of their
PCR.

■ MATERIALS AND METHODS
Samples. Seven POs, representing commercial plastic samples,

were used along with 9 PO samples from the Hawaii Pacific
University Polymer Kit 1.0.53 Additionally, National Institute of
Standards and Technology (NIST) PE Standard Reference Materials
(SRMⓇ) 1473, 1474, and 1476 were included. All samples came in the
pellet form. In total, this sample set has 5 HDPEs, 1 MDPE, 7 LDPEs,
2 LLDPEs, 2 PPs, and 2 PP-co-PEs. The type of each source is
identified based on classification from the commercial material
specification sheets. A summary of the samples and their sources is
provided in Table 2.54

NIR. NIR measurements were carried on a Nicolet iS50 NIR
module, Thermo Fischer Scientific (Waltham, MA), at 4 cm−1

resolution and an accumulation of 32 scans with an integrating
sphere and an indium gallium arsenide (InGaAs) detector.54 Internal
background and dark corrections were applied to the measurements.
Pellets were used as received and filled at least halfway in a 20 mL
VWR borosilicate glass scintillation vial (approximately (1 to 2) g) as
a representative aliquot of the sample resin. Each sample was
measured 6 times, where the vial was shaken between scans in an
attempt to redistribute the pellets in the vial and account for local
composition variations. The vial was then placed flat on the NIR
module centered with the beam path. Additionally, changes in sample
vials and vial lids were confirmed not to alter the NIR signal
significantly.
HT-SEC. High-temperature size exclusion chromatography (HT-

SEC) was performed using a Polymer Char GPC-IR instrument with
an IR4 detector, a Wyatt Technology Dawn Helios II multiangle light
scattering detector (18 angles), and a four-capillary differential
viscometer, as well as a Tosoh HT-EcoSEC instrument with

differential refractive index (RI) detection.54 Samples were dissolved
at concentrations between 1 and 2 mg/mL for 60 min at 160 °C with
gentle agitation. Separations were conducted at 160 °C using 1,2,4-
trichlorobenzene as the eluent, with 300 mg/kg Irganox 1010 added
as an antioxidant to the solvent reservoir. 5 μL of dodecane was added
to each vial as a flow rate marker. The stationary phase for both
systems was a set of 3 Tosoh HT columns (2 Tosoh TSK gel
GMHHR-H(20) HT2, 13 μm mixed bed, 7.8 mm ID × 30 cm
columns, and 1 Tosoh TSK gel GMHHR-H(20) HT2, 20 μm, 7.8 mm
ID × 30 cm column with an exclusion limit ≈4 × 108 g/mol). For the
Tosoh instrument, narrow dispersity PE standards were used for
calibration. For the Polymer Char instrument, narrow dispersity
polystyrene standards were used for column calibration. NIST SRMⓇ

1475A (linear, broad, HDPE) was used as a linear standard for the
viscometer and multiangle light scattering (MALS) detector and to
calibrate the voltage response of each. NIST SRMⓇ 1478 was used to
calibrate the interdetector delay and normalize the photodiode
response of the MALS detector. Composition standards consisting of
6, α-olefin copolymer LLDPE standards (poly(ethylene-stat-1-
octene), (2.6 to 45.3) CH3/1000 C) from Polymer Char were used
to calibrate the IR response from the methyl and alkyl absorption
bands. A second calibration curve to calibrate the IR was constructed
out of blends of PE and PP, where the total areas of the IR responses
were plotted against the average SCB content, which was confirmed
offline by Nuclear Magnetic Resonance via the manufacturer. While
LDPE identification was based on assignment from the manufacturer
and long-chain branch content and frequency were not further
interrogated in this work, overall LCB content was measured for all
polymers, and LDPE LCB content was nominally less than 2 LCB/
1000 total carbons for all LDPE samples. Calibration and data
analyses were performed with proprietary software from each
instrument vendor. Data processing for the HT-SEC data was
conducted using a linear Berry formalism to fit the light scattering
data for molar mass determinations, and the dn/dc for all HT-SEC
data was fixed at −0.107 mL/g. All injections were done twice, and
the reported error on all measurements is one standard deviation of
the mean.
Differential Scanning Calorimetry (DSC). Crystallinity meas-

urements were carried out on a TA Instruments 2500 differential
scanning calorimeter with a heating rate of 10 °C/min in hermetic
aluminum pans under a 50 mL/min nitrogen flow. Percent
crystallinity was evaluated using the enthalpy of melting ΔHm from
the first heating cycle and using the heat of fusion (ΔHm0 ) of 293.6 J/g
for PE and 207.1 J/g for PP samples.55 The crystallinity, Xc, was
calculated via Xc = ΔHm/ΔHm0 .
Density. While general density ranges for POs are provided in

