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analysis; however, its data can be challenging to interpret. Here, we introduce a new open-source 

tool named AutoEIS that assists EIS analysis by automatically proposing statistically plausible 

equivalent circuit models (ECMs). AutoEIS does this without requiring an exhaustive mechanistic 

understanding of the electrochemical systems. We demonstrate the generalizability of AutoEIS by 

using it to analyze EIS datasets from three distinct electrochemical systems, including thin-film 

oxygen evolution reaction (OER) electrocatalysis, corrosion of self-healing multi-principal 

components alloys, and a carbon dioxide reduction electrolyzer device. In each case, AutoEIS 

identified competitive or in some cases superior ECMs to those recommended by experts and 

provided statistical indicators of the preferred solution. The results demonstrated AutoEIS’s 

capability to facilitate EIS analysis without expert labels while diminishing user bias in a high-

throughput manner. AutoEIS provides a generalized automated approach to facilitate EIS analysis 

spanning a broad suite of electrochemical applications with minimal prior knowledge of the system 

required. This tool holds great potential in improving the efficiency, accuracy, and ease of EIS 

analysis and thus creates an avenue to the widespread use of EIS in accelerating the development 

of new electrochemical materials and devices. 

1. Introduction: 

There is a pressing environmental and societal need for novel electrochemical materials for 

deployment as anodes/cathodes for batteries 1, alloys that resist corrosion and oxidation in harsh 

environments 2, electrocatalysts for fuel cells 3, oxygen evolution reaction (OER) 4, hydrogen 

evolution reaction 5, and CO2 reduction reactions 6. Over the past 10 years programs such as the 

Materials Genome Initiative have sought to meet this need by combining computation, 

experimentation, and data science to reduce the time required to deploy new materials to 5 years - 

10 years down from the current 10 years - 20 years 7–12. The release of the Mission Innovation 
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report on Materials Acceleration Platforms posited that by combining experimental and 

computational automation with data science and artificial intelligence (AI), self-driving labs could 

be created to increase the rate of materials discovery by 2 to 3 orders of magnitude 13. Towards 

this aim, the development of automated analysis techniques using machine learning serves as a 

crucial piece. Specifically, such tools can process vast amounts of data generated by self-driving 

labs in a high-throughput manner, enabling less human intervention and reduced bias in decision-

making. AI augment data analysis is necessary for the realization of this new paradigm in material 

discovery. 

In the pursuit of developing novel electrochemical materials, electrochemical impedance 

spectroscopy (EIS) is a cornerstone analysis technique for a wide range of electrochemical systems 

14. It is regularly used to investigate the mechanisms and to extract key parameters of 

electrochemical systems, such as to study the kinetics of corrosion and extract the coating’s 

dielectric properties 15–18. At its core, the basic principle of EIS involves applying a small 

alternating current (AC) potential or current perturbation to an electrochemical system and 

measuring the corresponding current or voltage response to get the impedance of the system at 

different frequencies. The resulting impedance values are complex quantities that encompass both 

the reactance and resistances of the electrochemical phenomena as a function of AC frequency and 

are typically presented as the complex plane plot (called Nyquist plot or Cole-Cole plot) or phase-

magnitude plot (called Bode plot) 17. Through common techniques such as equivalent circuit model 

(ECM) fitting, the impedance spectra provide a systematic method of separating out the different 

electrochemical processes occurring in the system based on their responses at different frequencies 

19–21. However, performing quantitative EIS analysis is non-trivial, as it relies largely on expert 

knowledge, and can be highly susceptible to the injection of human bias into its analysis 22. 
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The ECM method is by far the most common and widely accepted approach to analyzing and 

drawing physical interpretation from impedance spectra 20,23. In the ECM method, all the 

electrochemical reactions are represented by an electric circuit composed of a set of basic circuit 

components, such as resistors, capacitors, constant phase elements (CPEs), and inductors arranged 

in either a parallel or series. By modeling impedance spectra in this way, analysts can interpret 

physical processes occurring in the electrochemical system through analogy to circuit components 

and their values. Unfortunately, generating ECMs is quite subjective and can be prone to user bias. 

Further, there is no guaranteed unique solution for a given impedance spectra 17,21,24. To mitigate 

this degeneracy, the EIS community has developed a set of knowledge-based heuristics and 

proposed specialized ECM elements such as Warburg elements and Gerischer elements to 

constrain the potential solution space 25,26. Nevertheless, this neither prevents routine overfitting 

of EIS data—even poor-quality data can still be adequately fitted by adding enough circuit 

elements—nor ensures a robust search of the solution space 27 The identification of the optimal 

ECM, i.e., the simplest model that correctly reflects the system’s information, remains challenging.    

Alternatively, the application of machine learning offers an approach to exploring the ECM 

solution space that can be more transparent and reproducible 28–37. Evolutionary algorithms have 

been used since 2004 to explore ECM structure and have shown great promise in ECMs-based EIS 

analysis 28,36,37. By combining genetic algorithm (GA) 38 and gene expression programming (GEP) 

39, the evolutionary algorithms can automatically optimize both the circuit structure and fitting 

parameters of circuit components by sequentially searching through the solution space.  

Evolutionary algorithms provide an unconstrained path to objectively exploring the candidate 

ECMs, however, the non-uniqueness of the solutions yields merely a probabilistic sampling of 

candidate ECMs with sufficient quality. Any given iteration is as likely to produce a non-realistic 
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solution as a physically plausible solution. Furthermore, the objective function used in 

evolutionary algorithms to search for the optimal ECMs only relates to the fitting quality, which is 

usually mean square error (MSE) or mean absolute percentage error (MAPE). These metrics are 

insufficient and ineffective for ECM selection since using fit quality alone tends to prioritize 

overfitted models. Worse, these metrics are not strictly followed by the community during model 

selection, which still mainly relies on researchers’ intuition. Within the community, circuits with 

non-optimal fits that conform to community standards are sometimes preferred to optimal fits that 

violate community standards. There is then a misalignment between the purely algorithmic MSE-

driven evolutionary algorithm-generated ECMs and the softer human heuristic approach to fitting 

EIS. Therefore, to realize truly trustworthy automatic EIS analysis, it is of great importance to 

create an effective ECM evaluation strategy that helps to identify and reject non-realistic models 

and suggests physically plausible models. 

Bayesian inference40, an iterative analysis tool, is a complementary tool to evolutionary 

algorithms because of its ability to provide statistical information about the parameter values. 

Recently, there has been increasing interest in utilizing Bayesian approaches to assist with EIS 

analysis 41–46. To date, none of them involve inferring the values of the ECMs in light of the EIS 

data. In the case of ECMs, Bayesian inference provides probability distributions of electric 

components contained in each ECM according to a given EIS data. The probability distributions 

revealed by Bayesian inference provide a window into the plausibility of the overall model, which 

can be used to guide and justify ECM selection. 

In this work, we combine evolutionary algorithms with Bayesian inference, to create a 

scientific AI that facilitates EIS analysis. The tool is available as an open-source Python-language-

based package named AutoEIS. AutoEIS provides a generalized approach to automatically 
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constructing reasonable ECMs without requiring an exhaustive mechanistic understanding of the 

underlying electrochemical systems. It objectively searches for potential ECMs and uses Bayesian 

inference to identify statistically plausible ECMs, greatly lowering the barrier to performing EIS 

analysis. To assess the algorithm’s robustness and generalizability, we have tested AutoEIS on EIS 

datasets collected from three distinct electrochemical systems: oxygen evolution reaction (OER), 

steady-state passivation of alloys, and CO2 reduction electrolyzer devices. In all cases, AutoEIS 

either successfully recommended new physically plausible ECMs or corroborated the expert’s 

previously proposed solution. The success of AutoEIS across multiple electrochemical systems 

considered highlights its potential as a universal tool in accelerating electrochemical analysis for 

a range of topics including: electrocatalysts, investigations of corrosion mechanisms, etc. 

2. Methodology  

AutoEIS contains the following steps: data pre-processing, ECM generation, circuit post-

filtering, and Bayesian inference. Its inputs are solely the impedance data and corresponding 

frequencies. Prior to analysis, the quality of the EIS data is evaluated according to the Kramer-

Kronig relations (KK relations) 47, which removes erroneous measurements. Then AutoEIS uses 

evolutionary algorithms to search for a set (50 to 100) of high-quality candidate ECMs 32. 

Subsequently, AutoEIS uses physical rules and soft human heuristics to perform model down-

selection to reduce the number of non-realistic circuits. Bayesian inference is performed on each 

candidate ECM to explore the probability distributions of components. Through evaluation of 

inference quality, posterior distributions, and the corresponding predictive plots, ECMs with 

redundant components and imprecise parameter estimates are removed, and statistically plausible 

models are suggested. The selected models are then ranked by their widely applicable information 
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criterion (WAIC) values to prioritize less complex ECMs with sufficient fitting quality 48. Through 

this process, the statistically optimal model will be identified and suggested to the user.  

2.1 Data pre-processing 

To minimize the impact caused by invalid EIS measurements, we use Kramer-Kronig 

validation (KK validation) 49 to filter the points that do not satisfy the linearity, causality, and 

stability criteria. Any points exhibiting deviations larger than a default threshold of 5 % are 

removed. This filtering threshold was selected empirically based on expert insights to yield the 

cleanest filtered data without compromising our ability to resolve electrochemical reactions. In 

addition, a high-frequency filter is applied to remove all data points with positive imaginary 

impedance (Im(Z) > 0) at high-frequency ranges. These data points are artifacts of the 

electrochemical set-up associated with cabling inductance or contact connections that are not of 

scientific interest and would normally be eliminated through careful consideration of the scanned 

frequency range.  

2.2 ECM generation 

ECM generation is realized via the open-source program developed by Van Haeverbeke et al 

32.  The program is designed to either fit the parameters of given ECMs or objectively search for 

potential ECMs for EIS measurements by evolutionary algorithms. Here we use its latter function 

to explore ECM space. There are two main hyperparameters that impact the exploration of circuit 

structures. The first hyperparameter named head restricts the complexity of the circuit search space 

by constraining the maximum number of circuit components included in potential ECMs. The 

second hyperparameter named cutoff determines the degree of the circuit simplification that 

sequentially drops components included in each ECM and compares the incidental loss for 

redundant components removal. For all the EIS data analyzed in this paper, the head was set to 12, 
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and the cutoff was set to 0.80 unless otherwise specified. This parameter combination provides a 

reasonable search space with up to 11 circuit components that are sufficient to describe the 

electrochemical systems considered here and avoids the consideration of overly complex models. 

To ensure the evolutionary algorithm covers a great variety of ECMs, the ECM generation process 

was performed one hundred times for each EIS. The process usually takes 2 hours to 10 hours 

using a typical laptop (8-core intel i7 with 16 GB RAM) according to EIS complexity. This process 

can be greatly accelerated through multi-threading.   