Table 3, actual density measurements were taken for pellet samples

using a Mettler Toledo density kit for MS-104S balance, based on
ASTM Standard D792−20.56 Polymer pellet samples were weighed in
air and 2-propanol to determine density. Measurements were carried
out twice using different pellets, and the mean density and standard
error of the mean are reported for each sample.
Data Analysis and Machine Learning Models. Data analysis

was performed using Python (3.10.8), and example code can be found

Table 2. Summary of the Sample Sources Used in This
Study

source HDPE MDPE LDPE LLDPE PP PP-co-PE

commercial polymers 2 0 2 0 1 2
Hawaii Pacific
University Polymer
Kit 1.0

2 1 3 2 1 0

NIST 1 0 2 0 0 0 Table 3. Classification of High-Density (HDPE), Medium-
Density (MDPE), Low-Density (LDPE), Linear Low-
Density Polyethylenes (LLDPE), and Polypropylene (PP)
with Approximate Bulk Density Ranges

polyolefin classification density (g·cm−3)

HDPE 0.941−0.9674

MDPEa 0.926−0.94019,52

LDPEa 0.910−0.9404

LLDPE 0.910−0.9254,19

PP 0.90219

aUsually produced commercially by free radical polymerization.
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on GitHub repository (usnistgov/nir_corr_po).57 Prior to the
application of any ML technique, the NIR data was organized such
that each wavenumber represented a single factor or column and each
sample replicate represented a row. As discussed in the Near Infrared
Spectroscopy Section, different preprocessing methods are consid-
ered. After preprocessing, the intensities for each wavenumber were
standardized (Scikit-learn, 0.24.2) to reflect the variation between
samples rather than their absolute values. The scaled data was then
reduced by functional principal component analysis (scikit-fda, 0.7.1),
using the default parameters. Linear regression quantified the
correlation and goodness of fit between the first 4 functional principal
components (fPCs) and the density, crystallinity, and SCB. Sliced
inverse regression (sliced 0.7.0) modeled density, crystallinity, and
SCB content as a linear function of the first 3 fPCs (≥98% variance).
This enables prediction of the polymer characteristics using NIR if
new data is preprocessed through the same analysis pipeline.

■ RESULTS AND DISCUSSION
Near Infrared Spectroscopy. NIR measurements of

various PO samples constructed a database of 114 NIR
measurements across 19 PO samples. Representative NIR
spectra for various subclasses of PE (HDPE, MDPE, LDPE,

LLDPE) and PP (PP, PP-co-PE) are shown in Figure 1A in the
(4000 to 12,000) cm−1 range. The NIR spectra for PE classes
have tremendous resemblance owing to nearly identical
chemistry and only topological differences. However, Figure
1A shows that PP spectra are clearly distinguishable even prior
to any application of a statistical method (see ranges (11,000
to 10,000) cm−1 and (7000 to 6000) cm−1). Despite this,
further differences between the PE subclasses remain difficult
to reliably identify. Some of this difficulty stems from bulk
morphology differences between nearly identical polymers,
which contribute to deceptive changes in scattered signal
intensities.
NIR measurements are especially susceptible to increased

scattering due to the shorter wavelengths used in the
measurement. While crystallinity and density affect scattering
to some extent, sample geometry (film, pellet, powder) has a
much greater effect on the NIR signal.58 To account for this,
initial preprocessing steps must be used to minimize bulk
scattering effects while emphasizing chemical differences. The
most common method for removing bulk scattering is the
multiplicative scattering correction (MSC).58 Ideally, MSC