2.3 Post-filtering 

The ECMs generated contain a mixture of realistic and non-realistic solutions. To ensure the 

models to be evaluated by Bayesian inference are physically meaningful, here we incorporated 

two physical filtering rules related to ohmic resistance and capacitors into AutoEIS to perform the 

ECMs down-selection. 

The ohmic resistance (typically also referred to as solution resistance) reflects the summation 

of the system’s bulk resistance (solution and electrode interfaces) to the current and can be directly 

extracted from the real impedance value at the highest frequency. AutoEIS estimates the ohmic 

resistance by extracting the real impedance value of the high-frequency data point with the 

minimum phase angle after pre-processing, adding a 15% buffer to the estimated resistance to 

accommodate measurement and calculation errors. Any ECM without the ohmic resistor or with 

an incorrect ohmic resistance is dropped. Additionally, here we delete all ECMs with any capacitor 

element because capacitors are only suitable for ideal polarization processes 50 These are both 

configurable options and can be adjusted, removed, or augmented when deploying AutoEIS. This 

filtering step effectively drops non-physical solutions and shrinks the number of candidate ECMs 

from about 100 to only a handful of more realistic ECMs.  
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2.4 Bayesian inference 

Bayesian inference is used to evaluate each ECM’s performance on the given EIS. During this 

process, the prior beliefs of the values of ECM components, specified as the prior probability 

distributions , are reallocated and updated according to the likelihood function as 

new observations are made. The  represents component values and  represents the data. 

The resulting distributions are called the posterior distributions  and provide updated 

credibility of the component parameters. The schematic workflow of applying Bayesian inference 

on each ECM is shown in Figure 1, with the following steps: 

1) Initialize the prior probability distributions on circuit components 

2) Sample components values according to the assigned distributions 

3) Calculate the simulated EIS data according to the ECM’s function 

4) Compare the simulated data with the original EIS data to evaluate the likelihood function  

5) Update posterior distributions according to the priors and ECM’s likelihood function 

6) Repeat steps 2 to step 6 for a given number of iterations 

 

Figure 1. The schematic workflow of applying Bayesian inference on EIS analysis 
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The majority of ECMs generated by the evolutionary algorithm exhibit coefficients of 

determination (R2) values higher than 0.99. Consequently, the evolutionary algorithm estimated 

values are employed to inform the prior settings. A weakly informative prior is selected via a 

scaling factor multiplied by the estimates – , where 2.5 

is the location parameter and 1.7 is the scale parameter of the distribution. It results in a prior where 

the samples are approximately centered around the estimated values and 99 % of the prior density 

lies within the range of (0.001 to 1000) times the estimated values. This diffuse prior prevents 

strong bias in the final estimates and ensures the data have a strong influence on the posterior 

distribution, while concentrating the prior distribution on roughly the right order of magnitude, 

which can vary substantially for ECM components. Also, the LogNormal distribution ensures all 

samples fall within the physically reasonable range of components since resistance, capacitance 

and inductance cannot be negative. All CPE alpha terms (represented as Pn)—the frequency-

independent negative phase between current and voltage—that represent CPEs’ degrees of 

similarity to perfect capacitors are assigned uniform distributions between 0 to 1, which 

encompasses their entire physically reasonable domain. 

To mitigate the impact of sampling bias, a large sampling number of 10,000 with a warm-up 

of 1,000 steps was adopted, using the No-U-Turn sampling method 51 with a target acceptance 

probability of 0.8 for Bayesian inference. This sampling number permits sufficient iterations for 

obtaining stable distributions consistent with the EIS data. The Bayesian inferences typically 

require about 30 seconds per ECM (up to 3 minutes for the most complex ECM) using the laptop 

mentioned above (8-core intel i7 with 16 GB RAM). To enhance the model’s robustness against 

noisy data, a HalfNormal probability distribution was employed for the error term between 

simulated and original EIS. This distribution was used to define the likelihood function, which 
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assesses the goodness of fit between simulated and original EIS. The likelihood function can be 

represented as  , where the residual 

between simulated and original EIS is calculated as a Euclidean distance and the standard deviation 

of the likelihood function is set as a HalfNormal probability distribution with 0 as its mean and 

Error as its scaling parameter. To quantify the convergence and repeatability of the Bayesian 

inference results on each ECM, the Bayesian inference process of each model is independently 

repeated four times for each ECM.  

2.5 Model evaluation 

Figure 2 illustrates the algorithmic workflow of evaluating ECMs according to the Bayesian 

inference results. Though the evaluation strategy focuses on prioritizing the statistically plausible 

ECM, it retains suboptimal models with lower priority for subsequent expert inspection. Firstly, 

AutoEIS identifies ECMs with insufficient numerical explorations of the posterior distribution by 

examining numerical divergences (Nd) exhibited in posterior distributions. The occurrence of 

divergences indicates that the Markov chain has encountered regions of high curvature in the target 

distribution that may hinder adequate exploration of the posterior distribution 52–54. The optimal 

value of Nd is 0 and any inference with Nd larger than 10 (0.1 % of the samples in the chain) is 

deemed a poor model here. The 0.1 % threshold selection was based on the consideration of the 

potential complex posterior geometry of ECMs. Through this step, ECMs with a Nd value larger 

than 10 will be deprioritized.  