Figure 1. Representative NIR spectra and the effects of preprocessing on the data. (A) Raw data, (B) mean scattering correction (MSC), and (C)
Savitzky−Golay second derivative and smoothing.
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compares measured spectra with a scatter-free reference
spectrum to remove both multiplicative and additive scattering
artifacts. In practice, as in this work, the reference spectrum is
often generated as an averaged spectrum based on all similar
spectra/samples. Figure 1A,1B demonstrates the effect that this
has when applied to all spectra. In this work, each specific
polymer sample was measured 6 times (see the Materials and
Methods Section), and those 6 replicates were used to generate
a reference spectrum for each unique polymer.
Once the bulk scattering is removed, it becomes easier to

identify differences in the spectra that may arise from the
molecular architectures.59,60 For instance, in Figure 1B, the
intensity at 10722 cm−1, the third overtone peak for HDPE
samples, is notably more prominent than any other sample.
Such differences underscore the potential for NIR to identify
differences in polymer subclasses, but the intrinsic density of
information and overlapping peaks complicates quantitative
analysis for any given range of wavenumbers. Previous research
has demonstrated that vibrational spectroscopy can identify
changes in these characteristics, just not in the overtone
regions of NIR.42,43 The overtones and combination bands of
NIR are directly connected to the mid-IR vibrational spectra,
but they are broadened and convoluted, leading mid-IR related
peaks to appear as shoulders and slope changes in NIR. This
complicates NIR data analysis as it is difficult to distinguish
sample changes from noise.
Previous literature has also used Savitzky−Golay smoothing

(SG) to differentiate NIR spectra and further highlight spectral

differences based on these peak locations and slope
changes.33,58,61 The second derivative of an SG smoothed
(SG″) spectrum can be seen in Figure 1C. SG″ spectra
underscore differences between PE and PP, while obscuring
differences between the various subclasses of PE. Given that
HDPE and LDPE often phase-separate, the preprocessing that
enables better PE distinction is preferred, leading analysis away
from the SG″ method, in this context.
Chemometrics and Functional Principal Component

Analysis. The full effect of these preprocessing steps becomes
apparent once the data are analyzed with an ML technique
such as principal component analysis (PCA) or functional
PCA (fPCA). PCA is a widely used chemometric dimension-
ality reduction method used on NIR data.62,63 This technique
uses the variance between data points to build a set of linear
basis vectors or principal components (PCs) that redescribe
the data based on variation between measurements.62 These
components can then be ordered by the percent of variance in
the data set that they describe, with the first few PCs capturing
most of this variance. Each spectrum containing thousands of
points is then reduced to a single number or “score” for each
PC, enabling simpler visualization and analysis of the reduced
data. This technique can be especially useful for overcoming
issues where multiple features or wavelengths follow the same
trends, leading to multicollinearity issues when trying to fit
regression models.64−67 An extension of PCA is functional
PCA (fPCA) which models the sample data as a linear
combination of continuous functions (loadings) instead of

Figure 2. fPCA scores plot of (A) raw data, (B) multiplicative scattering corrected (MSC), and (C) and Savitzky−Golay second derivative and
smoothing after MSC. See the SI for explained variance for each of the first 4 fPCs. All axes are labeled in arbitrary units, [AU].

Figure 3. fPCA loading plot for the first 3 fPCs of the MSC-corrected data.
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discrete points stored as vectors.68 This slight difference allows
for statistical analysis with interpolation capabilities, which
overcome challenges in comparing spectra of differing
resolution.68 While irrelevant for this data set, as all spectra
are taken at the same resolution, we utilized fPCA to allow for
comparison with NIR data from future collections on other
instruments with different experimental capabilities such as
resolution.
Figure 2 displays the reduced data from fPCA, with each

spectrum being represented by its first and second fPC scores.
It should be noted that Figure 2 is useful for qualitative
comparisons, not necessarily quantitative, since fPCA is based
on variance between samples, and the differing preprocessing
steps will emphasize or limit certain sources of variance.
The raw data have too much variation from scattering

artifacts, and chemical sample variation is not well represented
in these initial fPCs. Removal of this scattering with MSC
enables fPC to distinguish samples (Figure 2B), with the
second fPC representing much of the variation between PP
and PE. The SG” data (Figure 2C) demonstrates that further

preprocessing can enhance PP and PE distinction. However, it
further obfuscates the distinction between the PE subclasses.
Overall, we obtained the best separation in various PE classes
for MSC preprocessed data without any additional smoothing
or derivative processing. With this in mind, further analysis is
conducted using only the MSC preprocessed data and the
corresponding fPCA-reduced data.
Loading plots from the fPCA enable us to visualize the basis