Secondly, AutoEIS checks the posterior distributions of each ECM’s components based on 

their shapes and highest density intervals (HDI), which describe and summarize the probability of 

estimated parameters falling within a specific value range 40 Ideally but not necessarily, each 

posterior distribution should exhibit a smooth distribution with a sharp, well-centered bell curve. 
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This is interpreted to indicate that the model is not overfitted, every component is irreplaceable, 

and that there is high confidence the element values fall within a narrow credible range. 

Furthermore, the most likely value of each component should be physically reasonable, meaning 

their centered most likely values shouldn’t exceed the component’s physical ranges. During this 

process, ECMs displaying poorly centered distributions or non-physical likely ranges are less 

preferable and will be deprioritized by AutoEIS. After that, posterior predictive checks are 

performed by generating simulated EIS data based on the posterior distributions. The metrics used 

to evaluate their fitting quality are MSE and R2. Here any ECM with an average predictive R2 

lower than 0.99 for either the real or imaginary part is regarded as a poor-fitting model and will be 

deprioritized.  

Thirdly, each inference’s consistency is assessed using a rank-normalized R-hat diagnostic 

test (𝑅̂), which quantifies the convergence of the Bayesian inference parameters by comparing 

estimates from independent sampling processes 55  Acceptable 𝑅̂ values range from 1.00 to 1.05. 

Any 𝑅̂ value higher than 1.05 may point out a specification problem and the corresponding ECM 

will be flagged and assigned with lower priority.  

Finally, WAIC values of ECMs are calculated to avoid over-complex models. WAIC evaluates 

the model’s trade-off between fitting quality and model complexity by considering both the log-

likelihood and the number of electric components in ECMs. A lower WAIC value is preferable as 

it indicates a less complex but still sufficiently descriptive model, aligning with the principle of 

ECM selection. By comparing the WAIC values among ECMs with plausible posteriors 

distributions and posterior predictions, the ECM with the lowest WAIC is suggested as the correct 

ECM 56 
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Figure 2. The schematic workflow of ECM evaluation 

(R stands for resistors, P stands for CPEs, and L stands for inductors)  

3. Results and discussions:  

Here we tested AutoEIS with EIS data gathered from three representative electrochemical 

systems with roughly increasing complexity: OER thin-film electrocatalysts in 3-electrode cells, 

corrosion of passivating multi-principal element alloys, and CO2 reduction electrolyzer devices. 

3.1 Oxygen Evolution Reaction Electrocatalysis 

OER is an important half-cell reaction in a number of electrocatalytic processes including 

water splitting and CO2 reduction. The reaction is kinetically sluggish, and typically performed in 

either acidic or alkaline media. Current state-of-the-art catalysts include iridium or ruthenium 

oxide (acidic media) or nickel-based oxides (alkaline media) 57. There is currently a substantial 

amount of research effort devoted to finding acid or alkaline-stable non-precious metal group 

catalysts with good catalytic activities and high stabilities 58. Because of its ability to differentiate 

multiple interfaces within electrochemical devices, and isolate sluggish electrochemical processes, 

EIS is regularly used to understand and elucidate the electrochemical processes of OER catalysis 

59–61. 
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The first test case involves the evaluation of electrodeposited thin-film mixed metal oxide 

catalysts in an acidic environment using a 3-electrode cell configuration. In particular, the catalyst 

system involves a mildly-stable active catalyst deposited onto a conductive surface, undergoing 

OER in a highly acidic environment. Given the thin-film nature of the catalyst, it is expected that 

morphological effects (e.g. porosity) are not present in the system and OER will be the dominant 

contribution to the EIS 62. 

AutoEIS proposes 13 distinct ECMs following the post-filtering process, as depicted in 

Figure S1. All of the ECMs exhibit similar MSE values marginally below 0.01 Ohms2 and R2 

values exceeding 0.999. Among the 13 ECMs, 11 contain at least one Randle circuit, while 7 ECMs 

include inductive components which are not anticipated in this dataset due to the absence of 

positive imaginary impedances at low frequencies. After performing the Bayesian inference, these 

non-physical ECMs were effectively deprioritized and the ECM with zero sampling divergences, 

well-centered posteriors, good consistency, and the lowest WAIC is recommended as the most 

statistically plausible solution. We report the Bayesian inference results of three representative 

ECMs from 13 ECMs in Figure 3: (a) AutoEIS prioritized ECM, (b) statistically implausible ECM, 

and (c) the expert’s independent solution.  

The posterior distributions of each component in AutoEIS’s ECM (Fig 3 (a)) display 

Gaussian shapes with reasonably narrow HDI. Also, the inference results of AutoEIS’s circuit (Fig 

3 (a)) exhibit no divergences (marked as black bars), signifying an effective and stable sampling 

process. In contrast, the statistically implausible circuit (Fig 3 (b)) and the expert’s independently 

constructed ECM (Fig 3 (c)) both possess imprecise posterior distributions and sampling 

divergences. For the statistically implausible ECM (Fig 3 (b)), the diffuse posterior distribution of 

R3 and L4 remains the same LogNormal shape and range as their prior distributions. These poorly 
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centered posterior distributions are interpreted as indicating that R3 and L4 have little influence 

on the quality of the EIS fit, as their HDIs cover multiple orders of magnitude. Consequently, these 

circuit elements should be considered redundant and removed from the model. Additionally, the 

inference chain of the statistically implausible ECM (Fig 3 (b)) contains numerous divergences, 

denoting inadequate explorations of its sampling space and the potential existence of implausible 

circuit structures. Therefore, such an ECM is deprioritized by AutoEIS and should only be used 

with sufficient physical justification. Another indication of implausible models is the emergence 

of non-physical most likely value. For the expert circuit (Fig 3 (c)), the posterior distribution of 