functions or loadings behind the fPC scores and to understand
how variation in the MSC-corrected spectra is represented by
these loadings. Figure 3 shows the loading plot for the first
three fPCs, and the explained variance for each fPC can be
found in Table S1. The loading for the first fPC contains
mostly broad peaks. These features may arise from minor
differences in scattering, such as from microstructural differ-
ences in these semicrystalline materials. In contrast, the second
and third fPCs have sharp peak-like features in wavenumber
regions associated with known overtone bands identified in the
literature, e.g., at labeled points between (8700 to 6000)
cm−1.69,70 It is important to remember that the peaks in these

Figure 4. Density, crystallinity, and SCB plotted as functions of the first two functional principal components. Density and SCB plots include error
bars for the standard error of the mean (SEM) of multiple measurements. Note that the vertical axis for SCB is broken since there is a large gap
between the PE and PP branch content.
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loadings do not necessarily correspond with the peaks in the
raw NIR spectrum but with the variance between the materials
at those points. Therefore, it is as likely that these fPCs identify
meaningful changes in the broadening or narrowing of
shoulders as it is that they identify meaningful changes in
peak heights or locations. With that in mind, many of the peaks
depicted in the second and third overtones occur within the
overtone regions that would indicate differences in the C−H
vibrations.69 Given that increased levels of crystallization
would lead to a restriction in the motions for the C−H
vibrations, it is reasonable to think that these signal changes
may be correlated with changes in crystallinity or density.
These two properties are also closely linked to the SCB
content.42

To further investigate these correlations, Figure 4 displays
the relationships among density, crystallinity, SCB, and the first
two fPCs (relationships with the third and fourth fPCs are
provided in Figure S1 of the SI). Both components show clear
correlation for PE and PP. Table 4 provides the Pearson’s

correlation coefficients (rcorr) and the linear goodness of fit (r2)
for relationships between the first 2 fPCs and the properties
that were measured separately. Both PE and PP display strong
correlations (|rcorr| ≥ 0.5) for almost all combinations of fPCs
and properties. While this provides strong evidence of
connections between our fPCs and our properties, the r2
values indicate that a more complex relationship may be
appropriate.
Regression Models for Prediction of Properties.

Although all of the measured properties are highly correlated
with the NIR-derived fPCs, the correlations are not unique to

one property and one fPC as shown in Figure 4 and Table 4.
To disentangle this, we applied sliced inverse regression (SIR)
to the properties and fPCs for the subclasses of PE. PP was
removed due to the limited number of PP samples in our data
set. Similar to fPCA, SIR is a linear dimensionality reduction
technique. The key difference is that unlike fPCA, SIR is a
supervised ML technique, meaning that it requires both the
inputs, fPC values in this case, and the output, a property in
this case. Here, the dimension of SIR is limited to one, such
that each property can be described by a single variable (Xβ̂SIR)
where X is a vector of the scores from the first 3 fPCs and β̂SIR
is a vector of the 3 corresponding linear coefficients. Only 3
fPCs were chosen as they account for over 95% of the total
variance in the sample set. The values of Xβ̂SIR vary for each
property and are provided in Table S2. The results are shown
in Figure 5, and Pearson’s correlation scores are in Table 5. A

linear regression model was then fit to describe each property
as a function of Xβ̂SIR. All three models had r2 ≥ 0.75 and rcorr
≥ 0.85, providing strong evidence of their ability to predict
these properties to a useful degree using only NIR inputs.
However, it is essential to note that while a linear relationship
is assumed to compute these quantities, the actual relationship
may be nonlinear.
As previously mentioned, the values of Xβ̂SIR depend on the

property (see Table 5). Since the fPCs are correlated with one
another, the values of Xβ̂SIR cannot be used to determine the
relative contributions of each fPC to the physical quantities of
interest. Thus, we utilized the feature importance ranking
measure (FIRM) analysis.71,72 FIRM quantifies the relative
contributions of each fPC to the final prediction of each
property while also taking the correlations of the fPCs with one
another into account. The results, shown in Table 6, clarify
that no individual fPC yields a majority contribution to the
prediction of the density, crystallinity, or SCB. Instead, the first
and second fPCs contribute similar amounts of information