P4n concentrates its credibility at the physical upper limit of CPE’s alpha term.  This might suggest 

that P4 is better represented as a capacitor, rendering the circuit less preferable. However, the 

flatness and breadth of the posterior near the upper boundary could also indicate that ascertaining 

the true value of Pn is challenging due to a lack of sufficient signal. The expert ECM demonstrates 

a slight improvement in fitting quality (an improvement of 0.0012 in R2) and the WAIC also 

decreases (from -106.5 to -164.5) as compared to the circuit recommended by AutoEIS. Thus, the 

addition of the second Randle element does capture more system information without significantly 

increasing model complexity, at the expense of a less ideal posterior distribution for Pn. AutoEIS 

explored 100 possible ECMs and identified two reasonable ECMs. An expert would then need to 

examine and decide upon the appropriate solution for their problem; their analysis follows. 
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Figure 3. The Bayesian inference results of different circuits for the OER measurement 

 (a) AutoEIS prioritized ECM (b) Statistically implausible ECM (c) Expert’s independent 

solution 

Given the nature of the electrochemical system being measured, the results of AutoEIS are 

expected. In particular, the thin-film morphology of the catalyst (minimal porosity) isolates the 

electrochemical activity to only the OER reaction, with minimal impact on transport processes, 

which agrees with a single-Randle circuit fit recommended by AutoEIS (i.e., a single 

electrochemical reaction—OER—dominates the electrochemical response). In particular, from the 

ECM, we are able to obtain insight into the system ohmic resistance (R1), the charge transfer 

resistance and the overall kinetic efficiency of the electrochemical reaction (R3), as well as a 

quantification of the non-ideal capacitance through treatment of the CPE (P2).  

The additional complexity of the Expert’s independently constructed circuit is based on the 
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intuition of the possibility of re-deposition processes during OER (anodic electrodeposition) which 

would give rise to a second electrochemical process. However, after discussing with the experts, 

we reached the consensus this would be a rather small contribution, and is scientifically 

insignificant for this measurement, as AutoEIS indicates. The results demonstrate AutoEIS 

successfully identified physically reasonable ECMs for EIS taken on a simple OER catalyst that 

were consistent with and aided the expert’s analysis.  

3.2 Corrosion of Self-Healing Multi-Principal Element Alloys 

The prevention and mitigation of materials corrosion in harsh environments to extend 

materials’ service life are of great priority. Aqueous corrosion, an electrochemical redox reaction 

involving charge transfer across the metal-electrolyte interface, can be effectively studied using 

electrochemical techniques such as EIS 63. Designing self-healing alloys is one of the mitigation 

routes traditionally followed by using elements such as chromium, and molybdenum 64. These 

elements tend to quickly form their oxides/hydroxides under aqueous environments such that a 

thin passive film forms between the alloy-environment interface, suppressing any further active 

corrosion. The challenge today is that progress may be nearly exhausted in the study and discovery 

of binary and ternary alloys with major solutes and one or two impurity elements that control 

corrosion resistance 65,66. Such alloys typically contain critical concentrations of key passivating 

elements. Currently, a great deal of emphasis is directed toward Cantor-type multi-principal 

element alloys which are argued to be entropy stabilized 67. These alloys typically have 4 to 6 

alloying elements and show indications of unique properties 68. The corrosion performance and 

passivation of Cantor alloys are of significant interest and can be controlled by exploring an alloy 

compositional space that easily numbers in the millions. Impedance has been demonstrated as an 

effective screening method suitable to rapidly screen numerous compositions. EIS has proven to 
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be an effective tool to probe attributes or parameters functioning to enhance passive film 

performance in a non-destructive manner 17,18,69. 

AutoEIS was used to investigate the EIS response of the steady-state passivation behavior of 

a homogenized face-centered cubic {FeCoNi}0.84-Cr0.16 multi-principal element alloy in deaerated 

solution of 0.1 mol/L H2SO4(aq). The EIS measurements were conducted after passive film was 

grown for 10 ks at +0.6 V vs. SHE. Four different ECMs were proposed after the post-filtering 

process. Among the potential ECMs, one simple ECM exhibited poor fitting quality with 

significant deviation in the low-frequency range while the remaining models were consistent with 

the given EIS data, as shown in Figure S3. Figure 4 presents the Bayesian inference results of 

three representative models: (a) AutoEIS prioritized ECM, (b) statistically implausible ECM, and 

(c) the expert’s independent solution.  

Upon examining the posterior distributions and predictions of AutoEIS prioritized ECM (Fig 

4 (a)), all components exhibit narrow and sharp Gaussian posterior distributions without any 

divergences. In contrast, the inference results of the statistically implausible ECM (Fig 4 (b)) and 

the expert ECM (Fig 4 (c)) reveal non-physical most likely values for the ohmic resistance (R1 in 

the implausible ECM (Fig 4 (b)) and R6 in the expert ECM (Fig 4 (c)). Further, the R1 and R6 

values inferred from the implausible ECM (Fig 4 (b)) and the expert ECM (Fig 4 (c)) are 

inconsistent with the ohmic resistance derived from the ground truth EIS data, rendering the 

circuits less preferable. Furthermore, the posterior distributions of P2n in the statistically 

implausible ECM (Fig 4 (b)) and P1n in the expert ECM (Fig 4 (c)) both allocate the majority of 

their credibility to the physical limit of a CPE (n=1). The sharp increase in credibility and narrow 

HDI exhibited by the posterior distributions as above indicate the possibility that the CPEs can be 

replaced by capacitors. Therefore, both the statistically implausible ECM (Fig 4 (b)) and the expert 
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ECM (Fig 4(c)) are considered physically less reasonable and deprioritized. As an additional point, 

comparing the AutoEIS’s optimal ECM with the expert’s independently constructed ECM, 

AutoEIS’s ECM (Fig 4 (a)) shows great similarity to the expert ECM (Fig 4 (c)). The Warburg 

element (W) shown in the expert’s circuit is mathematically equivalent to a CPE with an alpha of 

0.5, whereas the P2n alpha in AutoEIS’s ECM (Fig 4 (a)) is 0.42. Although the additional Randle 

element proposed by experts improves the overall fitting quality without increasing the WAIC, the 

shape of the posterior distributions dictates that it should be used with caution. 

 

Figure 4. The Bayesian inference results of different circuits for the alloy measurement 

(a) AutoEIS prioritized ECM (b) Statistically implausible ECM (c) Expert’s independent 

solution 

AutoEIS’s model is physically reasonable given the EIS data. The Randle-like element 

(shown in the left part in Fig 4 (a)) represents the corrosion reaction happening at the defective 
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metal/oxide interface, where P1 represents the capacitive reactance of the interface, P2 represents 

the impedance offered by the ionic diffusion at low frequencies, and R3 represents the interface 

resistance. The total ohmic resistance contributed by the electrolyte solution is well represented by 

R4. 

AutoEIS and the expert disagree with regard to the need for an additional Randle element (R4 

and P5 in Fig 4(c)). The additional element was added due to the expert’s expectation that the EIS 

would include signals from block interfaces created by placing a semiconductor (passive film) in 

between an electrolyte and metallic alloy. However, in discussions with the expert, the equivalent 

impedance contribution from the unmatched Randle's element would be orders of magnitude 

smaller than that of the passive film. Thus, it's scientifically insignificant for measuring passive 

film polarization resistance, as indicated by AutoEIS. Here, AutoEIS facilitates the exploration of 

transient film formation and growth for potentially layered passive films in complex concentrated 

alloys containing multiple passivating elements, exhibiting its ability to assist scientific 

interpretation of the given EIS data. 

3.3 CO2 Reduction Electrolyzer Device 

Electrochemical conversion of CO2 into useful products such as syn-gas, methane, and 

ethylene using electro-catalysis is being pursued to mitigate the devastating impact of climate 

change arising from greenhouse gas emissions 70,71. However, this electrochemical process suffers 

from challenges including low selectivity of electro-catalyst, low energy efficiency and low 

stability due to multiple degradation issues. To improve CO2 electrolysis performance and increase 

its lifetime stability, it’s essential to understand and analyze in situ the operation of the CO2 

electrolysis cell. EIS is ideal for this purpose due to its ability to dynamically record system 

changes at different frequencies 72, separating the impact of different processes such as ohmic, 
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charge transfer, and mass transfer losses.   

Here we applied AutoEIS to a CO2 electrolyzer device consisting of an anion exchange 

membrane, silver electro-catalyst as the cathode, and iridium electro-catalyst as the anode. 

Humidified CO2 was supplied to the cathode, while a liquid electrolyte was fed to the anode. 

During electrolysis, a mixture of CO and H2 (syn-gas) was generated as products at the cathode, 

and the OER reaction occurred at the anode. Following the generation and post-filtering of ECMs, 

AutoEIS proposed 3 candidate ECMs (Figure S5). However, AutoEIS did not identify any of them 

as the optimal ECM during the model evaluation process. Subsequently, we tested the Bayesian 

inference part of AutoEIS on an expert-constructed ECM and a simplified version of that ECM. 

The Bayesian inference results of three representative ECMs are reported in Figure 5: (a) 

statistically implausible ECM (b) the expert’s independent solution (c) the simplified ECM.  

Through the inspection of the posterior distributions of the statistically implausible ECM (Fig 

5 (a)), it is evident that P4n exhibits a diffuse posterior distribution with the probabilities ranging 

from 0.6 to 1.0. The broad distribution of P4n suggests that any value of P4n within the range 

could yield similar fitting results, indicating the potential redundancy of P4. Furthermore, the 

posterior distribution of R5 in circuit (a) remains identical to its prior distribution in terms of 

LogNormal shape and range. The poorly centered distribution is interpreted as signifying that R5 

has little contribution to the quality of the EIS fit with the consideration of its diffuse distribution 

across orders of magnitude. Hence, the P4 and R5 are considered redundant, so that the circuit (Fig 

5 (a)) is deemed statistically implausible and deprioritized by AutoEIS. The expert ECM (Fig 5 

(b)), constructed using 3 Randle elements, exhibits sharp, narrow posterior distributions of all 

circuit components, a well-fit predictive plot to the EIS data (R2 = 0.9997), and no divergences. 