Table 4. Pearson’s Correlation (rcorr) and Goodness of Fit
(r2), for Density, Crystallinity, and SCB with Respect to the
First 2 fPCs

PE PP

fPC property rcorr r2 rcorr r2

1 density 0.85 0.72 −0.90 0.80
1 % crystallinity 0.78 0.61 −0.80 0.06
1 SCB −0.74 0.55 −0.89 0.80
2 density −0.86 0.73 −0.66 0.44
2 % crystallinity −0.80 0.61 −0.09 0.01
2 SCB 0.80 0.64 −0.65 0.42

Figure 5. Scatter plots of the density, crystallinity, and SCB after slice inversion regression with 3 fPCs to allow the prediction of properties by
assigning weight coefficients to each fPC score. r2 values for the linear regression models are 0.79, 0.75, and 0.77, respectively.

Table 5. Pearson’s Correlation Scores for the Measured
Properties of PE with One Another and with Xβ̂SIR

density crystallinity SCB Xβ̂SIR
density 1 0.84 −0.83 0.89
crystallinity 1 −0.75 0.87
SCB 1 −0.88
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(≈40% to 45% each) while the third fPC contributes the
remaining predictive information (≈10% to 20%). The
minimal contribution from the third fPC is expected since,
from fPCA, it explains less than 10% of the variance in the NIR
data.
To further understand the relative contributions of the fPCs,

we look at Figures 2B and 3. Figure 2B shows that the second
fPC predominantly separates PP from PE, while the first
enables distinctions between the PE subclasses. These
differences may bias the FIRM analysis, given that the fPCA
was performed using the PP data, but the SIR and FIRM
analyses excluded the PP due to lack of samples. With this in
mind, Figure 3 shows that the second fPC has its most
prominent peaks at (10722, 7982, and 6474) cm−1. The first
and last of these correspond directly to PE and PP differences
visible in Figure 1A,B, but the 7982 cm−1 value is much less
clear. Meanwhile, the first fPC has its most notable peaks
around (7500 and 6400) cm−1, which correspond to peaks in
the PE, but even manual qualitative analysis of these spectral
differences would be difficult with the MSC-corrected data.
Finally, while the data set size used to develop these models

was ultimately small in the context of ML, it demonstrates
tremendous potential for amplifying the information taken
from NIR data if polymer scientists curate their data effectively.
As our model greatly expands upon previous work46−48 to
create a more generalizable model for PEs, additional well-
characterized samples should help further refine models and
provide predictive power for polymers besides PE, or for
predicting additional properties such as additive concentration.
To this point, it should be emphasized that when building or
expanding such a data set, the quality of the data set may
provide more power than quantity. This work focused largely
on density and crystallinity and thus required a data set
spanning those properties. In expanding this model, it would
be most beneficial to add samples such as ultrahigh molecular
weight polyethylene to expand the range of prediction. In any
case, this work enables sorting of the most common PEs at a
rapid rate, using currently implemented technologies, and
could help SRs produce higher-quality recyclates in the near
future. Additionally, these techniques could be used by resin
manufacturers to monitor the quality of their products in a
rapid, nondestructive manner.

■ CONCLUSIONS
Using a data set containing samples from various classes of
POs (5 HDPEs, 1 MDPE, 7 LDPEs, 2 LLDPEs, 2 PPs, and 2
PP-co-PEs), this work expanded upon the correlations between
NIR data and properties such as density, crystallinity, and SCB.
We studied the effect of various preprocessing methods on
NIR data and the resultant effects on the outcomes of an
unsupervised ML model through fPCA. Deconstruction of the
fPC loadings revealed direct connections to expected overtone
bands in the raw NIR spectra. Additionally, the fPCs and
corresponding scores obtained from this analysis revealed

direct correlations between the scores and the measured
properties of the polymers. Using a supervised data reduction
model (SIR), linear regression, and the PE data, we were able
to predict these properties using only NIR spectra and careful
data analysis techniques. This data pipeline would enable
MRFs and SRs to characterize POs much more accurately
while using their current methodologies. Further study using
correlative, unsupervised models also has the potential to
improve the measurement of PO feedstocks, particularly as
more sustainable polymers, additives, and higher percentages
of PCR are incorporated and are continuously expanding the
complexity of commercial polymers.
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third 0.171 0.192 0.095
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