The simplified circuit composed of only two Randle elements was also assessed, since there is 
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always a danger of over-fitting the EIS by using too many Randle elements. Upon applying 

AutoEIS to the simplified ECM (Fig 5 (c)), the posterior distribution of P3w is poorly centered 

and remains the same shape as its prior, potentially marking the component’s redundancy. The HDI 

of P3n covers the whole physically reasonable range of CPE’s alpha term. Such a broad posterior 

distribution further suggests the implausibility of P3. Moreover, the predictive plot of the 

simplified ECM (Fig 5 (c)) exhibits a larger deviation from the original EIS compared to the expert 

model (Fig 5 (b)) with both lower WAIC and R2 values. This implies that the simplified ECM (Fig 

5 (c)) is less preferable than the expert circuit (Fig 5 (b)). This is indicative of the power the 

Bayesian Inference contained within AutoEIS’s has to discern between ECMs that could be raised 

during traditional EIS data analysis.  

 

Figure 5. The Bayesian inference results of different circuits for the CO2 electrolyzer 

 (a)Statistically implausible ECM (b) Expert’s independent solution (c) Simplified ECM 
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In this system, the evolutionary algorithm contained within AutoEIS was not able to identify 

a statistically plausible ECM. Looking through the solutions generated, it was observed that there 

was a tendency to generate nested ECMs with high-level parallel structures as opposed to the more 

linear series ECMs generated by experts. In principle, the ECM generation could be performed 

until a statistically plausible circuit is identified, however, this is computationally expensive. 

Moving forward, it is possible to use supervised machine learning tools to guide the evolutionary 

algorithm towards ECMs that better reflect expert analysis. 

4. Conclusion: 

This study introduces AutoEIS, a novel tool designed to aid EIS analysis by automatically 

prioritizing statistically optimal ECM by combining evolutionary algorithms and Bayesian 

inference. AutoEIS demonstrates great generalizability, enabling expert-level ECM construction 

without the need for training data or a detailed mechanistic understanding of the electrochemical 

processes taking place. This allows it to be applied to any electrochemical system in a way that 

minimizes the impact of human effort and bias in EIS analysis. Furthermore, AutoEIS serves as a 

valuable tool for distinguishing ECMs with comparable fitting quality, effectively avoiding 

overfitting through statistical evaluation. We showed through 3 case studies the potential of 

AutoEIS to enhance and expedite traditional EIS analysis, positioning it as an emerging high-

throughput analysis tool for advancing electrochemical materials research. An open-source 

package is available at GitHub (https://github.com/AUTODIAL/Auto_Eis) and we welcome and 

encourage community development of the tool. 

Acknowledgment:  

The authors gratefully acknowledge the financial support from Materials for Clean Fuel (MCF) 

Challenge program at National Research Council of Canada (NRC), the Office of Naval Research 

https://github.com/AUTODIAL/Auto_Eis


24 

 

(ONR) through the Multidisciplinary University Research Initiative (MURI) program (award #: 

N00014-20-1-2368) with program manager Dr. Dave Shifler, the National Science Foundation 

(NSF), and the Material Research Science and Engineering Centers (MRSEC). We also gratefully 

acknowledge technical discussions and feedback from Dr. Shijing Sun, Prof. Keryn Lian, Dr. Alvin 

Virya, and Dr. Austin McDannald. 

Conflict of interest: The authors declare no competing interests. 

Reference 

1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ Sci, 4, 3243–

3262 (2011). 

2. C. D. Taylor, P. Lu, J. Saal, G. S. Frankel, and J. R. Scully, Npj Mater Degrad, 2, 6 (2018). 

3. R. M. Ormerod, Chem Soc Rev, 32, 17–28 (2003). 

4. M. Tahir et al., Nano Energy, 37, 136–157 (2017). 

5. A. Eftekhari, Int J Hydrogen Energy, 42, 11053–11077 (2017). 

6. A. Liu et al., J Mater Chem A Mater, 8, 3541–3562 (2020). 

7. A. Jain et al., APL Mater, 1, 11002 (2013). 

8. J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, Jom, 65, 1501–1509 (2013). 

9. M. L. Green, I. Takeuchi, and J. R. Hattrick-Simpers, J Appl Phys, 113, 9_1 (2013). 

10. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, Sci Rep, 3, 1–6 (2013). 

11. S. P. Ong et al., Comput Mater Sci, 68, 314–319 (2013). 

12. N. Science and T. Council (US), Materials genome initiative for global competitiveness, 

Executive Office of the President, National Science and Technology Council, (2011). 

13. A. Aspuru-Guzik and K. Persson, Mission Innovation (2018). 

14. B.-Y. Chang and S.-M. Park, Annual Review of Analytical Chemistry, 3, 207–229 (2010). 



25 

 

15. A. Amirudin and D. Thieny, Prog Org Coat, 26, 1–28 (1995). 

16. D. V Ribeiro and J. C. C. Abrantes, Constr Build Mater, 111, 98–104 (2016). 

17. J. R. Scully and D. C. Silverman, Electrochemical impedance: analysis and interpretation, 

ASTM International, (1993). 

18. F. Mansfeld, Electrochim Acta, 35, 1533–1544 (1990). 

19. S.-M. Park and J.-S. Yoo, (2003). 

20. F. Ciucci, Curr Opin Electrochem, 13, 132–139 (2019). 

21. D. A. Harrington and P. Van Den Driessche, Electrochim Acta, 56, 8005–8013 (2011). 

22. S. Wang et al., Nature Reviews Methods Primers, 1, 41 (2021). 

23. D. D. Macdonald, Electrochim Acta, 51, 1376–1388 (2006). 

24. J. R. Macdonald and E. Barsoukov, Impedance spectroscopy: theory, experiment, and 

applications, John Wiley & Sons, (2018). 

25. S. R. Taylor and E. Gileadi, Corrosion, 51 (1995). 

26. A.-K. Meland, D. Bedeaux, and S. Kjelstrup, J Phys Chem B, 109, 21380–21388 (2005). 

27. X. Hu, S. Li, and H. Peng, J Power Sources, 198, 359–367 (2012). 

28. H. Cao, J. Yu, and L. Kang, in The 2003 Congress on Evolutionary Computation, 2003. 

CEC’03.,, vol. 3, p. 1819–1825, IEEE (2003). 

29. P. Arpaia, F. Clemente, and A. Zanesco, in 2006 IEEE Instrumentation and Measurement 

Technology Conference Proceedings,, p. 1786–1791, IEEE (2006). 

30. P. Arpaia, Meas Sci Technol, 20, 65601 (2009). 

31. F. M. Janeiro and P. M. Ramos, in 2016 IEEE International Instrumentation and 

Measurement Technology Conference Proceedings,, p. 1–6, IEEE (2016). 

32. M. Van Haeverbeke, M. Stock, and B. De Baets, IEEE Trans Instrum Meas, 70, 1–12 (2021). 



26 

 

33. S. Zhu et al., Journal of Electroanalytical Chemistry, 855, 113627 (2019). 

34. Y. Xu et al., J Electrochem Soc, 167, 47508 (2020). 

35. D. Whitley, Inf Softw Technol, 43, 817–831 (2001). 

36. M. Kowski and M. J. Palys, ChemElectroChem, 8, 2956–2967 (2021). 

37. J. Wan et al., IEEE Sens J (2021). 

38. J. H. Holland, Sci Am, 267, 66–73 (1992) http://www.jstor.org/stable/24939139. 

39. C. Ferreira, (2001). 

40. J. Kruschke, (2014). 

41. J. Huang, M. Papac, and R. O’Hayre, Electrochim Acta, 367, 137493 (2021). 

42. J. Liu and F. Ciucci, Electrochim Acta, 331, 135316 (2020). 

43. B. Py, A. Maradesa, and F. Ciucci, Electrochim Acta, 439, 141688 (2023). 

44. M. B. Effat and F. Ciucci, Electrochim Acta, 247, 1117–1129 (2017). 

45. F. Ciucci and C. Chen, Electrochim Acta, 167, 439–454 (2015). 

46. J. Liu, T. H. Wan, and F. Ciucci, Electrochim Acta, 357, 136864 (2020). 

47. B. A. Boukamp, J Electrochem Soc, 142, 1885 (1995) https://dx.doi.org/10.1149/1.2044210. 

48. S. Watanabe, (2010). 

49. M. Schönleber, D. Klotz, and E. Ivers-Tiffée, Electrochim Acta, 131, 20–27 (2014). 

50. N. O. Laschuk, E. B. Easton, and O. V Zenkina, RSC Adv, 11, 27925–27936 (2021). 

51. M. D. Hoffman, A. Gelman, and others, J. Mach. Learn. Res., 15, 1593–1623 (2014). 

52. X. Cheng and P. Bartlett, in Algorithmic Learning Theory,, p. 186–211, PMLR (2018). 

53. M. Betancourt, arXiv preprint arXiv:1701.02434 (2017). 

54. J. Jewson, J. Q. Smith, and C. Holmes, Entropy, 20, 442 (2018). 

55. A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner, Bayesian Anal, 16, 



27 

 

667–718 (2021). 

56. A. Vehtari, A. Gelman, and J. Gabry, Stat Comput, 27, 1413–1432 (2017). 

57. N.-T. Suen et al., Chem Soc Rev, 46, 337–365 (2017). 

58. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T. J. Schmidt, Catal Sci Technol, 4, 3800–

3821 (2014). 

59. C. Ye, M.-Q. Wang, S.-J. Bao, and C. Ye, ACS Appl Mater Interfaces, 11, 30887–30893 

(2019). 

60. J. R. Swierk, S. Klaus, L. Trotochaud, A. T. Bell, and T. D. Tilley, The Journal of Physical 

Chemistry C, 119, 19022–19029 (2015). 

61. R. L. Doyle and M. E. G. Lyons, Physical Chemistry Chemical Physics, 15, 5224–5237 

(2013). 

62. C. C. L. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J Am Chem Soc, 135, 16977–

16987 (2013). 

63. J. R. Scully, Corrosion, 56 (2000). 

64. K. Lutton et al., J Electrochem Soc, 170, 21507 (2023). 

65. A. Y. Gerard, K. Lutton, A. Lucente, G. S. Frankel, and J. R. Scully, Corrosion, 76, 485–499 

(2020). 

66. Y. Qiu, S. Thomas, M. A. Gibson, H. L. Fraser, and N. Birbilis, Npj Mater Degrad, 1, 15 

(2017). 

67. N. Birbilis, S. Choudhary, J. R. Scully, and M. L. Taheri, Npj Mater Degrad, 5, 14 (2021). 

68. J. R. Scully et al., Scr Mater, 188, 96–101 (2020). 

69. F. Mansfeld, H. Shih, H. Greene, and C. H. Tsai, ASTM Special Technical Publication, 1188, 

37 (1993). 



28 

 

70. X. Li, S. Wang, L. Li, Y. Sun, and Y. Xie, J Am Chem Soc, 142, 9567–9581 (2020). 

71. J. Wu, Y. Huang, W. Ye, and Y. Li, Advanced Science, 4, 1700194 (2017). 

72. A. Sacco, Journal of CO2 Utilization, 27, 22–31 (2018). 

  

 


